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ABSTRACT 

Miguel, A. A. F. 1998. Transport phenomena through porous screens and 

openings: from theory to greenhouse practice. Ph.D. Dissertation, 
Landbouwuniversiteit, Wageningen. Also available as a publication of 
Instituut voor Milieu en Agritechniek (IMAG-DLO) Wageningen, 
Netherlands. 129 pp.; 44 figs.; 9 tables; 112 refs.; English, Dutch, 
Portuguese and Chinese summaries. 

Keywords: free and forced convective mass exchange, fluctuating flow, free 

convective heat transfer, porous screens, window openings, screened 

greenhouses. 

The study of transport phenomena in multi-zone enclosures with permeable 

boundaries is fundamental for indoor climate control management. In this 

study, aspects concerning the air exchange through porous screens and 

openings, and heat transfer between the enclosure surface and inside air, were 

analysed. Basic physical laws were the starting point during the construction of 

the models. To illustrate the practical side of the research performed, the 

formulation developed was applied to the study of convective heat exchange 

within screened greenhouses, as well as to the study of airflow through 

greenhouse screens and window apertures. 

Concerning the airflow through porous screens and window openings, the 

results obtained thoroughly demonstrate the importance of inertia and viscous 

effects, as well as window openings' geometry effects, on fluid flow. The 

airflow characteristics of porous screens and the structure of fluctuation of 

wind velocity, were quantified. 

Regarding the study of free convection heat transfer within a screened 

greenhouse, the convective heat transfer coefficients between the air and the 

downward and the upward surfaces of the screen were obtained, among other 
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results. 

The results obtained from this study can greatly contribute, in general, to a 

better climate control management of multi-zone enclosures, and specifically, 

to an improved application of porous screens and window apertures. 
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Stellingen/Propositions 

1. Darcy and Forchheimer already empirically described fluid flow 
through porous media in 1856 and 1901, respectively. However, the 
subject is still a modern topic. 

In this dissertation. 

2. A linear model as the Darcy law only describes flows at low Reynolds 
numbers. For screens this covers only part of the flow regimes 
occurring in practice. For a full description a non-linear model is need. 

In this dissertation. 

3. Under commonly observed flow regimes, it is not appropriate to apply 
the Bernoulli's equation to porous screens. 

In this dissertation. 

4. For a full exploitation of energy saving potentials of thermal screens, 
not only the temperature and wind-driven air exchange through fully 
closed screens have to be studied [1], but also the exchange through 
partially opened screens. 
[1] Balemans L. 1988. Assessment of criteria for energetic effectiveness of 
greenhouse screens. Ph.D. Dissertation, Ghent University, Belgium 

5. In the study of airflow through openings, a constant discharge 
coefficient (0.61) does not account for the specific opening 
characteristics, thus contributing to inaccurate predictions. 

In this dissertation. 

6. On-line estimation of ventilation of cavities can best be derived from a 
mass balance (e.g. C02 balance) 

7. Science tells us what we can know, but what we can know is little, and 
if we forget how much we cannot know we become insensitive to many 
things of very great importance. 

B. Russell (1946). History of western philosophy and its connection with 
political and social circumstances from the earliest times to present day. 
George Allen & Unwin. United Kingdom. 



8. The strict university educational programs force students to accept 
scientific ideas not by reasoning but by authority. 

9. If the universe would be pre-determined, it does not make sense to 
define good or evil, nor to have despair or hope. 

10. As a metronome, the coffee break marks the rhythm of a Dutch 
working day. 

11. Asking yes-no questions blocks creative thinking. 

12. We are our dreams of ourselves souls by gleams, and each to each 
other dreams of other's dreams. 
F. Pessoa (1918) English Poems. 

Propositions belonging to the Ph.D. thesis 'Transport phenomena 
through porous screens and openings: from theory to greenhouse 
practice"of A. A. Ferreira Miguel (1998) 
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1. INTRODUCTION 

1.1 PRELIMINARY REMARKS 

The study of transport phenomena is an important topic in science and engineering. 

This is due to the essential (and sometimes decisive) role they play in distinct natural 

and industrial processes (geothermal operations, indoor climate control in buildings, 

flow over the earth's surface, drying and cooling processes, etc.). 

In order to solve problems in transport phenomena, it is necessary to approach the 

specific problems from a general physical description. This leads to models which 

allow us to predict the phenomena described under a variety of conditions, with 

adequate accuracy. The physical principles applied in the building of these models are 

the conservation of mass, momentum and energy, and the relations between fluxes and 

driving forces. This results in non-linear differential equations, in space and time, from 

which analytical solutions can be obtained, although only in the simplest cases. 

Usually, these equations have to be solved with the help of numerical techniques like 

Euler and other integration technique for lumped parameter problem, or like the finite-

difference and finite volume method for distributed parameter problem [1,2]. 

Unfortunately, numerical techniques are difficult to use and in most cases not very 

practical. Therefore, a very large number of the existing studies deals with 

mathematical simplifications, which neglect some physical aspects, while others deal 

with simple empirical correlations with an unknown range of validity and 

applicability [3,4]. 

This thesis describes a study of some transport phenomena in multi-zone enclosure, 

applied in a screened greenhouse: air infiltrations through screened greenhouses and 

free convective heat transfer between the various surfaces and the air within the 

greenhouse. Its main purpose is to develop a consistent formulation that is both 
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physically meaningful and useful in practice, and which helps to solve everyday 

problems, with higher accuracy and lower computational cost. 

1.2 TRANSPORT PHENOMENA IN SCREENED GREENHOUSES - THE IMPORTANCE OF 

POROUS S C R E E N S 

1.2.1 Reasons for studying screened greenhouses 

Protected horticulture is an important contribution to economy of several countries 

around the world. In the Netherlands, it provides for about 6.6% of total export value 

and represents a value of about 10'° US dollar per year [5]. As a consequence, this 

topic is the subject of numerous research initiatives. At first thought, it might appear 

that the improvement of products quality and the reduction of production prices should 

be the main concerns. However, the related environmental aspects cannot be 

neglected, since protected horticulture is an important consumer of fossil fuel and 

chemical pesticides. 

The potential benefits deriving from the use of screens in protected horticulture have 

been increasingly recognised in recent years. In the Netherlands about 75 % of total 

greenhouse area is equipped with screens. Thermal screens are a simple, cheap and 

effective means of reducing night-time heat loss. Shading screens control the solar 

radiation inside a greenhouse, while insect screens prevent the entrance of birds and 

insects. Therefore, screen strongly contribute to the reduction of greenhouse heating 

and refreshing costs, while being an effective alternative to chemical pesticides in the 

control of insect borne diseases. 

1.2.2 Modelling the influence of porous screens in greenhouses: interest, previous 
research and needs 

The use of screens in greenhouses has a considerable effect on growing conditions 

while they provide an extra resistance to mass, momentum and heat transport between 
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the interior and the ambient. The application of screens and thereby the exploitation of 

its potentials, has been restricted so far by an improper quantification of the effect on 

the growing conditions. 

The physical modelling of behaviour of porous screens 

• contributes to a better comprehension of physical phenomena around screens 

and it allow a correct interpretation of experimental data, 

• allows diverse screening strategies to be compared (policy advice), 

• improves design tools to optimise the application of screens, 

• helps to decide about characteristics of a screening material (commodity 

forecasting) in order to support the manufacture of new screening materials, 

• implemented in simulation programs helps the improvement of the climate 

control (the growing conditions) of a screened greenhouse. 

Most literature reviews on greenhouse screens concern its influence on the radiative 

climate of greenhouses. The influence of screens on the incoming solar and thermal 

radiation have already been successfully modelled [6-9] and the optical or radiometric 

characteristics of different materials used for screens have been determined by several 

authors [6,10,11]. 

The influence of screens on convective heat exchange inside greenhouses and the 

study of fluid transport through screens have received little attention, and are poorly 

understood. 

As to our knowledge, only one experimental study (unpublished communication 

presented by Stoffers [12] in Cambridge), is concern to the convective heat transfer in 

greenhouses divided by a horizontal screen. Fluid transport through screens was 

described by Balemans [11], Bailey [13], Sase and Christianson [14], and Kosmos et 

al. [15]. The first two, considered only the fluid flow under a Reynolds number 

smaller than 1 (Darcy flow regime). Sase and Christianson [14] and Kosmos et al. [15] 

considered the fluid transport through a screen to be described by Bernoulli's equation, 

and defined the airflow characteristics of a screen according to a "discharge 
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coefficient". 

In all studies, the horizontal screen between the greenhouse ground and the roof was 

always considered closed between the greenhouse walls. The realistic situation of a 

screen opened only slightly [5] was never analysed. 

1.3 AIM 

Despite the existence of a lot of important studies on the transport phenomena in 

multi-zone enclosures with permeable walls, the subject is far from being fully 

understood. The study presented in this thesis seeks to clarify some aspects of 

transport phenomena occurring in multi-zone enclosures with permeable walls: air 

infiltration through enclosures containing openings and pores and heat transfer 

between the enclosure surfaces and the inside air. The theory developed is applied to 

the study of screened greenhouses and compared with experimental results. Thus, the 

study can be used as a tool to increase a more sustainable use of screens and window 

apertures. 

1.4 OVERVIEW OF THE THESIS 

This thesis contains eight chapters. Chapters 2 to 6 are devoted to fluid transport 

through multi-zone enclosure with porous materials and openings. Chapter 7 concerns 

free (natural) convective heat exchange within the enclosure and Chapter 8 presents 

the general conclusions. 

In Chapter 2, forced convection through pores and openings is discussed. An 

approach based on the momentum equation, developed in terms of the method of 

volume averaging is presented. The resulting approach is valid for porous material and 

non-porous material, and can be used in computational fluid dynamics to predict the 

velocity and pressure throughout the flow field. A simplified and accurate form is also 

developed, having a small number of parameters and simple mathematical operations. 

4 
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In Chapter 3, the approach developed in Chapter 2 together with the mass 

conservation equation and the state equation of gases is used to study air exchange 

induced by fluctuating pressures. The network flow equations for air exchange in a 

multi-zone enclosure and equations for the pressure within each zone with 

compressible air are presented. 

Fluid transport through permeable materials can also occur due to gradients of 

temperature and concentration, or as a result of combined effects (gradients of 

temperature, concentration and pressure generated by wind or mechanical means). A 

description of mixed convection through porous media supported by thermodynamics 

and fluid mechanics basic laws, is presented in Chapter 4. As a result the mass 

variation of the medium and the interaction between the matrix and the fluid within 

the medium can be studied. 

Chapter 5 is devoted to measure the airflow characteristics of porous screens. Nine 

different thermal, shading and insect screens were tested by means of a 

DC-pressurisation method. Their permeability and porous inertia factor were 

determined according to Forchheimer equation (porosity measured with a 

microscope). Special attention is given to the airflow characteristics variation 

(permeability and porosity) due to screen damage by handling. 

In Chapter 6 the approaches presented in Chapter 2 to 4 are applied to the study of 

air exchange in a screened greenhouse. This study is complemented with a power-

spectrum analysis of wind velocity, in order to clarify and characterise the structure of 

pressure fluctuations (turbulence), and to identify the frequencies of the main eddies 

present in the wind field. The fluctuations in the wind velocity are related to the mean 

velocity, and the wind pressure is interpreted in terms of the mean wind velocity. 

Chapter 7 is devoted to free convective heat transfer inside screened greenhouses. 

The heat transfer coefficient at various surfaces is expressed as a relation between 

dimensionless Nusselt's number and the Rayleigh's number. Subsequently, an 

experimental study is performed to determine free convection heat transfer 
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coefficients (between air and heating pipes, air and horizontal screen, and air and inner 

roof surface) in a greenhouse with characteristic lengths close to those of real 

greenhouses. The screen surfaces presented some roughness, as the screens used in 

greenhouses. Other practical aspects, such as the influence of the position of the 

heating pipes in relation to the screen, and the presence of a crop, on the convective 

heat transfer between the various surfaces and the air, is discussed. 

Finally, Chapter 8 presents the most important conclusions of the present study and 

includes a recommendation on possible future research. 

1.5 REFERENCES 
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2. Forced fluid motion through openings and pores + 

Abstract: A theoretical and experimental study of forced flow through permeable 

media is presented. The mathematical model is based on the momentum equation and 

developed in terms of the method of volume averaging, which results in an approach 

that is valid for fluid motion through both porous and non-porous media. The 

approach can be used in computational fluid dynamics (CFD) to predict the velocity 

and pressure throughout the flow field. Solving this model numerically is difficult and 

in some practical applications the detail of CFD solutions is not required. To account 

for this, a simplified form of model is also developed which provides an alternative 

that can be used in one-dimensional analysis. Thus, the description presented has a 

wide application. 

2.1 INTRODUCTION 

Forced convection through pores and openings can occur through mechanical means 

(fans), the effect of gravity and the effect of wind. For a proper quantification of the 

phenomenon it is necessary to know how the fluid motion is related to the driving 

forces and to the characteristics of the transmitting medium. 

When a fluid is forced through a permeable medium (containing pores or openings) 

energy is lost, which causes the pressure to drop over the slab of the medium. The 

pressure drop over openings is generally presented as being proportional to the fluid 

velocity squared [1]. A term, which is linearly dependent on fluid velocity, is added 

for extremely narrow openings [2]. For a porous medium, with Reynolds numbers less 

than 1, the pressure drop is generally considered to be proportional to the fluid 

velocity (Darcy's law). For Reynolds numbers greater than 1, the existence of a non-

linear flow regime has been demonstrated experimentally. As a result, an extra 

squared fluid velocity term has been added to match the experimental results [3,4]. 

+ Building and Environment (in press) 



Forced fluid motion through openings and pores 

The aim of this paper is to establish a more detailed theoretical modelling of fluid 

flow through pores and openings. A mathematical model is presented based on the 

momentum conservation equation and developed in terms of a methodology called 

method of volume averaging. The resulting approach is a non-linear differential 

equation, valid to describe flows through media with pores up to large openings. 

Solving this equation even by numerical means is difficult and usually impractical. In 

order to account for this, a simplified form of the approach is also presented in order to 

quantify with good accuracy the magnitude of the phenomenon using a small number 

of parameters and ordinary mathematical operations. Thus, the description presented 

can be widely applied. 

2.2 MATHEMATICAL FORMULATION 

Conservation of momentum - the equation of motion 

The equation of motion for a single-phase flow in a general flow field can be written 

as 

pdu/dt+(pu.V)u =-VP+|iV2u (1) 

where u is the vector velocity, P the total pressure (with gravitational force per unit 

mass included) and p. the dynamic viscosity. 

The drawback of applying equation (1) is the very local character of the state 

variables. This characteristic prevents a detailed description of porous media because 

it is only valid inside the pores. To overcome this, equation (1) will be developed with 

the help of a methodology called method of volume averaging, resulting in an 

equation valid over a small volumetric element which is representative for the medium 

under study. The validity of the resulting approach is based on the following 

assumptions: 

• the medium is homogeneous at a macroscopic scale 

• the solid matrix is rigid 

10 
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• there are no chemical reactions between the solid matrix and the fluid 

• the conditions are isothermal 

The method used for the volume averaging is presented in the Appendix. 

2.2.1. The equation of motion developed using the method of volume averaging 

Averaging the terms of equation (1) in a control volume (Fig. 2-1) following the 

procedure indicated by equation (A.3) in the Appendix, the intrinsic phase average can 

be expressed as 

<pôu/5t>i+<(pu.V)u>i=-<VP>i+<^V2u>i (2) 

( M a c r o s c o p i c 
- -^ v o l u m e 

S o l i d m a t r i x 

FIG. 2-1. Macroscopic region and averaging volume for a solid-fluid system. 

The porosity, density and the fluid viscosity are considered constants in the 

averaging volume. According to equation (A.5) in the Appendix, the first left-hand 

side term of (2) can be written as 

p5<u>j/a+pô(u~)/at (3.1) 

Following the procedure indicated by equation (A.7) in Appendix, the second left-

hand side term of equation (3) becomes 

p(<u>j.V<u>i+u~.V<u>j+<u>i.Vf"
1In.u~dA+u~.Vf

1 jn.u~dA) (3.2) 

11 
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and the right-hand side term 

-V<P>i-Vf-
1 JP~ dA+p. V2<u>j+(i Vf1 Jn.Vu~ dA (3.3) 

At this point we need a representation for P~ and u~ as functions of the flow field in 

order to obtain the closed form. For this, we will express the spatial deviation as a 

linear function of some phase-averaged quantity, as used by Whitaker [10] in the 

derivation of Darcy's law, and as supported by Slattery in previous work [6]. The 

closure problem requires that the spatial deviation of the velocity and pressure be 

represented in terms of intrinsic averaging velocity, which can be given by 

u~=r. <u>j (4) 

P~=uO.<u>, (5) 

where T and O are tensors which relate the intrinsic phase average velocity to the 

spatial deviation of velocity and pressure, respectively. 

Substituting equations (4) and (5) in (3) yields 

p5<u>/ôt+p5(r.<u>i)/ôt+p[<u>i.V<u>i+r.<u>i.V<u>i+ 

<u>i.<u>i.(Vf'In. rdA+VfT. In.rdA)]=-V<P>i+n V2<u>(+ 

+p.<u>i(Vf
1 In.VrdA-Vf

1ll.OdA)+nV<u>i(Vf-
1 JnT dA) (6) 

where I is the unit tensor. 

While intrinsic average pressure is used exclusively because it corresponds more 

closely to the measured value, superficial average velocity is generally preferred in 

practical situations. The spatial deviation of the velocity and pressure is much smaller 

than the average value of the corresponding intrinsic phase. So T and O will be small 

parameters. As <u>,»r<u>j and <u> are related by <u>| through <u>=s<u>j (see 

Appendix), equation (6) becomes 

(p/e)ô<u>/a+(p/£2)<u>.V<u>=-V<P>1+p.<u>.[(l/e)(Vf-
1fn.VrdA-Vf-

||l.OdA)]-

p<u>.<u>.[(l/e2)(Vf-
1[n.rdA)]+p.V<u>.[(l/8)Vf1 Jn.T dA]+(p/e)V2<u> (7) 

Equation (7) is the key relation in this exercise. Compared with equation (1), in 

addition to the terms accounting for the convective inertia effects {(p/e2)<u>.V<u>} 

12 
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and the viscous resistance of fluid flow {(u/s)V2<u>}, new terms 

accounting for the effects of interaction between the fluid and the 

matrix appear: {p<u>.<u>.[(l/e2)(Vf 'JnTdA)], ^V<u>.[(l/E)Vf-
1Jn.rdA], 

(a<u>.t(l/£)(Vf-
1 fn.VrdA-Vf1 Jl.OdA)]}. 

In the next section, the terms accounting for the effects of interaction between the 

fluid and the matrix will be discussed, in order to clarify their physical meaning and 

to present them in a more convenient and traditional way. 

2.2.2 The range of validity of the motion equation 

In order to complete the formulation of the motion equation developed in Section 

2.2.1, the range of validity must be analysed. Therefore in this section two types of 

medium will be analysed: a medium with poor fluid transmissivity and a medium with 

high fluid transmissivity. 

