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Abstract The transport features of the holographic two-
currents model are investigated in the Horndeski gravity
framework. This system displays metallic or insulating char-
acteristics depending on whether the Horndeski coupling
parameter γ is negative or positive, but is unaffected by other
system parameters such as the strength of the momentum dis-
sipation k̂, the doping χ and the coupling between two gauge
fields θ . Secondly, we demonstrate that the thermal conduc-
tivities are affected not only by the inherent properties of
the black hole, but also by the model parameters. Further-
more, we are particularly interested in the Lorentz ratios’
properties. As expected, the Wiedemann–Franz (WF) law
is violated, as it is in the majority of holographic systems.
Particularly intriguing is the fact that several Lorentz ratio
bounds reported in the typical axions model still remain true
in our current theories. We would like to highlight out, how-

ever, that the lower bound for ˆ̄L A is affected by the system
parameters χ , θ and γ , which differs from the case of the
typical axions model.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Holographic background . . . . . . . . . . . . . . . 2
3 Transport properties . . . . . . . . . . . . . . . . . 3

3.1 Electric and spin–spin conductivities . . . . . . 4
3.2 Thermal conductivities . . . . . . . . . . . . . 5
3.3 Lorentz ratios . . . . . . . . . . . . . . . . . . 7

a e-mail: danzhanglnk@163.com
b e-mail: FuguoyangEDU@163.com
c e-mail: xijingwang@yzu.edu.cn
d e-mail: panqiyuan@hunnu.edu.cn
e e-mail: jianpinwu@yzu.edu.cn (corresponding author)

4 Conclusion and discussion . . . . . . . . . . . . . . 8
Appendix A: Equations of motion . . . . . . . . . . . 10
Appendix B: Derivation of DC conductivity . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Introduction

Transport is one of the most essential properties of strongly
correlated systems in which the typical perturbative approach
based on a single particle approximation loses power. A pow-
erful tool for tackling these issues is the AdS/CFT correspon-
dence, which connects a weakly coupled gravitational theory
to a strongly coupled quantum field theory without gravity
in the large N limit [1–8]. The introduction of the momen-
tum dissipation mechanism, which eliminates the δ-function
arising in the alternating current (AC) electric conductivity
at zero frequency in the holographic system, represents a big
step toward simulating more realistic systems. The inclu-
sion of momentum dissipation allows us to address strange
metal behaviors [9–14], such as the linear-T resistivity and
quadratic-T inverse Hall angle [15,16], the universal prop-
erties of coherent and incoherent metals [17–19], the imple-
mentation of holographic metal-insulator transition (MIT) as
well as the associated mechanism [11,20–32], etc.

The holographic framework provides various ways to
introduce momentum dissipation, such as incorporating a
spatially-dependent source into the dual boundary theory
[14,33–36], utilizing Q-lattices [11,22,26,27] or helical lat-
tices [20], and introducing spatially linear dependent axion
fields [12,13,19,37–47]. Among these mechanisms, the
holographic axion model stands out for its versatility, sim-
plicity, and efficiency. When using effective holographic low
energy theories as a guide, it is natural and intriguing to inves-
tigate the impact of higher-derivative terms of axion fields
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[48–52]. Notably, within this holographic effective frame-
work, it is possible to achieve spontaneous symmetry break-
ing and pseudo-spontaneous breaking [7,13,51,53–56].

The motivation for exploring these models stems from
the challenge of reproducing and comprehending the exotic
transport properties of strange metals. Furthermore, in
numerous condensed matter systems, the fixed point is typi-
cally characterized by a non-trivial Lifshitz scaling exponent,
which have been geometrically realized, as seen in [57,58].
The whole gravity dual dictionary with Lifshitz asymptotics
has also been formalized in [59]. Given these considera-
tions, it is highly recommended to investigate more gen-
eral and intricate gravitational models. Horndeski gravity,
as described by [60,61], is the most comprehensive scalar-
tensor theory in four dimensions. Despite featuring higher-
derivative terms beyond second-order in its Lagrangian, the
theory’s equations of motion remain second-order, ensuring
that Horndeski gravity is ghost-free. This property is similar
to Lovelock gravity [62]. In this regard, Horndeski theory
is a particularly appealing framework due to its status as a
natural extension of the holographic axion model [47].