2.2.2-1 Medium with poor fluid transmissivity (the flow is considered to be 
incompressible [4]) 

If the flow is incompressible ( V<u>=0) and the volume of the solid matrix is larger 

than the volume occupied by the fluid ((u/e)V2<u>»0 [11]), then the second left-

hand side term and the last right-hand side term of equation (7) can be discarded. This 

allows us to write for a steady flow 

p<u>.<u>.[(l/82)(Vf-
1fn.rdA)]=-V<P>i+n<u>.[(l/e)(Vf

1 Jn.VrdA-Vf-' Jl.OdA)] (8) 

Darcy domain 

In the range of Darcy's law (Reynolds numbers not exceeding 1 [4]) the velocities 

are very small. So, the squared fluid velocity term is negligible compared to the linear 

fluid velocity term, and we obtain from equation (8) 

H<u>.t(l/e)(Vf-
1 jn.VrdA-Vf1 Il.OdA)]=V<P>i (9) 

The term in brackets can be associated with the viscous resistance force due to 

13 



Forced fluid motion through openings and pores 

momentum transfer at the matrix-fluid interface and is traditionally identified 

as [10,11] 

[(1/eXVf-1 jn.VrdA-Vf"1 Jl.OdA)]=-K-' (10) 

where K is the permeability of the medium (m2). 

Permeability represents the ability of the medium to transmit the fluid through it. In 

accordance to kinetic gas theory [11], permeability is related to the reciprocal of the 

collision frequency of diffusing particles against the solid matrix and the kinematic 

fluid viscosity. 

Forchheimer domain 

In the Forchheimer domain [4] the pressure gradient is proportional to a linear term 

of fluid velocity plus a squared velocity term (equation (8)). The term in brackets that 

refers to the linear term is given by equation (10). The left-hand side term in brackets 

relating to the pores' inertia effects is traditionally identified as [3,12] 

[(l/^XVf-'Jn.rdA^YK-"2 (11) 

where Y is a porous inertia factor. 

2.2.2-2 Medium with high fluid transmissivity 

A medium is very transmissive to fluid when its permeability is very high (K-»cc 

and £«1 [11]). According to equations (10) and (11), the terms concerning the viscous 

resistance force, brought about by the momentum transfer at the matrix-fluid 

interface and the porous inertia effects can be discarded. The motion equation (7) will 

be 

pö<u>/at+p<u>.V<u>=-V<P>+p.V2<u>+p.V<u>.[(l/£)Vf-
1 Jn.rdA] (12) 

In accordance with equation (11) the last right side term in brackets of (12) can be 

identified as YK"1/2. The permeability of a high fluid transmissivity medium is very 

high (K —>oc) and YeK."2 —>0, that is, we recover the motion equation (1) valid for a 

fluid volume element. 
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2.2.3. Motion equation for a permeable medium 

According to section 2.2.1 and 2.2.2 the motion equation for a permeable medium 

(containing pores or openings) can be rewritten as 

(p/8)5<u>/5t+(p/s2)<u>.V<u>=-V<P>r(u/K)<u>-pYK-1/2<u>.<u>+ 

uYeK-1/2V<u>+(n/s)V2<u> (13) 

The advantages of the approach described by equation (13) when compared with the 

existing literature [1-4] are 

• one equation is sufficient to describe flows through media with pores up to 

large openings instead of several equations, 

• the approach was deduced without using empirical information. 

The inertial factor Y was shown to be dependent on the porosity and a coefficient 

cY, and can be obtained using the relationship [12,13] 

Y=cYen (14) 

The values usually employed are cy equal to 14.29xl0"2 or 4.36xl0'2 and n equal to 

-1.5 or -2.12, for channels filled with packed beds [12] and for permeable screening 

media [13], respectively. 

Equation (13) is a non-linear differential equation and can be solved together with 

mass and energy balance equations using numerical techniques within CFD. The 

velocity, pressure and temperature throughout the flow field can be predicted. 

Solving the transport equations numerically is difficult and in some engineering 

applications the detail of CFD solutions is not required. For these applications it is 

important to have a model which quantifies the phenomenon accurately and simply. 

This will be the subject of the next section. 

2.2.4. Simplified motion equation for pores and openings 

In dealing with most of practical applications, an one-dimensional flow description 

provides a good approximation [1-3]. Under this assumption equation (13) can be 

written as 
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(p/8)5<uj>/at+((j/K)<uj>+pYK-1/2<uj><uj>+Q<uj>=-a<Pj>i/ôj (15) 

with 

Q=[p8-2-Re1L(YsK-1/2+E-15/öj](a<uj>/öj) 

where j represents the flow direction (perpendicular to the transmitting medium), Re 

the Reynolds number and L a length dimension. 

For porous media, according to Bear [4], du/cjj=0 and consequently 

Q=0 (16) 

In order to obtain Q for openings, consider a medium which has very high fluid 

transmissivity (K - » « and second, third left-hand side terms can be discarded). 

Assuming a steady flow, the resulting equation can be integrated along a streamline 

and for any two points on this trajectory at distance H 

0.5pA<u>2=A<P>+0.5pRe"1(L/H)A<u>2 (17) 

with 

A<u>2=<uH1>
2-<uH2>

2 

where u m and uH2 are the velocity at two different points of the streamline. 

To obtain a non-steady equation again, an integral (j9<u>/ôtdH=H 9<u>/9t) must be 

added, becoming 

5<u>/öt+0.5pCc"
2<u>2/H=A<P>/H (18.1) 

with 

0.5pA<u>2=0.5pc,o<u>2 (18.2) 

Cc={cl0[l-Re-'(L/H)]}-1/2 (18.3) 

where H is the characteristic depth of the medium and c,0 a parameter accounting for 

kinetic energy loss. 

In accordance with equation (18.1), for openings, the parameter Q can be now 

written as 

Q=0.5pCc'
2<u>/H (19) 

The coefficient Cc is dependent on Re and on the characteristics of the opening. The 
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influence of Re on the coefficient Cc is shown in Fig. 2-2. Fig. 2-2 shows that Cc is 

strongly dependent on Re only where Re<25. That is, for Re>25 the flow can be 

considered non-viscous and Cc becomes equal to c,0""2. 

Ü 

Fig. 2-2. Convective coefficient versus the Reynolds number (Re>1). 

In order to use equation (15) for openings, we need to know c,0 for openings with 

various shapes and sizes. This will be determined in the next section. 

2.3 EXPERIMENTAL STUDY 

The purpose of this section is to determine the unknown parameters clo (for 

openings), Y and K (for porous materials). For porous materials the experiments were 

performed using porous screen samples with trade names "ECONET F" and "LS 10 

PLUS". For openings the experiments were performed using openings of various 
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shapes and sizes. In both experiments, the samples were subjected to several air flows, 

causing a constant pressure drop between the sample sides (DC-pressurization 

method [13]). 

2.3.1. Description of experiments 

The experiments were conducted in a wind tunnel described in detail by Miguel et 

al. [13], as shown in Fig. 2-3. 

Framework with round 
opening 

Framework with screen 
sample 

Framework with square 
opening 

/ 

Airflow 

FIG. 2-3. Schematic representation of the test apparatus used to cause a pressure drop 
between the samples tested. 

In order to determine the parameter clo a plane framework fixed to the outlet side of 

the test box was used, which allows an opening to be changed both in shape (square or 

round) and in area (the ratio between the area of the opening and the area of the 

framework can be varied between 0.01 and 0.95). 

The experiments were performed satisfying a Reynolds range between 72 and 4xl05 
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(excluding the influence of viscous effects). 

In order to determine the parameters Y and K, the test screens were fixed to the 

outlet side of the test box using a wooden frame, which prevents air leakage. The 

experiments were performed satisfying a Reynolds range between 0.7 and 97. 

A/Afr 

FIG. 2-4. The measured coefficient 1/clo for a round and square opening as 
a function of the ratio between the free area of the opening and 
the area of flow field. 

2.3.2. Results and discussion 

The data resulting from the experiments performed using openings were plotted as 

shown in Fig. 2-4. 

The parameter cb seems to be independent of the shape of the opening (square or 

round) but depends on the ratio between the free opening area (A) and the flow field 
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area (Afr). It is in full agreement with the equation 

c,o={2.7-0.04203exp[3.7(A/Afr)
1/2]} 

{l-[2.7-0.04203 exp[3.7(A/Afr)
1/2]] (A/Afr)

25}1/2 (20) 

Substituting equation (20) in (18.3) provides 

Cc-
2=[1-Re-'(L/H)] {2.7-0.04203 exp[3.7(A/Afr)

1/2]} 

{l-[2.7-0.04203 exp[3.7(A/Afr)
1/2]](A/Afr)

25}1/2 (21) 

Frame 

FIG. 2-5. Schematic representation of rectangular opening with a flap. 

Similar experiments were conducted by Bot [14] using rectangular openings with 

flaps (Fig. 2-5) placed in a plane framework (A«Afr). This study found practical 

application in apertures with doors and greenhouse windows. The data resulting from 

the experiments performed satisfying a Reynolds range between 2xl02 and 2.1xl04, 

and angles between the flap and the frame less than or equal to 90°, are represented in 

Fig. 2-6. 

The parameter c,0 seems to be dependent on the dimensions (length and width ratio) 

of the opening and could be described by the following equation 

clo={1.75+0.7exp[-(L,/Ls)sina/32.5]} 

{sina[ 1 +0.60(L,/Ls)(cosa-27t((90-a)/360)sina)]} "2 (22) 
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and 

O / H {1.75+0.7exp[-(L/Ls)sina/32.5]} {sina[l+0.60(L,/Ls) 

(cosa-27i((90-a)/360)sina)]}-2 [l-Re''(Ls/H)]} (23) 

where a is the opening angle between the flap and the frame, L, the larger length of 

the opening and Ls the smaller length of the opening. 

20 40 60 

OPENING ANGLE (°) 

80 

FIG. 2-6. The measured coefficient 1/c,„ for a rectangular opening as a 
function of opening angle between the flap and the frame. 

According to equation (20), for A=Alr there are no flow obstructions and c,0 is zero 

(Cc"
:=0), i.e., pressure drop is equal to zero. Therefore, according to equations (20) and 

(22), for a non-viscous flow through a round or square opening in a large framework 

(A/Atv~0), and for an opening with opening angle of 90°, the coefficient Cc achieves 

values close to 0.60 and 0.63, respectively. These values are close to the value usually 

found for the so-called "discharge coefficient" in the literature (0.61). 
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FIG. 2-7. Pressure drop as a function of the velocity for a porous screen 
trade name "ECONET F". 
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FIG. 2-8. Pressure drop as a function of the velocity for a porous screen 
trade name "LS 10 PLUS". 
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The data resulting from the experiments performed using porous screen samples 

were plotted as shown in Figs. 2-7 and 2-8. 

The parameters Y and K are obtained fitting the experimental data with the 

Forchheimer equation. The permeabilities obtained for screen ECONETF and LS 10 

PLUS were 6.51xl009 m2 and 6.79xl0_u m2, and parameter Y equal to 0.457 and 

7.18, respectively. The porosities can then be found using equation (14) and were 0.09 

and 0.33, respectively. 

Equation (15) together with equations (16), (21) and (23) form a simplified 

mathematical model to describe one-dimensional forced fluid motion through pores 

and openings. 

2.4 CONCLUSIONS 

This paper describes some physical aspects of forced convection through permeable 

media. The results described above show that, for forced convection, one theory seems 

to be sufficient to describe flow phenomena through porous media and through 

non-porous media (gaps, cracks, doors, windows). 

The approach developed in this study enables the air infiltration in enclosed spaces 

to be analysed. We describe this application elsewhere [15]. 
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2.6 APPENDIX 

Basic formulation of the method of volume averaging 

Consider a homogeneous system whose averaging volume, represented in Fig. 2-1, 

is invariant with respect to time and space. For a two-phase system (solid matrix and 

fluid) the averaging volume is defined as 

V=Vs+Vf (A.l) 

where Vs and Vf represent the volume of the solid and fluid contained within the 

averaging volume, respectively. 

The fluid porosity e is given by 

£=V/V (A.2) 

The porosity represents the volume fraction of fluid contained within the averaging 

volume of the medium and it is between 0 and 1 (0<e<l). Specifically for one opening 

it is 1 (e=l, all open volume is filled with fluid). 

The average of a local quantity A (fluid velocity, fluid pressure) in the averaging 

volume, can be formulated in terms of superficial (external) phase average or intrinsic 

(internal) phase average. The intrinsic (internal) phase average is defined as 

<A>,=Vf-
1jAdV (A.3-1) 

and the superficial (external) phase average as 

<A>=V-'jAdV (A.3-2) 

where <A> is the superficial phase average of local quantity A and <A> the intrinsic 

phase average of local quantity A. 

These two averages are related by the porosity according to 

<A>=s <A>i (A.4) 

The local values of the quantity A can also be related to the phase averages 

according to [5] 

A=<A>j+A~ (A.5) 

where A~ is the spatial deviation of A compared to <A>j. 
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In the analysis of equations governing transport phenomena in porous media it is 

usual to interchange differentiation and integration in order to express the quantity in 

terms of intrinsic phase average. This will be done by means of the spatial averaging 

theorem [6,7]. This theorem can be written in vector form as 

<V.A>i=V.<A>, + V"1 Jn.AdA (A.6) 

where n is a unit vector and A the interfacial area contained within the averaging 

volume. 

Substitution of equation (A.5) in equation (A.6) gives 

<V.A>j=V.<A>i + Vf1 Jn^A^dA+Vf1 jn.A~dA (A.7) 

As the system under consideration is homogeneous, <A>S can be treated as a 

constant, and consequently the area integral becomes 

Vf-' Jn.<A>i dAK^'V"1 IndA).<A>i (A.8) 

The integral in parenthesis is related to the structure of the volume studied and can 

be expressed by [8] 

s-'V' jndA=-Ve/E (A.9) 

which can easily be proved to be zero for a homogeneous system. 

If the system studied is heterogeneous, that is, it is characterised by more than one 

length scale, we will need to use a large-scale averaging [9]. Heterogeneous systems 

are beyond the scope of this study. 

2.7 NOMENCLATURE 

A area [m2] 

Cc coefficient accounting for convective inertia and viscous effects 

clo parameter accounting for kinetic energy loss 

H characteristic depth [m] 

K permeability [m2] 

L length dimension [m] 
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P pressure [Pa] 

Re Reynolds number 

t time [s] 

û velocity [ms"1] 

V volume [m3] 

Y inertial factor 

Greek symbols 

a opening angle between the flap and the frame [°] 

s porosity 

A local general quantity likes velocity or pressure 

<A> superficial (external) phase average of quantity A 

<A>j intrinsic (internal) phase average of quantity A 

p. dynamic viscosity [Pa s] 

p density [kg m"3] 

Subscripts 

f fluid 

fr flow field 

i intrinsic 
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3. Analysis of air exchange induced by fluctuating external 
pressures in enclosures + 

Abstract: A new approach using the equations of mass conservation and motion, and 

the state equation of gases, is proposed to characterise air infiltrations induced by 

fluctuating pressures. The approach is applied to a two-zone enclosure with openings 

and pores. Experimental data obtained for the purpose of testing the validity of the 

approach are found to agree well with the predicted values. 

3.1 INTRODUCTION 

Air infiltration in enclosures is the main process, which affects the mass and energy 

balance inside the enclosure and consequently the indoor climate [1]. The continuing 

interest in this topic is based on the lack of a comprehensive and satisfactory theory, 

despite much important work and a great number of studies that has been done [2,3]. 

Pressure due to wind is one of the main driving forces in the study of air infiltration 

in enclosures. Wind velocity fluctuates and therefore induces wind pressures (with a 

mean component and a fluctuating component) which influence pressure differences 

between the inside and outside of the enclosures. 

The internal pressure in any enclosure is controlled by the wind pressure and by the 

characteristics of the enclosure envelope [4,5]. The nature of response of internal 

pressure due to the wind was first studied by Euteneuer [6]. However, he neglected the 

inertia effect of the airflow entering the opening. Inspired by the classical Helmholtz 

resonator model, Holmes [7] and Liu and Saathoff [8] studied the transient response of 

internal pressure fluctuations in a constant volume enclosure with one large opening 

using a second-order non-linear differential equation. Recently, Dewsbury [9] 

presented a model, which includes variation of the enclosure volume. Liu and Rhee 

[10] made an experimental study of the nature of the wind-induced Helmholtz 

oscillation of air pressure in buildings. They demonstrated that the tendency to 
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resonance increases concomitantly with a window area increasing relative to the 

volume of the building. 

The differences in internal and external pressure induce air infiltrations in 

enclosures. The models available in literature describe the air infiltrations through 

narrow openings (pores, gaps, cracks) [11,12] and through large openings (windows, 

doors) [13,14]. For narrow openings the majority are based on empirical equations and 

for large openings on Bernoulli's equation. The empirical parameters in these 

equations are determined by performing experiments in which air is forced through the 

enclosure envelope, producing a constant pressure difference between inside and 

outside (DC-pressurization method [15]) or producing a sinusoidal pressure 

difference (AC-pressurization method [9,16,17]). The parameters are obtained by 

fitting the experimental data with appropriate equations. 

The purpose of this paper is to present a coherent mathematical model, based on 

principles of physics, studying airflow in enclosures with openings and pores induced 

by fluctuating external pressures. The applicability of the model is illustrated through 

the study of air exchanges in a two-zone enclosure with openings and pores. 

3.2 MATHEMATICAL FORMULATION 

3.2.1. General description of the model 

Consider an enclosure of volume Ve, exchanging air with the outside, through one 

opening with a large free area, or through a structure with narrow openings or pores of 

area A. Under the assumptions that 

• the air within the enclosure is an ideal gas and compressible 

• the air exchange with the exterior is unidimensional 

we can write 

The equation of mass conservation for air within the enclosure 

dM/dt=Apu (1.1) 
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or 

pdV/dt+Vdp/dt=A p u (1.2) 

with 

v=ve-snvn 

where u represents the air velocity through the infiltrations, M total mass of air in the 

enclosure, p the density of air in the enclosure, A the area of infiltrations, t the time, V 

the total volume of air in the enclosure, Ve the volume of enclosure and Vn the volume 

of objects within the enclosure. 

Usually the enclosure envelope is considered to be rigid and not to deform 

(dVe/dt=0). In reality, however, the roof and walls deform to an extent that depends on 

the magnitude of pressure exerted, influencing the airflow through the enclosure 

envelope. Bearing in mind the behaviour of elastic materials, the enclosure 

deformation can be simply calculated assuming 

(Ve-Vem)/Vem=T! (p -p j (2) 

where Vem represents the mean volume of the enclosure, p the pressure, pm the mean 

pressure and r\ the enclosure flexibility coefficient. 

Substituting (2) in (1.2) yields 

(Vem-InVn)p ,dp/dt=A u+SndVn/dt-r)Vemdp/dt (3) 

This equation indicates how the density of air within the enclosure is related to the 

airflow through the infiltrations, the enclosure flexibility and the volume change of 

objects within the enclosure. 

The j-direction motion equation for air through openings and pores [18] 

(p/s)au/ôt+p.K",u+pq|u|u=ôp/5j (4) 

with 

q=(4.36xl0-28-212K1/2+0.5Cc-
2/H) 

where e is the porosity [18], K the permeability [18], \x. the fluid dynamic viscosity, p 

the pressure, H the characteristic depth of the medium and Cc a coefficient accounting 
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for convective inertia and viscous effects. 

For a porous medium [18] 

Cc-
2=0 (5.1) 

for round and square openings [18] 

CVMl-Re-'CL/H)] {2.7-0.04203 exp[3.7(A/Afr)
1/2]} 

{1-[2.7-0.04203 exp[3.7(A/Afr)
1/2]](A/Afr)

25}"2 (5.2) 

and for rectangular openings covered with movable flaps [18] 

C;2={{1.75+0.7exp[-(L,/Ls)sina/32.5]} {sina[l+0.60(L,/Ls) 

(cosa-27t((90-a)/360)sina)]}-2 [ l -Re '^ /H)]} (5.3) 

where a is the opening angle between the flap and the frame, Re the Reynolds 

number, Afr the flow field area, L, the larger length of the opening and Ls the smaller 

length of the opening. 

The equation of state for air within the enclosure 

p=PRgT (6) 

where T represents the absolute temperature and Rg the specific gas constant. 

For a polytropic expansion or compression of ideal gas with constant heat capacity, 

equation (6) can be rewritten as 

pp"p=constant (7) 

where ß is 1.4 for isentropic air expansion/compression and 1.0 for isothermal air 

expansion/compression. 

3.2.2. Fluctuating pressure inside an enclosure where air is exchanged with the 

outside through one opening with a large free area or through a structure 

with narrow openings or pores 

Pressure within an enclosure with compressible air 

When pressure is applied to the air inside the enclosure, this is compressed and its 
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density changes. Consider a polytropic compression/expansion of the air within the 

enclosure. Substituting equation (7) in (3) gives, after integration, 

(Vem-ZnVnm)ß-1(Ap/p)+T1Vem Ap=jA u dt+Zn(Vn-Vn J (8) 

with 

Ap=p,=p-pm 

where Vnm represents the mean volume of objects inside the enclosure and Ap or p; the 

pressure change within the enclosure. 

Considering a small pressure change (P(«p), equation (8) can be conveniently 

rewritten as 

[(Vem-EnVnJ+ßpmTiVem]p1=ßpmK u dt+ßpmIn(Vn-Vnm) (9) 

Equations (8) and (9) describe the pressure change inside the enclosure which is the 

fluctuating component of internal pressure. 

Transient response of internal air pressure 

The internal pressure also changes in response to the fluctuations occurring in the 

external pressure. The transient response of internal pressure can be easily obtained by 

substituting equations (3) and (7) in (4). The resulting equation is quite long and may 

by summarised as 

a1d
2p/dt2+a2|dp/dt|dp/dt+a3dp/dt-a4d(ZnVn)/dt|dp/dt|-a5d

2(SnVn)/dt2+ 

a6d(2nVn)/dt+p=pext (10) 

with 

a=a(p,ß ,pm,pm,r|,H,A,n,K,q,Vem,£nVn, SnVnm) 

where pm represents the mean fluid density and pext the external pressure. 

Since the volume of objects inside the enclosure does not deform, equation (10) can 

be simplified to 

a, d2p/dt2+a2|dp/dt|dp/dt+a3dp/dt+AH1p=AH-1pext (11) 

with 

a1=pme-,t(Vein-EnVninXßpJ-,+tiVeJ 
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a2=PmqA-2[(Vem-InVnm)2(ppJ-2+2îiVem(Vem-SnVnm)(PpJ-'+(TiVem)2] 

a3=^K1[(Vem-EnVnJ(ßpm)-1+TiVem]-pm(Vem-InVnJ(sßpm
2)-1 

Equations (10) and (11) are second-order non-linear differential equations and the 

following situations can occur: 

• for an enclosure with an opening with a relatively large free area (K-»oc => 

|aK"' and 4.36xl0"2e"212K",/2 are negligible compared to 0.5CC"2/H), equations 

(10) and (11) present two forms of solution: 

a) for A«(Vem-E„Vnm) or A«r|Vem the second order term is important and we 

have a damped resonance equation (gradual decay) 

b) for A»(Vem-£nVnm) and A»r|Vem the second order term is very small and we 

have an oscillatory equation with very little damping 

• for an enclosure with narrow openings and pores ((iKr'wO, q»0), equations 

(10) and (11) are always damped resonance equations. 

Our finding that the larger the area of the opening in relation to the enclosure 

volume, the greater the tendency to resonance, is supported by the observations of Liu 

andRhee[10]. 

As we mentioned earlier, Holmes [7], Liu and Saathoff [8] and Dewsbury [9], 

presented models to study the transient response of internal pressure in enclosures 

with compressible air. Although the models presented by these authors also contain 

second-order non-linear differential equations and describe internal pressures in 

enclosures with large openings, they fail to describe internal pressures in enclosures 

with narrow openings and pores. The model presented here also differs from the 

models of Holmes [7], and Liu and Saathoff [8] in the following aspects 

• it accounts for the flexibility of the enclosure envelope 

• it accounts for volume changes of objects within the enclosure. 

Equations (10) and (11) can not only be used to describe the change in internal 

pressure due to sudden opening or breaking of an aperture (window, door, etc.) under 

external pressure but also to obtain parameters r\, K, Cc, A and H. These parameters 
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can be obtained accurately using the experimental procedure described by Dewsbury 

[9], and will cause little impact on the indoor environment. 

Oscillation of internal pressure in enclosures with openings and pores 

The solution of equation (11) can be compared with the models presented by Liu and 

Saathoff [8] and Dewsbury [9], by means of a numerical study. This comparison 

considers the hypothetical case of an enclosure (rigid volume of 200 m3, r|=0 Pa"1) 

with one window (area of 2x2 m2). The example also uses the following values: a 

stagnation pressure of 500 Pa, the parameter ß equal to 1.4 (isentropic 

expansion/compression), the leakage coefficient 0.6 and the leakage exponent 2, both 

in Dewsbury equation. We used the atmospheric pressure as the initial internal 

pressure, and the stagnation pressure as the external pressure at the opening. The 

result is presented as a dimensionless quantity rp, which represents the ratio between 

the pressure in the enclosure and the stagnation pressure, as shown in Fig. 3-1. 

From Fig. 3-1, it can be concluded that the profile of the solutions is oscillatory and 

exhibits damping. The maximum amplitude oscillation (first cycle) occurs in equation 

(11). A difference in amplitude of about 4% is obtained by using the Liu and Saathoff 

equation, and of 1.4% by using the Dewsbury equation. 

It is of interest to know the effect of the flexibility of the enclosure envelope on the 

internal pressure profile. For this purpose, an enclosure with flexibility coefficient 0 

and 5xlO"3 Pa"1 (r|Vcm equal to 0 and 1 m3Pa') was considered. The results obtained 

using equation (11) are plotted in Fig. 3-2. 

Note that in the enclosure with a flexible envelope the maximum pressure in the first 

cycle of oscillation is about 6% less than the enclosure with no flexibility, and 

equilibrium is reached more quickly. 
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£ 1 

FIG. 3-1. Comparison of the solution presented by Liu and Saathoff [8] (-.-), by Dewsbury [9] 
(--) with the solution of equation (11) (—) for the internal pressure change due to 
sudden opening or breakage of an aperture. 

.o. 1 

0.2 0.4 0.6 

TIME (s) 

0.8 1.0 

FIG. 3-2. Internal pressure change for an enclosure with flexible envelope (--) and with rigid 
envelope (—). 
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FIG. 3-3. Internal pressure change for enclosure with pores and narrow openings (K=107 m2: 

E=0.25 (—) and e=0.75 (...); K=103 m2: E=0.25 (---) and s=0.75 (-.-)). 

To illustrate the nature of the solutions of equation ( 11 ) for narrow openings and for 

pores (beyond the range of the models available in the literature [7-9]), structures of 

permeability K=10'3m2 and K=10'7m2 (porosity 8=0.25 and e=0.75) were considered. 

The values for the remaining quantities, and the assumptions made are the same as for 

the example included in Fig. 3-1, and the result is presented in Fig. 3-3. 

Fig. 3-3 shows that, for the structure with permeability of 10"3m2, the maximum 

value of the internal pressure coefficient (first cycle of oscillation) is about 1.242 for 

structure of porosity 0.75 (exceeding the internal pressure by about 24.2%) and 1.025 

for structure of porosity 0.25 (exceeding the internal pressure by about 2.5%). For the 

structure with permeability of 10"7m\ the internal pressure is exceeded by 1.6% and 
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0.2% for structures of porosity 0.75 and 0.25, respectively. In both situations the 

internal pressure is strongly damped and the equilibrium is reached almost 

immediately. 

3.3 AIR EXCHANGE IN A MULTI-ZONE ENCLOSURE 

In this section the formulation proposed in the previous sections is applied to the 

study of the air infiltration in 

• an enclosure with one opening in an outside wall and a highly porous 

partition which divides the interior of the enclosure into two zones, 

• the same as the above but using a partition with an opening. 

3.3.1. Network equations 

The airflow network which describes this two-zone enclosure (three nodes coupled 

by two non-linear resistances) is described in Fig. 3-4. According to equations (4) and 

(9), the motion and internal pressure change equations for zone 1 with openings or 

pores to zone 2 are 

Pi8,-1au1/a+p.Kr1u1+p1q,|u1|u1=(pi2-pil)/H1 (12) 

[(Ven,-EnVran)I+ßPinTi1Venil]pil=ßpnii[AIuI) dt (13) 

with 

q,=(4.36xl0-2eI-
212K1-

1/2+0.5Ccl-
2/H1) 

For zone 2 with an opening to the exterior, the equations are 

p2du2/5t+p2q2|u2|u2=(pext-pi2)/H, (14) 

[(Vem-InVnm)2+ßpmii2Vem2]pi2=ßpmI(A2u2-A1u1) dt (15) 

with 

q2=0.5Cc2"
2/H2 

By solving this set of equations we obtain the air velocity through each opening or 

porous material as well as the internal pressure of each zone. 
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3.3.2 Experimental study 

In an attempt to give experimental support to the model developed, an experimental 

study was carried out in a two-zone enclosure with a piston in the top, which 

pressurizes the air within the cube. 

n 
m n 

(a) (b) 

FIG. 3-4. Schematic representation of flow network for a two-zone enclosure with a highly 
porous material in the partition (a) and with an opening in the partition (b) 
(-•- resistance • node) 

Description of the experiments 

The experiments were carried out in a cube-shaped enclosure (with dimensions of 

approximately 2.5x2.5x2.5 m3), whose inside walls were hermetically sealed with 

aluminium foil. The walls of the cube are strengthened in order to avoid deformation. 

A round opening (diameter 0.59 m) was made in the ceiling of the enclosure. A 

horizontal partition divides the enclosure into two equal zones (Fig. 3-5). A square 

opening of 0.40x0.40 m2 was made in the partition. The area of the opening could be 

adjusted and a permeable screen could be mounted in it. Two screens were used in 

this experiment: thermal screen type LS 10 PLUS and insect screen type ECONET F. 

The airflow characteristics (K,s) were obtained by forcing air through these materials 
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(causing a constant pressure drop between the screen sides) and fitting the 

experimental data with the Forchheimer equation. Their respective permeabilities 

were 6.79xl0u m2 with porosity 0.09, and 6.51X10"09 m2 with porosity 0.33 [18]. 

(a) (b) 

FIG. 3-5. Schematic representation of a two-zone enclosure with a highly porous material in 
the partition (a) and with an opening in the partition (b). 

A cylinder (internal diameter 0.59 m) with a piston connected to a crankshaft was 

placed on top of the round opening (Fig. 3-6), in order to simulate the external 

pressure variations. 

Fluctuating pressures of various magnitudes could be generated by changing the 

rotational speed of the crankshaft. This enabled the inflow and outflow of air through 

the round opening induced by the fluctuating wind pressure to be simulated. The 

frequency domain of the rotation of the crankshaft used in this study ranged from 

0.02 Hz to 0.25 Hz. 
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FIG. 3-6. Device used to simulate the wind induced fluctuating pressure. 

A hot-wire anemometer (response time of 9.5 Hz) was placed 18 cm above the 

round opening in order to give readings of air (wind) velocity. The internal pressure 

was measured using membrane pressure transducers, in the inside openings and at six 

different points in the enclosure. A computer with a DAS 1600 board (maximum 

sampling frequency 1000 Hz) controlled these measurements. 

To obtain the effective mean air velocity through the openings and through the 

screens we applied the tracer gas (N20) constant flow and decay rate method. In the 

tracer gas constant flow method the gas is injected continuously with a constant flow 

into the cube and the concentration change in each zone is measured. In the decay rate 

method a quantity of tracer gas N 20 is supplied into the cube and the decline in 

concentration is measured. An IR gas analyser measures the gas concentration. Both 

methods are based on the principle of a perfect mixing of the inside air. To maintain a 

uniform gas concentration within zone 1 of the cube a small fan was placed near the 

ground. The air velocity resulting from the action of this fan was l.lxlO"5 m/s 

(accuracy within ±12%) for the screen, and 1.4xl0"3 m/s (accuracy within ±8%) for the 
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opening. In zone 2 no fans were used. 

Results and discussion 

The values obtained from the solution of set of equations (12) to (15) were compared 

to experimental values of mean effective air velocity through the openings and the 

screens. The mean effective velocity and the mean effective pressure are the mean 

velocity and pressure during half of the period of time, respectively (on average, half 

of time is used for inflow and the other half for the outflow [13]). 
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FIG. 3-7. Experimental (x, 0) and computed ( ) effective air velocity through a round opening 
placed in the enclosure top, versus the effective pressure measured above the 
tope of the cube, for three rotational speeds of the crankshaft 
(corresponding to frequencies 0.08 Hz, 0.16 Hz and 0.24 Hz). 

Fig. 3-7 shows the experimental and predicted mean effective air velocity through 

the round opening placed in the top, versus the mean effective pressure for a square 

opening, and a screen LS 10 PLUS mounted in the partition. 
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The mean effective air velocity through the top opening in the case of the square 

opening in the partition is larger than when the screen is in the partition. This is 

because the inside air volume available for pressurization or depressurization is larger 

in the case of the square opening than in the case of the screen. 

Figs. 3-8 through 3-10 show the experimental and predicted mean effective 

velocities through the square opening, and through the ECONET F and LS 10 PLUS 

screens mounted in the partition. 
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FIG. 3-8. Experimental (0) and computed (_) effective airflow through a square opening 
mounted in the enclosure partition, versus the wind velocity. 

In Fig. 3-10, experimental data for frequency 0.24 Hz only are represented because 

for lower frequencies the air velocities were too low (less than 6xl0"4 ms'1) to obtain 

reliable results with the method used for the measurements. 

Although a small fan was placed near the base of the cube, the mixing of the air 
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within the enclosure was not perfect and caused scattering in the results. Sudden 

changes of pressure in the experimental room due to opening of doors, etc., also seem 

to contribute to the scattering in the experimental data. As the data in Fig. 3-10 are in 

the order of lxlO"3 ms"' (very small values), the sensitivity to the above mentioned 

factors is greater and consequently a larger scatter in experimental data is obtained. 

5 10 15 

EFFECTIVE PRESSURE (Pa) 

FIG. 3-9. Experimental (0) and computed ( ) effective airflow through a screening material 
trade name "ECONET F" mounted in the enclosure partition, versus the wind 
velocity. 

Note that, because of the limitations of the experimental apparatus used, the data 

collected do not fall within the same range of pressure for each frequency. Fortunately, 

this does not affect the results obtained, and the values measured for the values of 

pressure tested were found to agree fairly well with the values predicted by the 

proposed model. 

44 



Chapter 3 

0.0016 

•§- 0.0012 

O 
O 
_i 
UJ 
> 
UI 

> F o 
ui 
u. 
li
ai 

0.0008 

0.0004. 

5 10 15 20 

EFFECTIVE PRESSURE (Pa) 

FIG. 3-10. Experimental (0) and computed ( ) effective airflow through a screening material 
trade name "LS 10 PLUS" mounted in the enclosure partition, versus the wind 
velocity. 

3.4 CONCLUSIONS 

The models developed in this paper enable the computation of the pressure within 

enclosures and air velocity through structures ranging from pores to large openings. 

The internal pressure model is based on the assumption that the air is an ideal gas and 

is compressible, and takes into account the flexibility of the enclosure envelope and 

the presence of objects within the enclosure. 

Both the models available in the literature, and the model presented here to predict 

the transient response of internal pressure are second-order non-linear differential 

equations. However, the presented model has the advantage of being able to be used in 

enclosures containing apertures ranging in size from large openings to pores. Our 

approach can be used to describe the internal pressure change due to sudden opening 
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or breakage of an aperture under external pressure and also to obtain parameters r\, K, 

Cc, A and H by fitting the approach with data obtained by the AC pressurization 

method. 

The mathematical model presented for the air infiltrations through the enclosure 

envelope is simple in form and is valid for the description of fluctuating flows through 

openings and pores. 

The approach proposed is not only a mathematical abstraction but is also supported 

experimentally. Experimental data obtained for the purpose of testing the validity of 

the approach are found to agree well with predicted values. 
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3.6 NOMENCLATURE 

A area of opening [m2] 

Cc coefficient accounting for convective and viscous effects 

H characteristic depth [m] 

L, larger length of opening [m] 

Ls smaller length of opening [m] 

K permeability [m2] 

M mass [kg] 

p pressure [Pa] 

Re Reynolds number 

Rg specific gas constant [m2s"2K_1] 

rp pressure coefficient 

T temperature [K] 

t time [s] 

u superficial velocity [m3m"2s1] 

V volume of air [m3] 

Ve volume of enclosure [m3] 

Vn volume of objects within the enclosure [m3] 

Greek symbols 

ß ratio between specific heat capacity at constant pressure and at constant volume 

8 porosity 

r\ enclosure flexibility coefficient [Pa1] 

H dynamic viscosity [Pa s] 

p density [kg m"3] 

Subscripts 

ext external 

i internal 

m mean 
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4. Modelling mixed fluid motion through porous media: 

description of matrix-fluid interaction + 

Abstract: Fluid flow through a porous medium is studied, applying thermodynamics 

and fluid mechanics. The porous medium is treated as a subsystem composed of a 

solid matrix saturated with fluid (bulk fluid and adsorbed fluid), surrounded by 

external fluid. Thermodynamic equilibrium is assumed between the matrix and fluid 

phases. Mathematical relations are provided to describe the interaction between the 

fluid and the matrix, as well as between the fluid flow and the driving potentials. The 

methodologies of measuring the thermal and flow characteristics of the porous media 

are briefly described. For natural convection the influence of the air adsorbed on the 

solid matrix is of special interest. It is quantified experimentally for different porous 

media. 

4.1 INTRODUCTION 

Transport phenomena inside permeable media is a topic of great importance due to a 

large number of technical applications, such as filtering, geothermal operations, oil 

extraction, indoor climate control, etc.. The driving force for transport can be either 

due to mechanical means, such as pumps, the effect of gravity and/or the effect of 

wind (forced fluid motion), or due to temperature and/or concentration gradients (free 

or natural fluid motion). If forced and free flows are combined we have mixed fluid 

motion. 

A large number of papers have been published in the last two decades on mass and 

heat transfer in porous media. A comprehensive review of literature is presented by 

Combamous and Bernard [1]. Despite the existence of a lot of important studies on 

this field, the subject is far from being fully understood. One of the main limitations is 

related to the description of the fluid behaviour within the solid matrix and the relation 

+ Transport in porous media (to be submitted) 
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with external driving potentials. It is clear that a correct understanding of this 

interaction will be essential to a better comprehension of transport phenomena. 

This study leads to a better understanding of this interaction by using the 

thermodynamics to describe physically the behaviour of fluid within the solid matrix. 

This description is applied together with the fluid mechanics basic laws in order to 

incorporate this interaction on the motion equation. Finally, in order to complete this 

analysis, the magnitude of the interaction between the internal fluid and the matrix is 

quantified experimentally using the relations developed. 

4.2 FLUID FLOW THROUGH A PERMEABLE MEDIUM: BASIC EQUATIONS 

A system composed of a solid matrix saturated with fluid (subsystem matrix-fluid) 

is submerged in an external fluid, having the total system a volume Q. The mass of 

solid matrix is considered constant and deformation of matrix does not occur. 

The ability of the subsystem matrix-fluid to transmit fluid through it is a generalised 

fluid conductivity. This quantity is related to the volume fraction of the fluid contained 

within the solid matrix, usually identified as effective porosity or only porosity. 

Porosity is given by 

e=V/Vn,f (!) 

where Vf represents the volume of internal fluid (bulk and adsorbate fluid) and Vm_f 

the volume of solid matrix saturated with fluid. 