The holographic applications of Horndeski gravity have
been extensively studied in various works such as [41,47,63–
70], with a particular focus on its transport properties, as
investigated in [71–74]. It has been discovered that the
Horndeski coupling drives a metal–semiconductor-like tran-
sition [71,73]. Furthermore, the impact of this new defor-
mation on the universality of some well-known bound pro-
posals has been investigated. While most of these proposals
have been found to hold true [72,74], violations of the heat
conductivity-to-temperature lower bound and the viscosity-
to-entropy ratio have been observed [74].

In this paper, we want to study the two-currents model in
Horndeski gravity framework using holographic duality tech-
nics. In condensed matter physics, the two-currents model
has been employed to investigate various phenomena, such
as the impact of electron–hole imbalances [75] and spin pop-
ulation imbalance in ferromagnets [76,77]. We would like to
emphasize that the roots of spintronics can be traced back
to Mott’s two-currents model, which describes the electric
and spin motive forces using two U (1) gauge fields [78].
Recently, two-currents models in holographic framework
have also gained increasingly attention, see [79–95] and ref-
erences therein. In these models, a pair of bulk U (1) gauge
fields A and B are connected to two independently conserved
currents in the dual boundary field theory. The mismatch
of the two independent chemical potentials or charge densi-
ties induces the unbalance of numbers. In holography, Dirac
fluid, forming in the graphene near charge neutrality, has been
constructed using two gauge fields in the gravity bulk [86]
(also see [84,85,88] and references therein). Particularly, the
presence of a new current can significantly increase the heat
transport relative to the charge transport, resulting in a vio-

lation of the Wiedemann–Franz (WF) law [86]. This sug-
gests strong correlation of this system. Moreover, an unbal-
anced holographic superconductor has also been constructed
as reported in [82]. Specifically, the authors in [94,95] have
demonstrated that turning on either an interaction between
the Einstein tensor and scalar field or a magnetic interaction
between the secondU (1) field and scalar field, an inhomoge-
neous solution exhibits a higher critical temperature than the
homogeneous case in the low-temperature limit. This leads to
the emergence of Larkin-Ovchinnikov-Fulde-Ferrel (LOFF)
states, which are characterized by a space modulated order
parameter that corresponds to electron pairs with nonzero
total momentum.

The paper is organized as follows. In Sect. 2, we describe
briefly the holographic two-currents model in the Horndeski
gravity framework and work out the black hole solution. In
Sect. 3, we first derive the transport coeffcients, and then
investigate the properties of the electric conductivity, spin–
spin conductivity and thermal conductivity. Furthermore, we
study the Lorentz ratios and discuss the WF law. Section 4
summarizes our findings and comments. In addition, we
include two appendices that list the EOMs (Appendix A) and
provide a comprehensive derivation of the DC conductivity
(Appendix B).

2 Holographic background

The gravitational background for this holographic model is
taken in the form

S =
∫

d4x
√−g

⎡
⎣κ

(
R − 2�−1

4
F2 − 1

4
Y 2 − θ

2
FμνY

μν

)

−1

2
(λgμν − γGμν)

∑
I=x,y

∂μφ I ∂νφ
I

⎤
⎦ , (1)

where � = −3 is the cosmological constant. A non-minimal
coupling is added between the Einstein tensor Gμν ≡ Rμν −
1
2 Rg

μν and the axionic fields that produce momentum dis-
sipation. This coupling is known as the Horndeski coupling,
and its strength is denoted by the symbol γ . To avoid the ghost
problem, γ shall satisfies −∞ < γ ≤ 1/3 [71]. We introduce
two U(1) gauge fields in this theory. The ordinary Maxwell
field strength is represented by F = d A, whereas the second
gauge field is indicated by Y = dB. We are also interested
in the coupling term between the ordinary Maxwell field and
the second gauge field, as in Refs. [84,87,88]. The coupling
strength is denoted by the symbol θ . From now on, we will
set the coupling constants to κ = λ = 1 for convenience.

As mentioned in the introduction, the inclusion of a sec-
ond U (1) gauge field is motivated by accurately modeling
carrier flow of strongly correlated systems. This is particu-

123



Eur. Phys. J. C (2023) 83 :316 Page 3 of 14 316

larly relevant in systems such as the Dirac fluid in graphene
or Mott’s model. By introducing an interaction between the
two U (1) gauge fields through the coupling parameter θ , an
additional degree of freedom is created. The distinguishing
and significant feature of the two-currents model is the ten-
sor structure of the transport coefficients, which has general
entries [82,84,85,87,88].