The density pm.f of the subsystem matrix-fluid is 

Pm-f= E Pf+(l-e)P sm =£(Pf-PsJ+Psm ( 2 ) 

where p represents the density and subscripts sm and f solid matrix and fluid, 

respectively. 

The equations of conservation of fluid mass, momentum and energy in a three-

dimensional space are: 
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Mass conservation equation [2] 

S(epf)/S t+V. pfu=0 (3) 

Momentum conservation equation [3] 

(pf/8)ôu/a+(pf/E
2)(u.V)u=-VP-Klu-pfa|u|u+(^f/e) V2u (4) 

Energy conservation equation [2] 

[EpA+(l-s)psmCsm]dT/öt+V. (epf Cf uT)=-V.Jh (5) 

with 

Jh^effVT (5.1) 

and 

W = [ S V K 1 - E ) ^ J (5.2) 

where K is the fluid conductivity (the ability of the medium to transmit fluid through 

it), a the porous inertial coefficient (a=c(ii K)"I/2 with c a coefficient related with 

porous inertia), u the fluid velocity, p. the dynamic viscosity, T the temperature, P the 

total external pressure, C the specific heat and X the thermal conductivity. The 

subscript f means fluid, sm solid matrix and eff effective. 

For porous media the flow is often considered steady and incompressible [2] hence 

the mass and momentum conservation equations can be simplified to 

V.Pfu=0 (6) 

(1+c Re) K1 u-(p.f /E) V 2 U = - V P (7) 

with 

Re=Pf|u|(K/^f)
1/2 

For lower Reynolds numbers (Re«0) equation (7) can be rewritten as 

K-'u-(nf/E)V2u=-VP (8; 

This equation is the Brinkman's relation [4], which is consistent with no-slip 

condition. When the volume of the solid matrix is larger than the volume occupied by 
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the fluid, the last-left hand side term of equation (8) can be neglected. Then, the 

velocity becomes proportional to the pressure gradient (Darcy's relation). 

4.3 FLUID ABSORPTION WITHIN A POROUS MEDIUM AND THE EFFECT ON FLUID 

FLOW 

Inside a porous structure there is a film of adsorbed fluid on the matrix, which has 

practical consequences for the magnitude of fluid flow. The phenomenon is presented 

schematically in figure 4-1. This figure shows a cross section of a solid matrix 

saturated with fluid, with two main regions: solid matrix with fluid adsorbate on the 

solid matrix and bulk fluid. 

Bluk fluid 

Cross section 
of solid matrix 
and fluid 

Fluid adsorbate 

Solid matrix 

FIG. 4-1. Schematic cross section of a solid matrix saturated with fluid 

The total mass M of subsystem matrix-fluid is 

Mm.,=Msm+Mf (9) 

with 

Mf=Mad+Mbl 

where subscript sm stand for solid matrix, f for fluid, ad for adsorbate, m-f for 

matrix fluid and bl for bulk. 
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The change of fluid adsorbate and bulk fluid within the medium influences the 

amount of fluid flow through the medium. Those interactions can be described using 

thermodynamics concepts. In particular, the first law of thermodynamics is used. This 

law is a statement of the principle of conservation of energy, and relates the change of 

internal energy of a system with thermal, mechanical and diffusive interactions 

between the system and the surroundings. 

4.3.1 Mass change in the subsystem matrix-fluid 

Following the formalism developed by Heitor [5], and assuming that the superficial 

stress of fluid within the matrix and in the surroundings is equal, the equation (A-5) 

presented in the Appendix become 

T(ÔSt)=ÔF.Ôrm.rÔP SV„,f+Sä) SMm.f+ÔT ÔSm.f (10) 

with 

ÔF=Si(ÔFi) 

and 

T(8St)>0 

where V represents the volume, M the mass, co the chemical potential, SS t the creation 

of entropy in the process, S the entropy, r the vector position and F the vector force 

(EjFj the total of F due to the effects of mechanical means, gravity, wind, etc.). 

The mass change in the subsystem matrix-fluid is given by 

ÔMsm+ÔMad+ÔMbl =8Mm.r çv (ÔP+ôp)+çsÔT+T(SSt/ôco) (11) 

with 

Çv= (oVm./ôco) 

çs=-(ÔSmy5a)) 

ôp=(I.ÔF)/ÔAm.f 

where the coefficient çv define the rate between the variation of volume of subsystem 
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composed by the solid matrix saturated with fluid and the variation in chemical 

potential of the whole system, the coefficient çs defines the rate between the variation 

of entropy of subsystem matrix-fluid and the variation in chemical potential of the 

whole system, and I represents the unit vector. 

Equation (11) relates the change of mass in a subsystem matrix-fluid with intensive 

quantities (P,p,T) and generalises the relation obtained by Heitor et al. [6]. This 

equation is useful for the study of porous media. Especially on the optimisation of 

strategies related to the injection, maintenance and extraction of fluid in porous media, 

as well as to provide additional information to be used in the motion equation. 

Near the equilibrium, the last right-hand side term of equation (11) is small enough 

to approximate the equation by 

SMm.f=çv(SP+Sp)+çsST (12) 

For isobaric conditions 

ÔMm.f=çsÔT (13.1) 

and for isothermal conditions 

ÔMm.f=çv(ÔP+ôp) (13.2) 

Although the parameters çv and çs are physically defined here, theoretical values are 

rather difficult to find. Consequently, those parameters should be evaluated based on 

experiments [6]. 

4.3.2 Effects on fluid flow 

As the mass of solid matrix is constant and the variation of 8Mm_f, 8p, 5F and 8T are 

in spatial coordinates (8x,8y,8z), equation (12) yields 

VMm.r çv (VP+Vp)+çsVT (14) 

So 

VP=-Vp+(Vm.t/çv)Vp-(çs/çv)VT (15) 

From the analysis of equation (15), it can be concluded that in absence of density 

54 



Chapter 4 

and temperature gradients VP=-Vp. That is, the pressure gradient (Vp) due to the 

action of external force is independent of parameters çv and qs. If Vp=0 

VP=(Vm. f/çv)Vp-(çs/çv)VT (16) 

that is, the pressure gradient (VP) depends on çv and çs. The following situations can 

occur: 

• ç s
=0: VP is only due to gradient of p, 

• qv»0
 ar*d Çs«0; VP is only due to gradient of the temperature, 

• çv>0 and çs<0: VP can occur due to gradient of concentration and the gradient 

of the temperature. 

These results are in agreement with the work ofHeitor et al. [6]. 

Insertion of equation (16) into the momentum equation gives new insight of the 

driving potential on the fluid flow. Substitution of equation (16) in (4) yields 

(pf/e) Ôu/ôt+(pf /6
2)(u.V)u=-[-(Vm.f/çv)V p+ (ÇS/ÇV)VT]-K-'U 

-Pf<T|u|u+(pf/8) V2u (17; 

Equation (17) shows how the gradients of p and T are related to the fluid velocity. 

The interaction between fluid and matrix defined by parameters çs and çv is also 

clearly included. 

4.4 METHODOLOGIES FOR MEASURING PARAMETERS ÇV> ÇS> K? °~>£ A N D Ä-EFF 

In order to use the previous mass, momentum and energy conservation equations, 

the parameters çv, Çs> K> ®> ̂ -eff a r ,d £ must be known. These are obtained by fitting 

experimental data with appropriate equations (equations (1), (5.1), (7) and (13)). Then, 

the following set of experiments must be performed 

• the parameters K and a can be obtained from forcing the air through the 

porous medium producing a constant pressure drop over the sample (DC-

pressurisation method) and fitting experimental data with the help of 
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equation (7) [8]. This method of measuring is the subject of the study 

performed by Miguel et al. [9] using porous screens, 

• measuring the fluid volume within porous media and the volume of solid 

matrix with fluid, the porosity s is obtained from the ratio between them 

(equation (1)), 

• Xeff can be measured, for example, with the nonsteady state probe method 

based on the measurement of the temperature response [10] or with a steady 

state method based on the well known Fourier law of heat conduction, 

• parameters çv and çs can be obtained from isothermal and isobaric 

conditions and fitting experimental data with equations (13.1) and 

(13.2). This will be the subject of the next section. 

4.5 E X P E R I M E N T A L DETERMINATION O F PARAMETERS ÇV A N D ÇS FOR DIFFERENT 

POROUS MEDIA 

In order to evaluate parameters çv and çs, a set of experiments was performed using 

different porous media. The media used were samples of a sponge 

(p=3.23xl0"2 g/cm3), a brick (p=1.92 g/cm3), and two thin greenhouse porous screens 

trade mark "ECONET SF" (p=0.352 g/cm3) and "PH 20" (p=0.304 g/cm3). 

First, to have the samples understudy matrix free from fluid, they were placed in an 

evacuated oven at a temperature of 102°C during six days. Then, the samples were 

placed in an exsiccator and exposed to air with various constant water vapour 

pressures and at various constant temperatures during fifteen to twenty five days, to 

obtain an equilibrium between the atmosphere of the exsiccator and the samples. The 

samples were exposed to temperature levels between 10 °C and 30 °C and water 

vapour pressures between 201 Pa and 1760 Pa. The various water vapour pressures 

were achieved using several saturated solutions (NaOH, LiCl, CaCl2, etc.). The 

variation of saturated water vapour pressure with temperature was taken into account. 

The possible effect of hysteresis on the measurements was studied by performing 
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experiments changing from high to low temperature level and reverse. 

The mass of the samples under isothermal and isobaric conditions was determined 

using an analytical balance with an accuracy of the 0.01xl0"6kg. 

Figure 4-2 through 4-4 show the mass concentration difference from the initial 

conditions (solid matrix free from fluid (bulk or absorbed)) referring to the samples 

mentioned above. 
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FIG. 4-2. Mass concentration difference from the initial conditions as a function of 
temperature for a sample of brick and for various water vapour pressures 
( * 201 Pa, + 808 Pa, O 1570 Pa and x 1760 Pa). 

Parameters çv and çs were obtained fitting experimental mass concentration 

difference with equations (13.1) and (13.2). From figure 4-2 through 4-4 it is possible 
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to conclude that: 

• for samples studied the effect of hysteresis on the measurements is present, 

• as it is expected the influence of air and vapour adsorption by the solid 

matrix is high at low temperatures and high water vapour pressures for 

samples represented in figures 4-2 and 4-3, 

• for the brick qw/V ranges between 0.006 and 0.01 kg/(Pa m3), and çs/V 

between-0.015 and -0.2 kg/(m3 K), 

• for the greenhouse screens çs is close to zero for both screens and, çv/V is 

9.9X10-4 kg/(Pa m3) (ECONET SF) and l.lxlO"3 kg/(Pa m3)) (PH 20). 
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FIG. 4-3. Mass concentration difference from the initial conditions as a function of 
temperature for sample of sponge and for various water vapour pressures 
( * 201 Pa, + 808 Pa, O 1570 Pa and x 1760 Pa). 
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4.6 FINAL COMMENTS 

This study presents a description of transport phenomena in porous media within the 

framework of thermodynamics and general fluid dynamics. It is shown that 

thermodynamics is well suited for describing interaction between solid matrix and 

fluid. Insertion of this description into momentum equation (derived from fluid 

dynamics) gives new insight of fluid transport through porous media. 

In order to be more realistic, parameters which account for adsoiption isotherms and 
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adsorption isobars were determinated based on experiments for different porous 

media. Based upon the results obtained it is clear that adsorption isobars and 

isotherms (çv and çs) has significant importance on sponge and brick samples. For 

greenhouse porous screens çs was close to zero , that is, the temperature doesn't have 

significant effect on air absorption by the solid matrix. 
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4.8 APPENDIX 

Thermodynamics analysis: budget equation of properties of a system 

The following formulation is based on a formalism presented by Heitor (1993) for 

the interaction between two thermodynamic subsystems. 

Consider a thermodynamic system consisting of n subsystems. The principle of 

conservation requires that, for each subsystem, the change in internal energy is a 

consequence of thermal, mechanical and diffusive interactions between the subsystem 

and its surroundings. This constitutes the first law of thermodynamic and from a 

mathematical point of view we can write for the total system 

5U=Zn(ÔUn)=Sn(FnÔrn+CnSAn-Pn5Vn+TnÔSn+conSMn) (A-l) 

where Un is the internal energy, Tn the temperature, Pn the pressure, Vn the volume, Mn 

the mass, con the chemical potential, Sn the entropy, and Çn, Fn and rn are the vectors 

for superficial stress, force and position of the subsystem n, respectively. 

The subsystems can exchange quantities like energy, entropy, volume and mass. The 

budget equation for a quantity A is then 

In(5An)=ÔAt (A-2) 

where 8An is the variation of the quantity A in the subsystem n and 8At represent the 

creation or destruction of quantity A in the transfer process. 

For the case of conservatives quantities like energy, volume and mass we only have 

to write 

Sn(ÔAn)=0 (A-3.1) 

but for the entropy the second law of thermodynamics imposes 
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Zn(ÔSn)=ÔSt (A-3.2) 

where Sn is the entropy in subsystem n. 

Specifically the exchange of A between a subsystem s and the remaining 

thermodynamic system (n^s) can be written as 

ÔAt=2n,s(ÔAn-ÔAs) (A-4) 

Taking into account equations (A-l) through (A-4) we can write 

Ts5St=2n,s(Fn-Fs)5rn+En,s(Çn-Çs)ÔAn-Zn,s(P„-Ps)5Vn+Zn,s(Tn-Ts)ÔS11+ 

En,s(cûn-cos)SMn>0 (A-5) 

were Ts8St is the so-called availability function. 

Equation (A-5) describes the thermal, mechanical and diffusive interactions between 

the subsystem s and the remains thermodynamic system composed by the 

subsystems n*s. 

4.9 NOMENCLATURE 

A 

c 

C 

F 

M 

P,P 

S 

T 

U 

u 

V 

Greek 

S 

A 

62 

area [m ] 

coefficient related with porous inertia 

specific heat [J kg'K"1] 

force [N] 

mass [kg] 

pressure [Pa] 

entropy [J K"1] 

temperature [K] 

internal energy [J] 

velocity [m s"1] 

volume [m3]. 

symbols 

porosity 

quantity like volume, entropy or mass 
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n 
p 

a 

K 

X 

CD 

Subscripts 

ad 

bl 

eff 

f 

m-f 

sm 

dynamic viscosity [Pa s] 

density [kg m"3] 

inertial coefficient [m1] 

fluid conductivity [m3s kg"1] 

thermal conductivity [W m^K."1] 

chemical potential [J kg"1]. 

adsorbate 

bulk 

effective 

fluid 

solid matrix - fluid 

solid. 
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5. Analysis of the airflow characteristics of greenhouse 

screening materials + 

Abstract: Experiments and analyses were conducted to examine the airflow 

characteristics of some currently employed greenhouse screens and the ability to 

predict airflow through them. Nine different thermal, shading and insect screens were 

tested and their airflow characteristics were defined, based on the Forchheimer 

equation, in terms of permeability and porosity. Further, an analysis was made of the 

effect on these characteristics of damage caused by handling of the screen materials. 

Experiments demonstrated that thermal screens have permeabilities of close to 

10"nm2 and some thermal screens, mainly woven sheet screens, can be damaged by 

handling, whereby the permeability is increased up to 3.5 times. 

5.1 INTRODUCTION 

The potential benefits resulting from the use of screens in protected horticulture have 

been increasingly recognised in recent years. Screens are a simple and successful 

means for avoiding night-time heat loss and controlling the solar radiation inside a 

greenhouse, as well as for preventing the entrance of birds and insects. In order to 

optimise the use of screens in agriculture, an extensive knowledge of their 

characteristics is required. A number of authors have worked on the measurement of 

the optical or radiometric characteristics of different materials used for screens [1,2], 

while others have worked on the measurement of the airflow characteristics 

(characteristics related to fluid transport through a screen). These characteristics have 

been evaluated in empirical terms of "permeability" based on the Darcy's law [3,4], or 

"coefficient of discharge" based on Bernoulli's flow theory [5,6]. 

The purpose of the present study is to discuss the more general physics of transport 

phenomena through permeable materials in order to provide a simple and accurate 
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methodology for identifying the airflow characteristics of materials currently used as 

screens. Through experiments conducted in two different experimental arrangements 

these characteristics were determined in the range of Reynolds number commonly 

observed for porous thermal screens and porous insect screens. An analysis is also 

included of the effect of overall damage caused by opening and closing the screen. 

5.2 PRESSURE DROP AND FLOW RELATIONSHIP 

For one-dimensional mass transfer through a permeable material the motion 

equation can be expressed as [7] 

(p/e)du/a+(p/e2)u(5u/ôx)=-dp/Sx-(u/K)u-p(Y/K1/2) |u|u+(p/8)(52u/5x2) (1) 

with 

U = 8 U j 

where u is the superficial fluid velocity, us the velocity through the material, p the 

density, p the pressure, u, the dynamic viscosity, Y the inertia factor and x the direction 

of flow. The parameter E is the porosity and represents the volume fraction of fluid 

contained within the total volume of the medium, while parameter K is the 

permeability of the medium and represents the ability of the medium to transmit the 

fluid through it. 

The dimensionless factor Y is often obtained from Ergun [8] using the relationship 

obtained in packed columns of spheres 

Y=l.75/(150s3)172 (=0.143/8'5) (2) 

5.3 MOTION EQUATION AND AIR FLOW CHARACTERISTICS OF A 
POROUS SCREEN 

To illustrate the magnitude of the permeability of a permeable material and 

subsequently evaluate its effects on the airflow, consider the definition of 

permeability presented by Lebon and Cloot [9] based on kinetic gas theory. According 

to this theory, the permeability is related to the reciprocal of the collision frequency of 
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diffusing particles and the kinematic fluid viscosity. For a porous material the collision 

frequency is greater than 103 Hz [10] and as the kinematic fluid viscosity of air is the 

order of magnitude of 10"5 m V , the permeability will be of a magnitude less than 

10"7 m2 (the second and third right-hand side terms of Eqn (1) are of great importance). 

For openings (windows, doors) the collision frequency will be close to zero and 

consequently the permeability K-»oc. That means, the second and third right-hand side 

terms of Eqn (1) become zero and for openings we obtain the standard Navier-Stokes 

equation. For a steady, non-viscous flow, the Navier-Stokes equation can be integrated 

along a streamline and we obtain the Bernoulli equation. 

Consider forced flow through a porous material (the study of openings is beyond the 

scope of this paper). According to Bear and Bachmat [11], for Reynolds numbers 

(Re) smaller than 150 the flow is incompressible (9u/9x=0). Then the second left-

hand side term and the fourth right-hand side term of Eqn (1) can be discarded. For a 

steady flow, Eqn (1) becomes 

(|i/K)u+p(Y/Kl/2) |u|u=dp/Sx (3) 

Eqn (3) is the well known Forchheimer equation for highly porous materials. For 

very small velocities [11] (Re<l) the quadratic term in velocity can be neglected and 

we obtain the Darcy law. 

u=(K/fi)dp/ôx (4) 

Darcy's law is the equation which defines permeability of a porous material. 

Instead of permeability some authors [5,6] use the discharge coefficient, resorting to 

Bernoulli's equation, to characterise a screen. According to the above we can therefore 

conclude that the discharge coefficient will be appropriate only when convective 

inertia effects are present (Re>150). Under commonly observed situations this will be 

very unlikely for porous screens. Notice that, for wind velocities of 5 m/s (wind 

pressure approximately 15 Pa) the Reynolds number (Re=pUjd/u) for a typical thermal 

screen is 5 (mesh size d=0.03 mm) and for an insect screen is 89 (mesh size 

d=0.11 mm). 
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As the subject of this study is porous screens, these will be characterised in terms of 

permeability and porosity, using Eqns (3) and (4). 

5.4 EXPERIMENTAL STUDY 

In order to obtain the airflow characteristics of porous screens as well as the inertial 

factor Y (Eqns (1) and (2)), experiments were carried out using two different test 

arrangements. Although both apparatus have the same principle, in that air is forced 

through the test samples in order to create a pressure drop, their ranges of applicability 

are different: one is used for Re less than 1 (in accordance with the range of Eqn (4)) 

and the other for Re greater than 1 and less than 100 (in accordance with the range of 

Eqn (3)). 

Description of test apparatus 

For Re<l, the screen samples (diameter 6 cm) were mounted in a tube (internal 

diameter 6 cm and length 20 cm) separated by fibre rings of 0.5 cm thickness 

(Fig. 5-la) containing 20 pieces of each screen sample (in order to ensure a larger 

pressure drop). The tube was connected to the upper side of a cylindrical reservoir 

(radius 15 cm and length 120 cm) connected by a stiff tube (diameter 6 cm) 

(Fig. 5-lb). The measurements are based on the pressure drop caused by natural 

suction of air through the samples as a result of water flow induced by gravity. 

The volumetric flow rate was controlled using a valve in the outlet duct, and was 

measured using a glass and a stopwatch. The pressure drop was measured using an 

inclined tube manometer Lambrecht KG type 655 (accuracy 1 mm of alcohol), with 

one part connected to the test apparatus and the other connected to the air in the 

experimental room. 

For l<Re<100, the experiments were carried out in a test apparatus as shown in 

Fig. 5-2a. It comprises a test box (2.5 m x 2.5 m x 2.5 m) with two screens (installed 

at 1.60 m from the inlet side and separated by 10 cm) in order to ensure that a uniform 
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air velocity distribution approaches the test screen. The test screens (2.48 m x 2.48m) 

were fixed to the outlet side of the test box using a wooden frame (Fig. 5- 2b) 

which prevents air leakage. 

S c r e e n s a m p l e 

POO 
F i b r e r i n g 

F r a m e w o r k w i t h t h e s c r e e n s a m p l e s 

FIG. 5-1 a. Diagram of the frame containing the test screens (Re<1 ). 

Framework with the screen samples 

Airflow 

V 

Water reservoir 

Valve 

Waterflow 

FIG. 5-1 b. Diagram of the apparatus for testing screens with Reynolds number less than 1. 
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Framework to attach the screen sample 

Supplying fan 

/Airflow 

0 
Measuring fan 

Screen sample 

FIG. 5-2a. Diagram of the apparatus for testing screens with Reynolds number greater than 1. 

The airflow supplied by the fan was regulated by controlling the rotational speed of 

the fan. The pressure drop through the test screen was measured using a membrane 

pressure transducer (accuracy 0.01 Pa), with one part connected to the test section of 

the apparatus (at 0.80 m upstream from the test screen) and the other connected to the 

air in the experimental room. The volumetric flow rate was measured from the 

frequency of rotation of a calibrated measuring fan. 

Screen sample 

Framework to attach 
the screen sample 

FIG. 5-2b. Diagram of the frame used to fix test screens to the test box (Re>1). 
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Description of screens tested 

Measurements were performed on nine different screens including thermal and 

insect screens provided by two firms. The specifications for each screen are 

summarised in Table 5-1. 

The porosity of each screen was measured with the help of a microscope. As screens 

are made of thin materials, porosity was computed as the ratio between the area 

occupied by the fluid (air) and the total mesh area (solid matrix and air). 

TABLE 5-1. Screen specifications 

SAMPLE DESCRIPTION TRADE NAME POROSITY [m2/m2] 

1 Insect screen, polyester rectangular mesh 
2 Insect screen, polyester rectangular mesh 
3 Thermal screen, polyester woven sheet 
4 Thermal screen, parallel polyethylene 

strips held together by thread 
5 Thermal screen, parallel polyethylene 

strips held together by thread 
6 Thermal screen, parallel polyethylene 

strips held together by thread 
7 Thermal screen, polyester woven sheet 
8 Thermal screen, parallel polyethylene 

strips held together by thread 
9 Thermal screen, polyester woven sheet 

reinforced with thread 

Econet FL 
Econet SF 
EH/P 

LS 10 

LS 10 Plus 

SLS10 
Phormilux 

SLS 10 Ultra 

PH20 

0.34±0.030 
0.26±0.040 
0.09±0.011 

0.09±0.017 

0.06±0.019 

0.06±0.014 
0.05±0.013 

0.05±0.017 

0.05±0.016 
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Description of the experiments 

For each screen sample, measurements were taken using the test apparatus shown in 

Figs. 5-1 and 5-2 in order to obtain the volumetric flow rate and the pressure drop 

through the sample. 

Variation in screen porosity and even tearing can occur due to tension created by the 

airflow. In order to prevent this, in accordance with the explanation in appendix, 

experiments were carried out with pressures lower than 150 Pa. 

In order to take asymmetry in the screen structure into account, the tests were carried 

out with the air flowing in both directions through the screen. The possible effect of 

hysteresis on the measurements was accounted for by performing experiments 

between low and high airflow rates, and the reverse. 

First, individual new screen samples were tested. As handling (opening/closing) 

easily damages some screens, tests were also made on screens which had been folded 

ten times. 

During the tests, the data were collected every 15 s for periods of 10-20 min to be 

sure that conditions were at steady state. 

5.5 RESULTS AND DISCUSSION 

For each material tested, the data resulting from the experiments performed were 

plotted as pressure drop versus the superficial velocity, as shown in Figs. 5-3 to 5-5. 

In all the samples tested, the equation that best seemed to fit the curves obtained was a 

second order polynomial Ap=au2+bu+c (i.e. the data presented fit Eqn (3) the 

Forchheimer equation). The coefficients are presented in Table 5-2. 

Therefore, provided the best fit coefficients are found (zero order term can be 

neglected compared with the other terms), the permeability and factor Y can be 

calculated from Eqn (3) (fluid properties included in Eqn (3) were obtained for the 

mean air temperature of experimental room). The results are listed in Table 5-3. 
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FIG. 5-5. Pressure drop as a function of the superficial velocity for thermal screens (sample 7 
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TABLE 5-2. 

SAMPLE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Coefficients for the best fit equal 

a 

1.255 
4.119 
303.17 
348.53 
729.03 
1130.2 
1957.8 
1953.9 
2174.7 

b 

1.414 
6.625 
101.43 
134.06 
205.12 
241.73 
371.37 
369.87 
458.21 

c 

0.102 
-0.330 
-11.91 
10.45 

-11.95 
-16.10 
-12.10 
17.30 

-16.23 

ion (Ap= 

r2 

0.98 
0.97 
0.99 
0.98 
0.99 
0.99 
0.99 
0.99 
0.99 

:au2+bu+c) 

NDn 

106 
104 
105 
109 
103 
118 
115 
117 
104 

1 Number of fitted data 
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TABLE 5-3. Permeability K and inertial factor Y of new screens 

SAMPLE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

K[m2] 

6.51 x1009 

1.39x1009 

9.08x10"11 

6.87x10"11 

4.49x10" 
3.81x10"11 

2.48x10"11 

2.48x10"11 

2.01x10'11 

Y 

0.457 
0.758 
12.03 
12.29 
22.11 
29.01 
40.62 
40.54 
40.86 

Data on porosity and inertial factor Y obtained in the present study and some 

additional data obtained from Lee [12], covering materials with porosities between 

0.78 and 0.86, are included in Fig. 5-6. These data fit an equation similar to the one 

used by Ergun [8], which expresses the relationship between the factor Y and porosity 

as follows 

Y=cYen (5) 

The best fit gives cY equal to 4.36xl0"2 and n equal to-2.12. These coefficients are 

approximately 30% smaller and 29% larger than the coefficients cY and n respectively 

obtained by Ergun [8] for packed columns of spheres. 

The factor Y obtained from Fig. 5-6 cover materials with permeabilities between 

0.05 and 0.86. Thus, we can now use Y and Eqn (3) to derive the permeability and the 

porosity of screens damaged by handling, provided the pressure drop and the 

superficial velocity are known. Experiments were performed in the test apparatus 

shown in Fig. 5-2 and the results are listed in Table 5-4. According to the results 

presented in Table 5-4, damage caused by handling (10 times folded) does not occur 
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in the insect screen samples but occurs in the thermal screen samples. Excluding 

screen sample 3, damage is mainly found in woven sheet screens. The permeability 

becomes about 3.5 times higher (porosity about two times higher) for woven sheet 

screens and about 1.9 times higher (porosity about 1.5 times higher) for screens with 

parallel strips held together by thread. 

FIG. 5-6. Inertial factor Y versus porosity for different types of screens (insect screen data •, 
thermal screen data 0, data from Lee [12] •*•) 

The tests carried out with the air flowing in both directions gave the same results, so 

no influence of airflow direction through the screen or hysteresis was detected in any 

of the materials tested. 
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TABLE 5-4. Permeability K and porosity 8 of screens folded ten times 

SAMPLE 

1 
2 
3 
4 
5 
6 
7 
8 
9 

K[m2] 

6.50X10"09 

1.39xl009 

9.97x10"" 
7.33x10-" 
6.79x10-" 
7.22x10"" 
8.63x10" 
4.04x10" 
4.22x10"" 

s 

0.33 
0.26 
0.10 
0.10 
0.09 
0.10 
0.10 
0.09 
0.09 

rM**) 

0.99 
0.98 
0.99 
0.99 
0.98 
0.99 
0.99 
0.99 
0.99 

ND<"*> 

102 
106 
112 
101 
104 
109 
108 
109 
104 

<**) For regression Ap=au2+bu+c 
<***) Number of fitted data for regression Ap=au2+bu+c 

5.6 CONCLUSIONS 

1. For commonly observed situations (Re<100), the pressure drop through a porous 

screen is described by the Forchheimer equation. According to this equation, the 

permeability and porosity describe the airflow characteristics of a porous screen. 

2. The inertial factor Y in porous screens differs from that for packed columns of 

spheres and is described by Y=4.36xl0~2e-2'2 

3. Undamaged porous screens usually used as thermal screens have permeabilities 

close to 10"m2 and insect screens have permeabilities less than 10"8m2. 

4. Damage caused by handling was found only in thermal screens, mainly woven 

sheet screens, and can cause an increase in permeability of up to 3.5 times. 
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5.8 APPENDIX 

Porosity and consequently permeability are not always constant parameters, as a 
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screen may be deformed under pressure. The solid matrix preserves its density but the 

open area increases. 

According to Bear and Bachmat [11], the mass conservation for the solid matrix 

can be written as 

ö/öt[ps( 1 -£)]+V[( 1 -s)(psus)]=0 (A. 1 ) 

where us and ps are the velocity and the density of solid matrix, respectively. 

200 400 

PRESSURE (Pa) 

FIG. 5-A1. Pressure-induced porosity variation for porous screens with initial porosities 0.10 
and 0.30 and compressibility coefficient of 10"5 Pa (represented by --) and 10"9 Pa 
(represented by — ). 

Where the density of the solid matrix is constant, and considering the medium to be 

homogeneous (Vs*0), Eqn (A.l) becomes 

Se/öt=(l-E)Vus (A.2) 

Eqn (A.2) is a first-order differential equation and its integration yields 

e=l-(l-e0)/exp(jVusdt) (A.3) 
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with 

jVusdt=u 

where e0 is the initial porosity (measured at standard atmospheric pressure) and u the 

volumetric strain [11]. 

For an elastic matrix, the volumetric strain is proportional to the pressure, and Eqn 

(A.3) becomes 

6=l-(l-80)/exp(T1-1Ap) (A.4) 

where r| is the compressibility coefficient of the matrix. 

Eqns (A.3) and (A.4) show how the porosity changes with the increase of pressure. 

In order to prevent variation in screen porosity during the experiments, a simulation 

study is performed based on equation (A.4). Fig. 5-A.l shows the porosity variation 

due to pressure for the test screens used (initial porosity 0.10 and 0.30 and 

compressibility coefficient of the matrix 10"5 Pa and 10"9 Pa). According to Fig. 5-A.l, 

for a pressure drop of less than 150 Pa, the porosity variation from initial conditions 

(zero pressure drop) is always less than 0.05%. This pressure is the maximum value 

used in the experiments. 

5.9 NOMENCLATURE 

d mesh size [m] 

i j , l unit vectors in direction x, y and z 

K permeability of the screen [m2] 

p pressure [Pa] 

u superficial fluid velocity [ms1] 

Uj fluid velocity through a permeable material [ms 1 ] 

us velocity of solid matrix [ms1] 

Re Reynolds number (Re= p Ujd/ p.) 

t time [s] 
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Y 

8 

P-

P 

V 

inertial factor 

porosity 

dynamic viscosity [Pa s] 

density [kg m"3] 

(i d/dx+j ô/ôy+1 d/dz) 

Subscripts 

0 

s 

initial 

solid 
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6. PHYSICAL MODELLING OF NATURAL VENTILATION 

THROUGH SCREENS AND WINDOWS IN GREENHOUSES + 

Abstract: In the previous chapters the physical basis of air exchange through porous 

materials and openings were presented. In this chapter, formulation presented in 

chapters 2, 3 and 5 is applied to study natural ventilation through screens and window 

openings in greenhouses. The wind velocities and air temperature differences which 

drive the airflow were characterised. Fluctuations in wind velocity were related to the 

mean wind velocity through a parameter which is evaluated based on a power 

spectrum analysis. In turn, wind pressure was related to this mean wind velocity such 

that turbulence was taken into account. An experimental study was conducted in twin-

span glasshouses in order to validate the approach presented. The predictions made of 

airflow versus wind pressure and temperature differences agree reasonably well with 

experimental data, differences between them being less than 20%, in general. 

6.1 INTRODUCTION 

Natural ventilation of a greenhouse is a complex process which depends on the 

greenhouse characteristics (number, location and geometry of windows, area of leaks, 

etc.) as well as on the external ambient conditions. Although its important impact on 

the mass and energy balance which affects the indoor climate conditions, the subject 

is far from being fully understood. 

As far as is known natural ventilation through greenhouse window openings were 

first studied experimentally by Morris and Neale [1] in 1954. Since them much 

progress has been made in understanding the phenomena and new challenges appear. 

The rather high oil prices reached in the end of the 70's, followed by the wide public 

concern about the ecological aspects related to the high quantities of fossil fuel 

consumption in the North-western Europe, contributed to the development of new 

+ J. Ag. Engng. Research (in press in a modified form) 
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energy saving strategies. The potential energy saving benefits resulting of the use of 

screens between the crop and the roof was demonstrated by Bailey [2], Bailey and 

Cotton [3] and Silva et al [4], Recently [5], the use of screens in window openings was 

adopted in order to prevent the entrance of insects and so decrease the need for use of 

chemical pesticides. Consequently, the study of airflow through screens is also an 

important topic. 

The existing analytical models on the subject can be divided into two categories as 

follow: 

• Empirical and semi-empirical approaches for the study of airflow through 

window openings [6-13] and airflow through screens [2,5,14]. 

• Governing fluid mechanics equations solved numerically [15-17]. 

All models in the first category are based on the idea that there is a simple non-linear 

relationship between the airflow and the potentials which drive this flow. Such 

analyses consider the air inside the greenhouse as incompressible and they are 

commonly based on purely empirical correlations or on Bernoulli's equation, resulting 

in dimensionless numbers (such as the Euler number) with empirical correction 

factors. However, the simplifying assumptions used together with the correction 

factors, which are obtained for specific experimental conditions, considerably restrict 

the range of validity of this approach. 

In the second category of models, a numerical simulation procedure is applied to 

solve the continuity equation, the momentum equation and the energy equation, to 

determine the velocity, temperature and pressure fields and consequently the flow 

patterns inside the greenhouse. 

The study presented in this paper has two objects in view: 

• to improve understanding of the physics of the air exchange process through 

porous screens (thermal, shading or insect) and through window openings. 

More specifically, to establish the flow network of a greenhouse with a window 

opening and a screen partially or totally open, and to describe the characteristics of 
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the driving potentials; 

• to present a simple and accurate formulation which describes airflow through 

porous screens and window openings caused by wind and stack effect. 

6.2 THEORY 

6.2.1 Motion equation 

The physics of free and forced fluid motion through porous materials and openings 

reveals that this phenomenon depends upon the characteristics of the opening or 

porous material under study and the characteristics of the potentials which drive the 

flows. A model, which accounts these dependencies, is presented in by Miguel et al. 

[18]. According to these authors, the airflow through each opening or porous screen is 

related to the driving potential as 

e-15Q/at+[n(pK)-1+4.36xl0-2E-212A-1K1/2|Q|]Q+0.5(A£2Hcc
2)-1|Q|Q= 

-p-'AAp^H-p'AAps/H (1) 

where Q is the airflow (m3/s), p the air density, A the exchange area, \i the dynamic 

viscosity of the air, E the porosity of the material (the volume fraction of fluid 

contained within the total volume of the medium), K the permeability of the material 

(for openings K-»<x), cc the coefficient accounting for the convective effect (for 

porous screens l/cc
2«0), H the characteristic depth, Apw the wind induced pressure 

difference and Apst the pressure difference due to thermal differences. 

In order to evaluate the airflow through a multi-zone enclosure or through an 

enclosure with several openings, a flow network must be established. A screened 

greenhouse can be considered as a two-zone enclosure and the airflow network, which 

represents this, is illustrated in Fig. 6-1. 

In the case of a greenhouse with one window opening and one screen, the flow 

network is composed of three nodes coupled by two resistances (Fig. 6-la). When one 
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aperture is made in the screen the network is composed of three nodes coupled by 

three resistances (Fig. 6-lb). 

(a) (b) 

Fig. 6-1. Schematic representation of a screened greenhouse (-•- flow resistance • node). 

6.2.2 Driving potential 

The driving potentials which induce the airflow can be due to the difference in 

temperature (stack effect) or due to the wind velocity (which induces a wind pressure) 

or both. In both cases a steady flow caused by the mean value of the potential gradient 

is induced. In the case of the wind velocity an extra flow caused by fluctuations in the 

potential (turbulence) appears. 

Fluctuating airflow through openings in enclosures driven by wind-induced 

pressures can be divided into pulsating flow and the penetration of eddies. The 

pulsating flow results from the wind fluctuation and the compressibility of air within 

the enclosure (the inside air is pressurized or depressurized). The eddy flow is due to 

the turbulence in the air stream, which creates a rotational effect on the air within the 

enclosure. 

6.2.2.1 Airflow driven by temperature difference 

When the air temperature on each side of the porous screen or opening is different, a 

stack pressure occurs, which drives an airflow. If it is assumed that the temperature is 
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different on each side, the pressure difference between the two sides is given by 

Apst=Ap g Ah (2) 

with 

Ap=p ß AT 

where AT is the absolute temperature difference measured in the bulk fluid, g the 

gravitational acceleration, Ah the vertical height difference through the screen or 

opening and ß the coefficient of thermal expansion. 

6.2.2.2 Airflow driven by wind velocity (windpressure) 

Wind velocity is not a steady quantity when measured over time. The instantaneous 

value at time t can be written as the sum of a mean component and a fluctuating 

component, that is, ïï and u' , respectively. The average wind pressure over a time 

interval can be related to the wind velocity (in Appendix) by 

pw=0.5p(üjt + < u ' w ) (3) 

where ïïw is the mean wind velocity and u^ the fluctuations in wind velocity. 

Some anemometers give direct readings of the mean velocity and of the root mean 

square of the velocity. Assuming u^ to have a Gaussian probability distribution, it is 

sometimes convenient to use the following equation instead of (3) 

P^O.Spût+pT^uLw (4) 

where urn]SW is the root mean square wind velocity. 

The more usual situation is to have anemometers which only give readings of mean 

velocity. Therefore, an approach which presents wind pressure as a function of mean 

velocity only, but does not neglect the effect of the fluctuating component, would be 

very useful. For this we need to relate the mean square fluctuating (turbulent) 

component of the wind velocity to the mean (static) component of wind velocity. 

The dissipation rate of turbulent kinetic energy (r^) can be related directly to the 

mean velocity through the inertial subrange spectral density. According to 
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Kolmogorov's rule [21] 

r,2/3=(3/4)ckr1F(n)(üw/27t)2V/3 (5) 

where F(n) is the inertial subrange spectral density, n the frequency and ckl 

Kolmogorov's constant (»0.5). 

Then, using the relation between the turbulent kinetic energy at a distance z from a 

surface and the dissipation rate of turbulent kinetic energy [21], 

0.5 <u'w =V5[r ,K(z+z0)]M (6) 

the mean square fluctuating component of wind velocity and the mean component are 

thus related as 

<<=3F(n)(ïïw/27r)Mn5/3c,-°-5[r,K(z+z0)]2/3 (7) 

where K represents the von Karman's constant («0.4), c^ a constant («0.09), z the 

height at which the velocity is measured and z0 the surface roughness length (values 

for z0 can be found in Eurocode [22]). 

Substitution of Eqn (7) in (3) yields 

pw=Y(0.5pu^) (8) 

with 

Y=l+3 F(n)(ïïw )-4/3(27t)-
2/3n5'3c;05[K(z+zo)]

2/3 (9) 

In Eqn (9), the value unity (right-hand side of the equation) represents the mean 

contribution of wind velocity, and the remaining the fluctuating contribution of wind 

velocity. 

To obtain Y it is necessary to know F(n) and n, and a power-spectrum analysis 

should be performed. The power-spectrum analysis [23] is a measure of the 

contribution of oscillations with continuously varying frequencies to the variance of a 

variable. This analysis not only enables Y to determine but also yields extra 

information which can be used to clarify and characterise the structure of fluctuations 

(turbulence), and to identify the frequencies of the main eddies present in the wind 
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field. 

Wind velocity is usually measured at a reference height, and a dimensionless 

coefficient, which relates the wind field at the reference height to the local wind field, 

should be introduced. This coefficient is determined by the velocity profile of the 

atmospheric boundary layer and by the orientation of the enclosure (greenhouse) with 

respect to the wind direction. These values have been obtained from measurements in 

boundary layer wind tunnels [24]. 

6.3 EXPERIMENTAL STUDY 

In order to characterise the potentials which drive the flows, and to verify the 

applicability of the model (Eqn 1), experiments were conducted in two twin-span 

glasshouse oriented E-W, each one with the following dimensions (Fig. 6-2): eaves 

height 4.5 m, roof angle 22°, width 4.1 m and length 6.6 m. Inside each glasshouse a 

thermal screen trade name LS 11 (permeability 7xl0"10 m2 and porosity 0.09 obtained 

by Miguel et al. [20]), was assembled horizontally at a height of 2.90 m above the 

ground. In the first part of the experiments the screen was kept closed in each 

glasshouse. In the second part a narrow opening (0.02x3.80 m2) was made in the 

centre of the screen, in order to simulate a horizontal slit. 

The inside of each glasshouse was hermetically sealed, with insulating panels in the 

walls and polystyrene foam insulating layers on the soil surface, except the roof, 

where windows with flaps were located (two windows per span), each with an area of 

2.05x0.90 m2. The window opening angles could be set up to 30°. 

Horizontal cylindrical electrical heaters with aluminised surfaces (eight cylinders 

3.80 m long and 0.05 m in diameter, in pairs, separated by 0.35 m, each pair 1.15 m 

apart) were placed parallel to greenhouse width at a height of 0.20 m above the 

ground. In this way the geometry was equal to a standard greenhouse heating system. 

The heaters were controlled in such a way that a constant temperature difference was 

obtained between the air above and below the screen during the experiments. 
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Wind 

Screen 

c> 
Wind 

(h 
001 p 

Screen 

Fig. 6-2. Schematic cross section and top view of screened greenhouse 

In each glasshouse, 25 copper-constantan thermocouples were installed to measure 

the temperature of the air above and below the screen, and the temperature of the 

outside air. They were distributed uniformly as follow: 10 thermocouples distributed 

in the air space below the screen, 10 in the air space above the screen and five in the 

outside air. The thermocouples were made of very thin wires (2.5x10"5 m wire 

diameter) in order to ensure a rapid response [8] (response frequency approximately 

12 Hz). 

The pressure was measured using membrane pressure transducers. The inside 

pressure was measured above and below the screen (three probes in each part). The 

instantaneous wind pressure was measured outside at a distance of 0.20 m from the 

window opening. The wind velocity was measured using a fast response hot wire 
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anemometer (response frequency of 9.5 Hz) placed 0.20 m from the window opening. 

The wind direction was also determined. 

The airflow was determined by means of a tracer gas technique. In the experiments, 

both the constant flow and decay rate method [9,25] were used. The airflow through 

the screen opening was obtained by subtracting the flow through the screen from the 

total flow. 

The tracer gas (N20) was distributed in each glasshouse using two small fans and a 

system of perforated tubes at ground level. The air within the greenhouse during the 

experiments was sampled at 18 different locations in each glasshouse (distributed nine 

above and nine below the screen) and measured by means of an infra-red gas analyser. 

The measurements were performed on 32 selected days between February and May 

of 1996 and consisted of two types: 

• Airflow through the glasshouse windows and through the screen caused by 

wind velocity. These experiments were performed at temperature differences 

between inside and outside of less than 2.0±0.5°C and the wind velocity 

higher than 1.5 ms"1). 

• Airflow through the porous screen and through a narrow rectangular opening 

(0.02x3.80 m2) in the screen caused only by a constant temperature difference 

between the air above and below the screen (steady state conditions). To 

prevent the influence of wind pressure, the measurements were performed with 

almost closed windows (leeside window openings open 2°). 

In the first part of the experiment (airflow caused by wind effect), the data on the 

wind velocity, and temperature difference between inside and outside, were collected 

at sample frequencies of 8 Hz, over periods of 10 minute. 

In the second part of the experiment (airflow caused by stack effect), data on 

constant temperature difference (AT±1°C) between the air above and below the screen 

were collected at sample frequencies of 1.66xl0"2 Hz (each 60 s) during periods of 

8 h, to obtain steady state conditions. 
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6.4 RESULTS AND DISCUSSION 

6.4.1 Wind velocity and wind pressure 

Spectrum analysis was performed using wind velocity data obtained over periods of 

10 minute at sample frequencies of 8 Hz. The sampling frequency of the quantity 

measured determines the highest frequency detectable by the analysis, i.e., half the 

sampling frequency (Nyquist frequency) which in this study is 4 Hz. 
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Fig. 6-3. Power spectral density of wind velocity, for mean wind velocities of 1.27 ms-1 (*) , 
3.49 ms-1 (o) and 5.50 ms-1 (+) measured at 0.20 m above the roof at windward side 
with closed windows(— line with slope of -5/3). 

As the wind characteristic on the leeside and windward side can be different [9], 

spectrum analysis were performed for both sides. The results obtained for a 

greenhouse with closed windows are plotted in Figs. 6-3 and 6-4. 

Fig. 6-3 shows the power spectral density of wind velocity for three different mean 

wind velocities: 1.27 ms"1, 3.49 ms"1 and 5.50 ms"' m measured at 0.20 m above the 
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Fig. 6-4. Power spectral density of wind velocity for mean wind velocities of 0.52 IDS'' (*) , 
2.44 ms"1 (o) and 3.49 ms"1 (+) measured at 0.20 m above the roof at leeside with 
closed windows (— line with slope of -5/3). 

The corresponding power spectral density of wind velocity measured on the leeside 

(mean wind velocities 0.52 ms ' , 2.24 ms"' and 3.37 ms"' measured at 0.20 m above 

the roof on the leeside) are shown in Fig. 6-4. 

The situations represented in Fig. 6-3 and 6-4 both exhibit a region in which the 

power spectral density is proportional to the frequency to the power -5/3 which is in 

accordance with Kolmogorov's rule. A similarity can also be observed between the 

power spectrum of wind velocity measured on the windward side and on the leeside. 

In both, the main peak of power spectral density of the fluctuations occurs at 

frequencies below 0.1-0.2 Hz, and for frequencies higher than l Hz there is no 
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significant contribution, i.e. low frequencies are dominant in the wind field. The fact 

that main energetic eddies of wind velocity occur in this range of lower frequencies, is 

supported by the studies of Kaimal et al. [26] and Bot [8]. 

Parameter Y can be calculated from Eqn (9) together with values of power spectral 

density and frequency taken from Figs. 6-3 and 6-4. The surface roughness length z0 

used in the calculations was 0.04 m [22] and the results are shown in Table 6-1. These 

results show the importance of wind fluctuations (turbulence) on the total wind 

pressure and that the turbulence contribution can reach 55% of the total. 

TABLE 6-1. Mean wind velocity and parameter Y [Eqn (9)] 

uw [ms"1] 

0.52 
1.27 
2.24 
3.37 
3.49 
5.50 

Y= =l+/(F(n),üw,n) 

1.13 
1.13 
1.39 
1.48 
1.48 
1.52 

6.4.2 Airflow through porous screens and openings 

For airflow caused only by constant temperature differences (i.e., for quasi-steady 

conditions (9Q/ôt«0) and pw»0) values are presented in Figs. 6-5 and 6-6. 

Fig. 6-5 shows the experimental values of airflow through the screen and the values 

predicted by Eqns (1) and (2) (l/cc
2«0 [18]) versus temperature difference across the 

screen. 
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Fig. 6-5. Airflow through the screen versus the temperature differences across the screen 
(measured data * and predicted - ) . 
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Fig. 6-6. Airflow through the rectangular opening made in the centre of screen versus the 
temperature differences across the screen (measured data * and predicted —). 
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Fig. 6-6 shows the experimental values of airflow through the rectangular opening 

made in the centre of screen and the values predicted by Eqns (2) and (1) 

(1/K~0 [18]), versus temperature difference. 

For airflow induced by wind velocity only (Ap«0), values are presented in Figs. 6-7 

to 6-10. In these figures, airflow through a window opening or through the screen 

were compared with values obtained from Eqn (1) with l/cc
2»0 [18] (for the porous 

screen) and Eqn (1) with 1/K*0 [18] (for a window opening). 

Fig. 6-7 shows the experimental and the predicted airflow (flow network of 

Fig. 6-la) through the windward side window and leeside window (opening angles 4°) 

versus the windward side pressure. 

0.018 

4 8 

WINDWARD SIDE PRESSURE (Pa) 

12 

Fig. 6-7. Airflow through the windward side window (*) and leeside windows (0) versus the 
windward side pressure, for an opening angle of 4° (predicted —). 
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0.10 

4 8 

WINDWARD SIDE PRESSURE (Pa) 

12 

Fig. 6-8. Airflow through the windward side window (*) and leeside windows (0) versus the 
windward side pressure, for an opening angle of 20° (predicted - ) . 

0.08 

4 8 

WINDWARD SIDE PRESSURE (Pa) 

Fig. 6-9. Airflow through the screen versus the windward side pressure in a greenhouse with 
windward side window open (*) or leeside window open (o), for an opening angle of 
20° (predicted - ) . 
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4 8 

WINDWARD SIDE PRESSURE (Pa) 

Fig. 6-10. Airflow through the rectangular opening made in the screen versus the windward 
side pressure in a greenhouse with windward side window open (*) or leeside 
window open (o), for an opening angle of 20° (predicted - ) . 

Fig. 6-8 shows the experimental and the predicted airflow (flow network of 

Fig. 6-la) through the windward side window and leeside window versus the 

windward side pressure, for an opening angles of 20°. 

Fig. 6-9 shows the experimental and the predicted airflow (flow network of 

Fig. 6-la) through the screen versus the windward side pressure in a greenhouse with a 

windward side window open or a leeside window open (opening angle 20°). 

Fig. 6-10 shows the experimental and the predicted airflow (flow network of 

Fig. 6-lb) through the narrow opening made in the screen versus the windward side 

pressure in a greenhouse with a windward side window open or a leeside window 

open (opening angle 20°). 

Figs. 6-5 and 6-9 show the airflow through the porous screen driven by temperature 
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difference and by the wind field respectively and they exhibit two different flow 

regimes: the Darcy flow regime (Fig. 6-5) and the Forchheimer flow regime (Fig. 6-9). 

These findings are supported by the work of Bear and Bachmat [27] and Bailey [2]. 

For Reynolds numbers (Re=puK1/2/u) smaller than unity the airflow is proportional to 

the driving potential, which is the case for airflow induced by the usual range of 

temperature differences between greenhouses and the ambient air (AT<25°C). For 

Reynolds numbers greater than unity a quadratic term of airflow must be added 

(Forchheimer flow regime) which is the case for flows induced by wind velocities 

above 0.25 ms"1. 

The experimental airflow values were compared with the equivalent values 

predicted with the model. The differences obtained are always less than 20%, except 

for Fig. 6-10. The larger scatter presented in this figure is due to the fact the airflow 

through the slit was obtained by subtracting the flow through the screen from the total 

flow. As the difference is small the error become relatively large. 

6.5 CONCLUSIONS 

1. The main energetic eddies responsible for the air exchange caused by turbulent 

wind velocity were found in the frequency range below 0.1-0.2 Hz. 

2. The turbulent wind velocity was estimated to be between 13% and 52% of mean 

wind velocity, which means that it plays an important role in the total wind pressure. 

3. The airflow through a porous screen (highly porous media) is described by the 

Forchheimer's equation. However, for an airflow driven by the usual range of 

temperature differences between greenhouses and the ambient air, the quadratic term 

of airflow can be neglected, such that the equation can be reduced to the Darcy 

law. 

4. The airflow through screens and openings predicted by the theoretical approach 

agree reasonable well with the experimental values, difference between them being 

less than 20%, in general. 
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6.7 APPENDIX 

Wind-induced external pressure 

For a quasi-steady flow, we can write the j-direction momentum equation (Navier-

Stokes equation) as 

pu(au/ôj)=-ap/5j+n(a2u/5j2) (A. I ) 

The wind is a turbulent airflow characterised by fluctuations of the physical 

quantities such as velocity and pressure. The turbulent fluctuations of these variables 

can be described by resorting to statistical methods. Using the Reynolds 
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decomposition method, the instantaneous quantity at time t can be written as the sum 

of a mean component (") and a fluctuating component ('). For velocity 

uw=ûw + u'w (A.2) 

with 

ûw =x"' Juw dt 

where x is longer than the period of any significant fluctuation but is much shorter 

than any mean flow time scale and uw is the wind velocity. 

Substitution of Eqn (A.2) into (A.l) provides 

püw (5ûw/dj)=-apw/dj+uCÖ2üw /Sj2)-pd(u'wu'w )/5j (A.3) 

where the third term on the right hand side represents the extra shear stress brought 

about by turbulent momentum transport. 

Integrating the previous equation over j-direction, we obtain 

p w =0 .5p<- (p Ôûw/ôj-0.5p<u'w)+ra (A.4) 

where ra is the constant of integration. 

If a situation without wind is considered (ïïw = u^=0) and pw=0. Thus, TU must be 

zero and 

pw=0.5pü^-(p anw/5j-0.5pu'wu^) (A.5) 

In the lower boundary layer of the atmosphere [28] 

ôïïw/ôj=u7(Kh) (A.6) 

then, Eqn (A.5) becomes 

p w = 0 . 5 p ( ü i + u ; x )-p[cwf
,/2ïïw/(Kh)] (A.7) 

with 

CwfKuVlIJ2 

where cwf is the friction coefficient, h the height above the ground, u* the friction 

velocity and K the von Karman constant. 

If the viscosity effect is neglected (pcwf
1/2/(ic h)«0), Eqn (A.7) can be reduced to a 

103 



Physical modelling of natural ventilation in greenhouses 

relationship postulated and supported by experiments carried out by Bot [8] and de 

Jong [9]. 

6.8 NOMENCLATURE 

A 

cc 

Ckl 

Cwf 

s 
F<»> 

g 

h 

H 

K 

L 

n 

P 

Po 

Pst 

Pw 

Q 

rn 

T 

u 

* 
u 

V 

area [m2] 

coefficient accounting for convective effect 

Kolmogorov's constant (~Q . 5) 

friction coefficient 

turbulent kinetic energy constant («0 . 09) 

power spectral density [mV1] 

gravitational acceleration [ms'2] 

height [m] 

characteristic depth [m] 

permeability [m2] 

characteristic length [m] 

frequency [Hz] 

pressure of air [Pa] 

mean absolute pressure of air in enclosure [Pa] 

stack pressure [Pa] 

wind pressure [Pa] 

airflow [ m V ] 

turbulent kinetic energy dissipation rate [mV3] 

absolute temperature [K] 

fluid velocity [m3m"2s"'] 

friction velocity [ms"1] 

volume [m3] 
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Y inertial factor 

z height [m] 

z0 surface roughness length [m] 

Greek symbols 

ß 
8 

X 

K 

M 

71 

P 

Y 

coefficient of thermal expansion [K1] 

porosity 

time [s] 

von Karman's constant («0 .4) 

dynamic viscosity [Nsm"2] 

constant («3.1416) 

density [kg m"3] 

wind pressure coefficient 

Subscripts 

fr 

i 

1 

rmsw 

s 

st 

w 

flow field 

inside 

larger length 

root mean square wind velocity 

smaller length 

stack 

wind 
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7. Free convection heat transfer in screened greenhouses + 

Abstract: Free convection heat transfer between heating pipes and air, horizontal 

screen and air and inner roof surface and air was studied experimentally in twin-span 

glasshouses, under constant heat flux conditions. Among others results, equation 

coefficients between Nusselt and Rayleigh numbers are presented for the inner surface 

of the greenhouse roof, screen surfaces and heating pipes. Special attention is given to 

the influence of the location of the heating pipes relative to the screen, as well as the 

presence of a crop, upon the convective heat transfer between different surfaces and 

air. The equation coefficients obtained in this work are between 2% and 75% greater 

than the equivalent equation coefficients found for smooth plates and cylinders by 

other authors. 

7.1 INTRODUCTION 

Free convection heat transfer is an important mechanism of energy transport 

between the surfaces of a greenhouse and the enclosed air [1-5]. However, little 

information and data on this subject are currently available in the literature and what 

there is, is almost exclusively devoted to unscreened greenhouses. 

Despite the fact that the use of screens in greenhouses provides a simple and 

successful way of avoiding night-time heat loss and controlling solar radiation 

entering the greenhouse, studies on convective heat transfer have been performed 

almost exclusively in greenhouses without screens. As far as is known only one study 

was made by Stoffers [6] in 1984 for the purpose of determining convective heat 

transfer in greenhouses divided by a horizontal screen. It is believed that a better 

knowledge of the heat-transport processes will bring important improvements in 

greenhouse modelling. 

+ J. Ag. Engng. Research (in press) 
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The main object of this research was to produce information about free convective 

heat transfer inside screened greenhouses. To achieve this, experiments were 

performed in three twin-span glasshouse compartments having an airtight screen 

placed horizontally between the ground and the roof, in each of these compartments. 

The situations studied included the presence and the absence of an artificial crop, and 

the heating pipes positioned at two different heights. Thus, the influence of the crop 

and the location of the heating pipes on convective heat transfer was investigated. 

Equation coefficients are presented for convective heat-transfer coefficients between 

the inner surface of the greenhouse roof and air, screen surfaces and air, and heating 

pipes and air. 

7.2 THEORETICAL BACKGROUND 

Consider a multi-span greenhouse with a screen (partition) between the ground and 

the roof (two-zone enclosure), with adiabatic (highly insulated) ground and side walls. 

The enclosure is heated by pipes placed just above the ground. The mode whereby 

energy is transferred from the heating pipes to the outside of the greenhouse involves 

three different processes: conduction, convection and radiation. The energy from the 

heating pipes arrives by convection and radiation at the lower screen surface. The 

energy is conducted through the screen, arrives both by convection and radiation at the 

roof surface, where it is conducted through the glass and dissipated in the outside of 

the greenhouse cover by convection and radiation. 

Convective and radiative heat flux density are related to the heat flux generated by 

the heating pipes Qe by 

Qe=Qca+Qm (1) 

where Qm represents the radiation heat flux density from the hot surface of the pipes to 

the environment and Qca the convective heat flux density from the surface of the pipes 

to the fluid. 
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7.2.1 Heat transfer by convection 

The convective heat transfer is defined according to [7] 

Qca=o(T-T«) (2) 

where a represents the convective heat transfer coefficient, T the surface temperature 

and T. the temperature of the free stream fluid. 

It was soon established that a is not a constant but a function of many parameters 

describing the heat transfer process. Since the work of Fishenden and Saunders [8] 

convective heat-transfer coefficient is expressed as a relation between the 

dimensionless Nusselt number (Nu) and the Rayleigh number (Ra) as 

Nu=c0Ran (3) 

In Eqn (3) 

Nu=cd/A, (4) 

Ra=Gr Pr (5) 

Gr=ß(T-TJgl3/v2 (6) 

and 

Pr=v/A (7) 

where ß represents the volumetric coefficient of expansion of the air, g gravitational 

acceleration, 1 a characteristic dimension, v kinematic viscosity, X thermal 

conductivity, A thermal diffusivity, and Gr and Pr the Grashof and Prandtl numbers, 

respectively. 

For experiments performed under constant heat flux conditions, results can also be 

presented in terms of a modified Grashof number [9] 

Nu=c*(Gr*Pr)b (8) 

with 

Gr*=GrNu=ßQcagl4/(^v2) (9) 

c*=c0
1/(1+n) (10) 

b=n/(l+n) (11) 
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For experiments performed under constant heat flux conditions Eqn (8) can be 

advantageous because it is dependent on convective heat flux instead of temperature 

difference. 

From Eqn (3) together with Eqns (4)-(7) it can be deduced that 

a=ca(T-T.)n (12) 

and Eqn (2) rewritten as 

Q c a=c a(T-TX' (13) 

with 

Ca={c0/[l
(1/n,-3vA/(ßg^1/n)]n} (14) 

It should be noted that the fluid properties included in Eqns (3) to (14) should be 

measured for the mean temperature between the surface and the free stream fluid. The 

characteristic dimension 1 depends on the geometry of the system considered. For 

enclosures, Holman [7] suggests that the distance between surfaces in the direction of 

the air flow perpendicular to horizontal plates (ground, partitions) under study should 

be chosen as the characteristic dimension. For a horizontal cylinder (heating pipes), 1 

should be taken as the diameter. For a greenhouse roof, Stoffers [6] suggests that the 

length of the roof under study should be chosen as the characteristic dimension. 

7.2.2 Flow characteristics criterion 

The coefficients c0 and n can be calculated by experiment or theoretically [7]. 

Generally, the constant c0 is presented as dependent on the geometry and orientation of 

the surface under consideration, and the exponent n dependent only on the convection 

regime. 

There are three flow regimes, which can be considered: initial, laminar and turbulent 

regime. The initial regime is characterised by purely conductive heat transfer. In the 

laminar regime a circulation flow starts. This regime is characterised by convective 

currents parallel to the surface. Transport of momentum depends on the transport by 
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diffusion between the fluid layers. A turbulent regime appears when the flow becomes 

unstable and vortices arise. This regime is characterised by fluctuations in velocity, 

temperature and pressure. 

The criterion for identifying the flow regime is the Rayleigh number. For plates in 

enclosed spaces Hollands et al. [10] suggest: 1700 < Ra < 3500 (initial); 

3500 < Ra < 106 (laminar); and Ra > 106 (turbulent). For horizontal cylinders Holman 

[7] suggests: 103 < Ra < 109 (laminar) and Ra > 109 (turbulent). 

In this study, coefficients c0, c", n and b were determined experimentally, on the 

basis of the relations given by Eqns (3), (8) and (12), for the case of free convective 

heat transfer between heating pipes and air, between the upper and lower surfaces of 

the screen and air, and between the inner surface of the roof and air. 

7.3 EXPERIMENTAL ARRANGEMENT 

Experiments were conducted in three twin-span glasshouse compartments (Fig. 7-1), 

each one with the following dimensions: eaves height 4.5 m, roof angle 22°, width 

4.1 m and length 6.6 m. 

The walls were made of 0.10 m thick insulating panels and the soil surface was 

covered with 0.05 m thick polystyrene foam insulating layers. Polyethylene film was 

used between the soil surface and the polystyrene foam in order to prevent the 

evaporation of soil water. Both walls and soil surfaces in contact with air within the 

greenhouse were covered with aluminium. The compartments roof was made of single 

glass with characteristics similar to commercial greenhouses (thickness 4 mm and 

thermal conductivity 0.88 Wirf'K;1). 

Inside each compartment an air-tight aluminised screen (reflectivity to thermal 

radiation 85%) was assembled horizontally between the ground and the roof at a 

height of 2.90 m above the ground. This screen possessed roughness, as do the screens 

used in greenhouses. 
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Roof made by glass 

Artif icial crop 

Compar tment 1 

Screen 
Heaters 

Compar tment 2 Compar tment 3 

FIG. 7-1. Schematic cross section of compartments for determination of free convective heat 
transfer. 

In order to generate temperature differences between the air and the screen (ground-

zone enclosure), and between the air and the roof (roof-zone enclosure), horizontal 

electrical heaters with aluminised surfaces were placed between the ground and the 

screen. In each compartment (Fig. 7-1) were placed eight cylindrical electrical heaters 

(3.80 m long and 0.050 m in diameter), in pairs, separated by 0.35 m, each pair 1.15 m 

apart and generating an adjustable power of up to 820 W/m2. The distance between 

the electrical heaters and the ground in compartments 1 and 2 was 0.20 m and in 

compartment 3 was 2.10 m. The different distances between the heating system and 

the screen, in compartments 2 and 3, allowed the influence of the position of the 

heating pipes with respect to the screen to be studied. 

A combination of several aluminised strips (reflectivity to thermal radiation 85%) 

was placed in compartment 1 in order to simulate a crop (LAI«1.9). The distance 

between the first layer of strips and the heating pipes was 2 cm and the last layer of 

strips was placed 42 cm from the pipes. Compartments 2 and 3 were kept empty. This 

allowed the influence of the crop on the convective heat transfer to be studied by 

comparing data obtained from compartments 1 and 2. 

In each compartment, 46 copper-constantan thermocouples were installed to 
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measure the temperature of the air, heating pipes, screen and inner surface of the roof. 

They were distributed as follows: six distributed on the roof, ten in the air space above 

the screen, twelve distributed on the screen, ten in the air space below the screen and 

eight on the heating pipes. In order to make sure that the thermocouples sensed the 

correct temperature of the heating pipes, the screen surface and the inner surface of the 

roof, they were bonded to the surface and covered with a thin layer of material with 

the same optical properties as the surface. To reduce conductive heat flux, the 

thermocouples were made of thin wires (each wire 0.025 mm in diameter). They were 

connected to the surface along their length (»20 cm) to ensure that the sensing point 

was at the surface temperature. 

Net radiometers (spectral range 0 to 60 (im) were placed above and below the 

screen to measure the radiative heat losses. The radiometers were positioned in such a 

way that all radiation fluxes incident to or leaving both the screen surfaces and the 

inner side of the roof could be detected. The net thermal radiation at the heating pipes 

was estimated using the model developed by Silva et al. [11]. 

7.4 DESCRIPTION OF EXPERIMENTS 

Measurements were made at night between 27 October 1995 and 4 December 1995, 

in order to exclude the effects of short wave radiation on the measurements. The three 

compartments were kept "dry", i.e. without vapour condensation on the screen surface, 

inner surface of the walls or inner surface of the roof. 

The thermocouples and net radiometers were scanned by a data-logging system at 

intervals of 30 s and for periods of time of 12-13 h to record data during the steady 

state periods. As the temperature inside the greenhouse changes as a result of changes 

in the outside temperature, the criterion used to evaluate steady state conditions was a 

quasi-constant temperature difference (AT±1°C) between the surfaces and the air. 

In each compartment the heat flux supplied by the electrical heaters was the only 
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parameter that was controlled. Experiments were performed for twelve different 

constant values of heat flux during 39 nights. 

7.5 RESULTS 

The data obtained in this study cover a range of Rayleigh numbers of 

7.5xl08 < Ra < 1.6x10'°, 5.6xl08 < Ra < 8.4x10'° and 9.0xl04 < Ra < 9.9xl05, for the 

inner surface of the roof, the screen surfaces and heating pipes, respectively. These 

values were obtained assuming the characteristic lengths / in Eqns (4), (6), (9) and 

(14) to be: (a) the length of the roof (for the heat transfer coefficient between the inner 

surface of the roof and the air); (b) the diameter of the heating pipes (for the 

convective coefficient between the heating pipes and the air); and (c) the distance 

between the downward facing surface of the screen and the ground, and the distance 

between the upward facing surface of the screen and the roof eaves, for the convective 

coefficients between the screen surfaces and the air, respectively. 
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FIG. 7-2. Time variation of the average temperature of the air above and below the screen (O), 
heating pipes (+), screen surface (x) and inner roof surface ( * ) , during the night of 
19 November 1995 in compartment 2. 
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The conductive heat losses through the insulated ground and walls were determined 

by calculations from the thermal properties of the materials given by the 

manufacturers together with the measurement of the temperature distribution. The 

radiative flux inside the compartments was measured experimentally using 

radiometers. These fluxes represent a maximum of 1.6% (conductive heat loss) and 

10.3% (radiative flux) of the heat generated by the heating pipes. That is, the 

minimum convective heat flux was always greater than 88% of the supplied heat flux. 

Therefore, inaccuracies in the corrections for conductive and radiative terms only 

cause a small error in the convective term. 

As mentioned previously, the experiments were performed over a period of several 

hours to ensure that a steady state was reached. Figure 7-2 shows the variation over 

time of the average temperature of the air (above and below the screen), screen surface 

temperature and inner roof surface temperature for the night of 19 November 1995 in 

compartment 2. It will be noted that the temperature difference between the surfaces 

and the air remained constant after approximately 8 h, which means that a steady state 

condition had been reached. Similar results were obtained for the other test nights, and 

the steady state was always reached within 10 h of the beginning of the experiment. 

Figures 7-3 to 7-5 present the convective heat flux (Qca) versus the temperature 

difference (T-TJ, between the inner surface of the roof and the air, between upper and 

lower facing surfaces of the screen and the air, and between the heating pipes and the 

air, respectively. 

According to Figs. 7-4 and 7-5, the distance of heating pipes from the downward 

facing screen surface do not influence the convective heat transfer between lower 

surface of the screen and air, and between heating pipes and air. The presence of the 

crop increases the convective heat flux and hence the convective heat-transfer 

coefficient by approximately 16% between the heating pipes and the air. 

The data, presented in Figs. 7-3 to 7-5, can be fitted with Eqn (13) and coefficients 

ca and n found by logarithmic regression analysis. These coefficients are presented in 
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Table 7-1. 
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FIG. 7-3. Convective heat flux versus the temperature difference between inner surface of roof 
and the air (all compartments). 
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FIG. 7-4. Convective heat flux versus the temperature difference between the screen [upward 
facing surface ( * ) and downward facing surface (O)] and the air (all compartments). 
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FIG. 7-5. Convective heat flux versus the temperature difference between the heating pipes in 
the compartment 1 (x), 2 (+) and 3 (O) and the air. 

TABLE 7-1. Coefficients c„ and n for the best fit of Eqn (13) 

Inner surface of roof 
Upper surface of screen 
Lower surface of screen 
Heating pipes 1 
Heating pipes 2 
Heating pipes 3 

Ca 

3.02 
3.24 
2.17 
3.37 
2.99 
3.03 

n 

0.32 
0.30 
0.31 
0.26 
0.24 
0.24 

r2 

0.97 
0.96 
0.97 
0.98 
0.98 
0.99 

NDn 

98 
82 
69 
35 
38 
39 

1 Number of fitted data 

According to Table 7-1, the exponent n obtained for the screen surfaces and inner 

surface of the roof is close to 1/3 (turbulent flow regime) and for the heating pipes 

close to 1/4 (laminar flow regime). If it is assumed that n exponents of 1/3 and 1/4 are 
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the true values, then new values of ca are obtained which are slightly different from 

the values found previously. The new values of ca for exponent n equal to 1/3 and 1/4 

are presented in Table 7-2. From knowledge of ca and n, the convective coefficients c0 

and c* can be computed from Eqns (14) and (10), and the relations between Nu and Ra 

or between Nu and Gr* obtained. These relations are presented in Table 7-3. 

TABLE 7-2. Coefficients c„ obtained for exponent n equal to 1/3 (turbulent flow) and 
1/4 (laminar flow) 

Inner surface of roof 
Upper surface of screen 
Lower surface of screen 
Heating pipes 1 
Heating pipes 2 
Heating pipes 3 

2.97±0.29 
3.09±0.27 
2.09±0.14 
3.42±0.12 
2.90±0.19 
2.98±0.18 

1/3 
1/3 
1/3 
1/4 
1/4 
1/4 

TABLE 7-3. Free convective heat transfer correlations 

Nu= c0 Ra° Nu=c*(Gr*Pr)b 

c* b 

Inner surface of roof 
Upper surface of screen 
Lower surface of screen 
Heating pipes 1 
Heating pipes 2 
Heating pipes 3 

0.270±0.026 1/3 
0.281±0.024 1/3 
0.19U0.013 1/3 
0.299±0.011 1/4 
0.254±0.017 1/4 
0.261±0.015 1/4 

0.374±0.036 1/4 
0.386±0.033 1/4 
0.289±0.020 1/4 
0.404±0.015 1/5 
0.358±0.024 1/5 
0.365±0.021 1/5 
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The convective heat transfer coefficients ca and n shown in Tables 7-2 and 7-3 were 

compared with the equivalent convective heat transfer coefficients c0j and nj found by 

other authors through 

(NuJ/Nu)=(c0j/c0)Ra<nJ-n> (15) 

where j refers to the author j in the literature reviewed. The results of (c0j/c0) and (nj-n) 

are shown in Table 7-4. 

TABLE 7-4. Comparison of convective heat transfer correlations found in this 
study with correlations found in literature reviewed [Eqn.(15)] 

(c0J/co) (nrn) (c„/c0) (nrn) (coj/c„) (nrn) (coj/c„) (nrn) 

j=Stoffers [6] j=GEC [12] j=Holman [7] j=Vliet and Ross [9] 

0.77 -0.03 

0.80 0.00 

Inner surface 
ofroof 
Upper surface 1.09 
of screen 
Lower surface 1.01 
of screen 
Heating pipes 1 0.88 
Heating pipes 2 1.03 
Heating pipes 3 1.01 

-

0.00 

0.00 

0.00 
0.00 
0.00 

-

0.61 

0.90 

-
-
-

-

0.00 

0.00 

-
-
-

-

0.57 

0.73 

0.82 
0.96 
0.94 

-

0.00 

0.00 

0.00 
0.00 
0.00 

7.6 DISCUSSION 

For the screen surfaces the exponent n is in agreement with the values found in the 

literature for turbulent flow which is the range covered in the experiments 

(5.6xl08 < Ra < 8.4xl010). According to Table 7-4, the coefficients c0 found by 

Stoffers [6] for horizontal screens with roughness are less than 1% greater for the 

lower surface and 9% higher for the upper surface than the coefficients found in this 

work. This is within the margin of error of our experiments. Compared with 

coefficients found experimentally on smooth plates, our values are approximately 34 
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and 75% higher than the coefficient c0 referred to by Holman [7]. GEC [12] presents 

coefficients c0 which are 10 and 39% lower than the coefficients for the screen 

surfaces obtained in this study. The coefficients obtained by GEC [12] were found on 

a horizontal plate of size 3.66 m x 3.66 m with application in the range 

5x l0 9 <Ra<lx l0 1 2 . 

The differences between convective heat transfer coefficients c0 obtained in this 

study and the coefficients presented by Holman [7], Vliet and Ross [9] and GEC [12] 

may partly be owing to the fact that the screen is not a smooth plate but is rough. 

Rough plates transfer more heat than smooth surfaces because roughness induces extra 

local convection currents. 

For the inner surface of the glass the power coefficient n is in agreement with the 

values found in the literature for turbulent flow, which is the range covered in the 

experiments. According to Table 7-4, the coefficient c0 found in this work is 30% 

greater than the value presented by Vliet and Ross [9] on a plate with an inclination 

of 22° and with application in the range 104 < Ra < 106. The coefficients c0 presented 

by Papadakis et al. [5] (roof with span angle 15°) and by Stoffers [6] (roof with span 

angle 26°) cannot be compared directly with our results (roof with span angle 22°) 

because the convective heat transfer coefficient depends on the angle of inclination 

between the surface and the horizontal [13]. 

The exponent n for the heating pipes is in agreement with the values found in the 

literature for laminar flow, the range considered in the experiments. According to 

Table 7-4, for the heating pipes in compartments 2 and 3 (without artificial crop) the 

coefficient c0 found in this work is approximately 2% lower than the coefficient found 

by Stoffers [6] and 5% higher than the coefficient referred to by Holman [7], but both 

fall within our interval of uncertainty. On the other hand, the coefficient c0 found by us 

for heating pipes in compartment 1 (with artificial crop) is 22% higher than the 

underlying coefficient referred to by Holman [7] and 14% higher than that referred to 

by Stoffers [6]. 
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In the literature reviewed, the convective heat coefficients for pipes are obtained 

with one or two cylinders in an "infinite space", that is, where air movement induced 

by other surfaces can be disregarded. In the case of compartment 1, extra air 

movement, induced by the presence of an artificial crop, influences the convective 

heat transfer at pipe surfaces. This effect explains the higher values obtained in 

compartment 1 compared with remaining compartments, and the similarity between 

the values found in compartments 2 and 3 and the literature reviewed. 

The data collected in this study cover a Rayleigh number range which is not 

commonly found in heat transfer literature [7], mainly for the inner surface of the 

roof and the screen surfaces. However the data obtained in these experiments is 

commonly relevant to greenhouses. 

7.7 CONCLUSIONS 

1. The height of heating pipes above the soil surface (0.20 m and 2.10 m) did not 

influence the convective heat transfer between the heating pipes and the air. 

2. The distance of heating pipes from the downward facing screen surface (0.80 m 

and 2.70 m) did not influence the convective heat transfer between the heating pipes 

and the air and between the lower surface of the screen and the air. 

3. The presence of an artificial crop (LAI« 1.9) increased the convective heat transfer 

coefficient by approximately 16% between the heating pipes and the air. 

4. The equations coefficient obtained in this study agree well with those presented by 

Stoffers [6] for similar conditions. 

5. The equation coefficients obtained in this work are between 2% and 75% 

greater than the equivalent equation coefficients presented in heat transfer 

literature for experiments performed on smooth plates and cylinders. 

6. The differences between screen equation coefficients obtained in this study and the 

equivalent equations presented by other authors can partly be attributed to the fact that 
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the screen is not a smooth plate but is rough. 
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7.9 NOMENCLATURE 

b, c0, ca, c*, n convective coefficients 

g gravitational acceleration [ms~2] 

Grashof number 

modified Grashof number 

characteristic length [m] 

Nusselt number 

Prandtl number 

heat flux density [Wm2] 

Rayleigh number 

temperature [K] 

Gr 

Gr* 

1 

Nu 

Pr 

Q 

Ra 

T 

Greek symbols 

a 

ß 

A 

X 

v 

convective heat transfer coefficient across fluid layer [Wm'2K"'] 

volumetric coefficient of expansion [K"1] 

thermal diffusivity [ m V ] 

thermal conductivity [Wm'k1] 

kinematic viscosity [mV1] 

Subscripts 

ca convective 
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e electrical heaters 

j author in literature reviewed 

rn radiation 

oc free stream fluid. 
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8. FINAL DISCUSSION AND CONCLUSION 

8.1 AIR INFILTRATION IN ENCLOSURES WITH PORES AND OPENINGS 

In this thesis, a motion equation for porous media and openings is derived within the 

principles of fluid mechanics and thermodynamics. This validity is based on several 

simplifications, mainly on the assumption that the medium under study is 

homogeneous on a macroscopic scale, and that deformation and loss of mass by the 

solid matrix do not occur. In general terms, this description is valid to describe flow 

through porous media and through non-porous media (gaps, cracks, doors, windows) 

with permeability as the quantity which connects both extremes (pores and openings). 

Specifically, the equilibrium state of the fluid within the porous medium, as well as 

the importance of inertia effects and viscous effects on the fluid transport through the 

medium, are stated and quantified. 

For a porous medium at low velocities (Re<l), viscous effects (viscous resistance 

force due to the momentum transfer at the matrix-fluid interface and viscous resistance 

of fluid flow) are dominant. Instead, for higher velocities (Re>l) fluid flow is strong 

dependent of the pore' inertial effects. For an opening, convective inertia effects are 

dominant. 

The motion equation, together with the mass conservation and the state equation of 

gases, are used to describe air infiltration in enclosures. Airflow and internal pressures 

were related to characteristics of the openings, which connect the enclosure zones, and 

also to the characteristics of the enclosure and objects within the enclosure (volume, 

flexibility). 

For an enclosure with a large free area opening, the internal pressure response to 

external pressure is oscillatory and exhibits damping. When the opening area 

decreases, the damping increases. If the use of porous screen in the opening is 

adopted, the internal is strongly damped and the equilibrium is reached immediately. 
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The flexibility of enclosure envelope also affects the internal pressure response. The 

increase of flexibility decreases the internal pressure amplitude and equilibrium 

pressure is reached more quickly. 

The essence of the present research is to provide a theory which can be applied to 

practical situations. The developed approaches are therefore applied to a practical 

problem, the study of screened greenhouses. Three objectives are in view: 

• to provide extra information for a better characterisation of the driving potential 

of the process (wind velocity, air temperature), 

• to obtain easily measurable parameters which are required for the developed 

approaches, 

• to test the approaches proposed against real data. 

A complication in the evaluation of driving potentials is the fluctuate character of 

wind velocity. Most of works on fluid flow through openings and porous materials 

consider only the static flow. In the present study the effect of fluctuations is included. 

To clarify and to characterize the structure of fluctuations of wind velocity, a power-

spectrum analysis was performed. The frequencies of the main energetic eddies 

responsible for the air exchange were obtained, being located at frequencies of around 

0.1-0.2 Hz. The turbulence contribution of wind velocity to the wind pressure was also 

obtained, and can reach 55% of the total pressure. These values were obtained for 

mean wind velocities between 0.5 ms"1 and 5.5 ms"1 and both results are supported by 

the studies of others authors. 

The airflow characteristics of porous screens were input requirements of the 

proposed approaches. These characteristics were identified as being permeability and 

porosity, and they were obtained through relatively simple experimental procedures 

(DC-pressurisation method). From the experimental data obtained, it is possible to 

conclude that the screens used as thermal screens have permeabilities close 

to 10"m2 and insect screens smaller than 10"8m2. Some thermal screens, mainly 

woven sheet screens, can be damaged by opening and closing the screen, and 

126 



Chapter 8 

due to this permeability can increase up to 3.5 times the original value. For a damaged 

screen, airflow predicted based on permeability of a new material underestimate the 

flow up to about 30%. 

The approaches were tested with real data obtained in both small-scale 

measurements and full-scale measurements. The predictions made agree reasonably 

well with the experimental data. In general, differences between them were less than 

20%. 

8.2 FREE CONVECTIVE HEAT TRANSFER INSIDE A SCREENED GREENHOUSE 

An experimental study on free convection heat transfer was performed in small 

greenhouses with a horizontal screen. The analysis of the data obtained emphasises the 

following conclusions 

• the convective heat transfer coefficients between the air and the downward and 

upward surface of the screen were Nu=0.191 Ra033 and Nu=0.281 Ra033, 

respectively; 

• the convective heat transfer coefficients between the air and the inner side of 

the roof was Nu=0.270 Ra033 (roof angle 22 °); 

• the position of the heating pipes in relation to the screen (0.80 m and 2.70 m) 

does not seem to influence the convective heat transfer between the downward 

facing surface of the screen and the air, nor between the heating pipes and the 

air; 

• the presence of an artificial crop seems to have an influence on the convective 

heat transfer between the heating pipes and the air, for the range of Rayleigh 

numbers considered in this study (9.0xl04<Ra<9.9xl05). The presence of an 

artificial crop (LAI« 1.9) increases the convective heat transfer coefficient by 

approximately 16%. 

The equation coefficients obtained in this study are between 2% and 75% greater 

than the equivalent equation coefficients found for smooth plates and cylinders by 
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other authors. This may partly be owing to the fact that the screen is rough and 

roughness induces extra local convective currents. Also, the presence of crop seems to 

induce extra convective currents, which explain the higher convective heat transfer 

between the heating pipes and the air in the compartment with crop. 

Notice that, the data obtained in these experiments is not commonly found in heat 

transfer literature, but is relevant to greenhouses. 

8.3 FINAL REMARKS 

The description presented in this study contributes to clarify some important aspects 

of transport phenomena in multi-zone enclosures with permeable walls and has a wide 

application. 

Nowadays, the interest in predicting the behaviour of physical systems through 

simulation programs is very important. These techniques are much less expensive than 

small scale or full-scale experiments, allowing the simulation of a very large number 

of situations in a short period of time. In order to enable an accurate simulation, 

advances in transport phenomena as a base for this modelling are fundamental. 

The study presented in this thesis describes the main aspects concerning the 

transport phenomena in porous media and openings, which can be implemented in 

simulation programs with this topic. The formulation presented was incorporated in an 

existing dynamic climate model called KASPRO, developed by Zwart [1]. At present, 

model predictions are compared with experimental data obtained in screened 

greenhouses situated at Research Station PBG in Naaldwijk (west of the Zuid Holland 

province in the Netherlands) with very promising results [2,3]. In the future, the 

simulation study of greenhouse control strategies will support the climate control 

management. Particularly, it will allow establishment of rules for optimal air humidity 

control and energy saving strategies, combining the screen characteristics and 

the percentage of screen and window aperture. 
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SAMENVATTING 

Warmte- en stoftransport zijn verschijnselen van groot belang in diverse natuurlijke en 

industriële processen, zoals klimaatbeheersing in ruimten met poreuze wanden of wanden 

met openingen (gebouwen, tuinbouwkassen, enz.). In dit proefschrift worden twee 

aspecten beschouwd: massatransport door poreuze materialen en openingen, en 

warmteoverdracht van en naar de wand. Deze verschijnselen zijn theoretisch onderzocht 

en vervolgens zijn de resultaten toegepast om een geschermde tuinbouwkas te bestuderen. 

Een gedetailleerde beschrijving van het doel van het onderzoek staat in Hoofdstuk 1. 

In Hoofdstuk 2 wordt geforceerde convectie door poreuze materialen en openingen 

besproken. Er wordt een benadering gepresenteerd die is gebaseerd op de 

impulsbehoudswet met toepassing van volumemiddeling. De resulterende benadering is 

geldig voor zowel poreus als voor niet-poreus materiaal, en kan worden gebruikt in 

"computational fluid dynamics" om de snelheids- en drukverdeling over het 

stromingsveld te voorspellen. Er is vervolgens een nauwkeurige vereenvoudigde vorm 

ontwikkeld met een klein aantal parameters en eenvoudige mathematische bewerkingen. 

In Hoofdstuk 3, wordt de benadering die is ontwikkeld in Hoofdstuk 2 samen met de 

massabehoudswet en de toestandsvergelijking van gassen, gebruikt om luchtuitwisseling 

geïnduceerd door fluctuerende uitwendige drukken te bestuderen. De 

stromingsvergelijkingen voor luchtuitwisseling in een uit meerdere compartimenten 

bestaande ruimte en vergelijkingen voor de druk binnen elke compartiment met 

samendrukbare lucht worden gepresenteerd. 

Massatransport door permeabele materialen kan ook optreden als gevolg van 

temperatuur- en concentratiegradiënten, of als resultaat van gecombineerde effecten 

(gradiënten van temperatuur en concentratie samen met druk gegenereerd door wind of 

mechanische middelen). Een beschrijving van gecombineerde vrije en geforceerde 

convectie door poreuze media ondersteund door de basiswetten van de thermodynamica 

en vloeistofmechanica, wordt gepresenteerd in Hoofdstuk 4. Met het resultaat kan de 
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massaverandering van een poreus medium als gevolg van adsorptie en de interactie tussen 

de matrix van vaste stof en de lucht of vloeistof binnen het medium worden bestudeerd. 

Hoofdstuk 5 is gewijd aan de meting van luchtstromingskarakteristieken van poreuze 

schermen. Negen verschillende thermische, schaduw- en insecten- schermen zijn getest 

door middel van een drukverschilmethode. Hun permeabiliteit en poreuze inertiefactor 

zijn bepaald overeenkomstig de Forchheimervergelijking De porositeit van het 

schermmateriaal is bepaald met behulp van microscoopmetingen. Er is speciaal aandacht 

geschonken aan de variatie van de luchtstromingskarakteristieken (permeabiliteit en 

porositeit) als gevolg van beschadiging en door "handling". 

In Hoofdstuk 6 zijn de benaderingen gepresenteerd in Hoofdstuk 2 tot 4 toegepast op 

de studie van luchtuitwisseling in een geschermde tuinbouwkas. Deze studie is aangevuld 

met een vermogensspectrumanalyse van de windsnelheid, om de structuur van 

drukfluctuaties (turbulentie) te karakteriseren, en om de frequenties van de belangrijkste 

wervels in het windveld te identificeren. De fluctuaties in de windsnelheid zijn 

gerelateerd aan de gemiddelde windsnelheid, Ook de winddruk is geïnterpreteerd in 

termen van de gemiddelde windsnelheid. 

Hoofdstuk 7 is gewijd aan warmteoverdracht door vrije convectie in geschermde 

kassen. De warmteoverdrachtscoëfficiënt aan verschillende oppervlakken is uitgedrukt 

als een relatie tussen het dimensieloze Nusseltgetal en het Rayleighgetal. Vervolgens is 

een experimentele studie uitgevoerd om de vrije convectie 

warmteoverdrachtscoëfficiënten te bepalen (tussen lucht en verwarmingspijpen, lucht en 

horizontaal scherm, en lucht en binnenste dakoppervlak) in een kas met karakteristieke 

lengten dicht bij die van echte kassen. Andere praktische aspecten, zoals de invloed van 

de positie van de verwarmingpijpen in relatie tot het scherm, en de aanwezigheid van een 

gewas, op de convectieve warmteoverdracht tussen de verschillende oppervlakken en de 

lucht, wordt besproken. 

Tenslotte worden in Hoofdstuk 8 de belangrijkste conclusies van dit onderzoek 

gepresenteerd en aanbevelingen gedaan voor toekomstig onderzoek. 
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De implementatie van de gepresenteerde formulering in dynamische 

kasklimaatmodellen biedt verschillende mogelijkheden om het management van het 

kasklimaat te ondersteunen. 





SUMARIO 

A transferencia de massa e calor é urn assunto de grande importância em diversos 

processos naturais e industrials como seja no controlo climätico de cavidades com paredes 

permeâveis (edificios residenciais, estufas, etc.). Nesta tese dois aspectos foram 

estudados: o transporte de fluidos através de poros e aberturas, e a transferencia de calor 

entre as paredes interior da cavidade e o ar. Estes fenómenos foram estudados do ponto 

de vista teórico, e posteriormente aplicados ao estudo de estufas com écrans. A descriçào 

detalhada do objectivo deste trabalho foi feito no primeiro Capitulo desta tese. 

O segundo Capitulo foi dedicado ao estudo da convecçâo forçada através de poros e 

aberturas. O método denominado de "volume averaging" é aplicado à tradicional 

equaçâo de balanço de momento, resultando numa equaçào valida para materiais porosos 

e para aberturas. A equaçâo resolvida numericamente permite a obtençào da variaçâo 

temporal e espacial dos campos da velocidade e da pressâo. A resoluçào numérica desta 

equaçào nào é fâcil, e em problemas mais prâticos o detalhe da soluçâo obtida nem 

sempre é necessârio. Uma forma simplificada mas précisa da equaçâo foi também 

apresentada, para ser usada em casos em que apenas sào requeridos o valor media dos 

campos da velocidade e da pressâo. 

A equaçâo apresentada no Capitulo 2 conjuntamente com a equaçâo de conservaçâo da 

massa e a equaçào de estado dos gases, foi usada para estudar trocas de ar induzidas 

devido à flutuaçâo na pressâo (Capitulo 3). Baseado nestas equaçôes foi apresentado um 

modelo para quantificar as trocar de ar e a pressâo numa cavidade com varias zonas. 

O transporte de fluido através de materiais permeâveis pode ocorrer devido a gradientes 

de pressâo originados pela velocidade do vento ou por meios mecânicos, mas também 

devido a gradientes de temperatura ou de concentraçâo, ou através do efeito combinado 

(gradientes de pressâo, concentraçâo, pressâo gerada pelo vento ou meios mecânicos). O 

estudo da convecçâo mista através de meios porosos, baseado nas leis da termodinâmica 

e da mecânica de fluidos, foi o tema do Capitulo 4. Como aplicaçâo do modelo 
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apresentado, foi estudada a variaçâo da massa de meios porosos sujeitos a diferentes 

condiçôes exteriores, bem como a interacçâo matriz-fluido. 

No Capitulo 5 foram obtidas experimentalmente as caracteristicas do diversos écrans 

porosos ao transporte de fluido. Nove amostras de diferentes tipos de écrans foram 

testados usando uma metodologia denominada de "DC-pressurization method". As suas 

permeabilidade ao transporte de fluido bem como o factor de inércia dos poros foram 

obtidos com base na equaçào de Forchheimer (a porosidade foi obtida com a ajuda de um 

microscópio). O efeito da degradaçào do écran, devido ao seu uso, na variaçâo da 

permeabilidade ao fluido e na porosidade, foi também estudada. 

No Capitulo 6 os modelos apresentados no capitulo 2 a 4 foram aplicados ao estudo das 

trocas de ar em estufas com écrans. O estudo contem também a analise espectral da 

velocidade do vento, com o objectivo de caracterizar as flutuaçoes de pressào 

(turbulência), e a identificaçâo da frequência dos principais vórtices présentes nos campos 

de pressâo originados pelo vento. 

O Capitulo 7 foi dedicado as transferencias convectivas de calor (convecçào natural) 

no interior de estufas com écrans. Os coeficientes de transferencia de calor para diferentes 

superficies foi definido como a relaçào entre os numéros adimensionais de Nusselt e de 

Rayleigh. Posteriormente foi feito, um estudo experimental com o objectivo de 

determinar os coeficientes de transferencia de calor entre o ar e o sistema de aquecimento, 

o ar e o écran, e o ar e a face interior da cobertura da estufa. O écran usado neste estudo 

apresentava alguma rugosidade tal como acontece nos écrans usados em estufas. O efeito 

da posiçào do sistema de aquecimento em relaçào ao écran, bem como a presença de 

vegetaçào, no coeficiente de transferencia convectiva de calor entre as diferentes 

superficies e o ar, foi também estudado. 

Finalmente, no Capitulo 8, foram apresentadas as principais conclusôes deste estudo, 

e incluidas também algumas possiveis linhas de investigaçâo futura. 

A futura implementaçâo da formulaçào apresentada neste estudo em modelos 

dinâmicos, constituirâ uma ferramenta importante no estudo do clima interior de 

cavidades com varias zonas. 



SUMMARY 

Exchange of mass and heat is a topic of great importance in diverse natural and 

industrial processes as, for instance, in indoor climate control in enclosures with 

permeable boundaries (residential buildings, greenhouses, etc.). In this thesis two aspects 

were considered: fluid transport through pores and openings, and heat transfer between 

the enclosure surfaces and the inside air. Firstly, these phenomena are examined 

theoretically and subsequently they are applied to the study of screened greenhouses. A 

detailed description of the aims of this research can be found in Chapter 1. 

In Chapter 2, forced convection through pores and openings is discussed. An approach 

based on the momentum equation, developed in terms of the method of volume 

averaging, is presented. The resulting approach is valid for porous material and non-

porous material, and can be used in computational fluid dynamics to predict the velocity 

and pressure throughout the flow field. An accurate simplified form has also been 

developed, with a small number of parameters and simple mathematical operations. 

In Chapter 3, the approach developed in Chapter 2 together with the mass conservation 

equation and the state equation of gases is used to study the air exchange induced by 

fluctuating pressures. The flow equations for air exchange in a multi-zone enclosure and 

equations for the pressure within each zone with compressible air are presented. 

Fluid transport through permeable materials can also occur due to gradients of 

temperature and concentration, or as a result of combined effects (gradients of 

temperature, concentration and pressure generated by wind or mechanical means). A 

description of mixed convection through porous media, supported by thermodynamics 

and fluid mechanics basic laws, is presented in Chapter 4. As a result, the mass variation 

of the medium and the interaction between the matrix and the fluid within the medium 

can be studied. 

Chapter 5 is devoted to the measurement of the airflow characteristics across porous 

screens. Nine different thermal, shading and insect screens were tested by 
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means of a DC-pressurisation method. Their permeability and porous inertia factor were 

determined according to Forchheimer equation (porosity measured with a microscope). 

Special attention is given to the airflow characteristics variation (permeability and 

porosity) due to screen damage by handling. 

In Chapter 6, the approaches presented in Chapters 2 to 4 are applied to the study of air 

exchange in a screened greenhouse. This study is complemented with a power-spectrum 

analysis of wind velocity, in order to clarify and characterise the structure of pressure 

fluctuations (turbulence), and to identify the frequencies of the main eddies present in the 

wind field. The fluctuations in the wind velocity are related to the mean velocity, and the 

wind pressure is interpreted in terms of the mean wind velocity. 

Chapter 7 is devoted to free convective heat transfer inside screened greenhouses. The 

heat transfer coefficient at various surfaces is expressed as a relation between the 

dimensionless Nusselt number and the Rayleigh number. Subsequently, an experimental 

study is performed to determine free convection heat transfer coefficients (between air 

and heating pipes, air and horizontal screen, and air and inner roof surface) in a 

greenhouse with characteristic lengths, close to those of real greenhouses. The screen 

surfaces presented some roughness, as the screens used in greenhouses. Other practical 

aspects are discussed, such as the influence of the position of the heating pipes in relation 

to the screen, and the presence of a crop, on the convective heat transfer between the 

various surfaces and the air. 

Finally, Chapter 8 presents the most important conclusions of the present study and 

includes a recommendation on possible future research. 

The formulation presented in this thesis can be implemented in dynamical climate 

models offering several possibilities of sustainable climate control management. 
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