According to the top-down perspective [96], the second
U (1) gauge field is refered to as the hidden sector. The
interaction term θ , also known as the kinetic mixing term,
describes interaction of the ordinary Maxwell field (i.e., the
first U (1) gauge field) and the hidden U (1) gauge field. This
type of term was first introduced in [97] to explain the exis-
tence and subsequent integration of heavy bi-fundamental
fields charged under the U (1) gauge groups. For more dis-
cussion on this topic, also please refer to [84,85,88].

Applying the variational approach to the action (1), we
can derive the EOMs (for the details, please see Appendix
A). Then, to solve these EOMs, we take the following ansatz:

ds2 = −h(r)dt2 + dr2

f (r)
+ r2dxidx j ,

A = At (r)dt, B = Bt (r)dt, φ I = kx I . (2)

In the preceding ansatz, we assumed the axionic fields’ spa-
tial linear dependence, which adds momentum dissipation,
such that the equation for the axionic fields (A2) is satis-
fied automatically. So we simply need to solve the remaining
EOMs (A1) and (A3) to find the functions, which are given
by

h(r) = U (r) f (r), U (r) = e
γ k2

2r2 , (3)

f (r) = e− k2γ

4r2

4kr
√
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−e
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+√
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(
k
√

γ
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(
k
√
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, (4)

At (r) = μ − qA

√
πer f i(

√
γ k

2r )√
γ k

, (5)

Bt (r) = δμ − qB

√
πer f i(

√
γ k

2r )√
γ k

, (6)

where er f i(x) represents the imaginary error function and is
expressed as er f i(x) = 2√

π

∫ x
0 et

2
dt . rh is the black hole’s

horizon determined by f (rh) = 0. When qB = θ = 0,
f (r) recovers the result of the holographic Horndeski theory
with one gauge field [71,72]. Furthermore, when γ = 0,

this will return to the one of the typical holographic axions
model [12]. μ, δμ, qA and qB are the chemical potentials
and the charge densities of the dual field theory associated
with the gauge fields A and B, respectively. The regularity of
the gauge fields A and B at the horizon gives the following
relations

μ = qA

√
πer f i(

√
γ k

2rh
)

√
γ k

,

δμ = qB

√
πer f i(

√
γ k

2rh
)

√
γ k

. (7)

The Hawking temperature of this black hole is

T = − f ′(rh)
4π

= e
k2γ

4 (12 − 2k2 − q2
A − q2

B − 2qAqBθ)

16π
.

(8)

By the scaling symmetry, we can set rh = 1. In addition,
we focus on the canonical ensemble by setting the chemical
potential μ as the scaling unit.1 After the parameters γ and
θ are fixed, the black hole solution is characterized by three
dimensionless parameters T̂ = T/μ, k̂ = k/μ and χ =
δμ/μ, the latter of which is used to simulate the doping [79–
81] or represents the strength of the unbalance [82].

3 Transport properties

In this section, we shall calculate the DC thermoelectric trans-
ports of the dual field theory following the procedure pro-
posed in [22] (for more details, see [15,28,50,72,98,99]).
Due to the rotation invariance on the x − y plane, we only
analyze the transport behaviors in x-direction. We turn on
the constant electric fields EAx and EBx , as well as the tem-
perature gradient ∇T , which induces the thermal gradient
ζ ≡ −∇T/T . They generate the corresponding electric cur-
rents J xA and J xB , and the heat current Qx . Following the ter-
minology in [82], we also refer to J xB as spin current. By the
generalized Ohm’s law, we can calculate the corresponding
transport coefficients:

⎛
⎝ σA αT η

αT κ̄T βT
η βT σB

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

∂ J xA
∂EAx

∂ J xA
∂ζ

∂ J xA
∂EBx

∂Qx

∂EAx

∂Qx

∂ζ
∂Qx

∂EBx

∂ J xB
∂EAx

∂ J xB
∂ζ

∂ J xB
∂EBx

⎞
⎟⎟⎟⎟⎠ . (9)

σA andσB are the electric conductivity and spin–spin conduc-
tivity associated to the gauge fields A and B, respectively. η is
called the spin conductivity, which measures the spin current

1 It is worth noting that in earlier publications on the holographic Horn-
deski theory [71–73], they usually set the charge density qA as the scal-
ing unit.
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J xB generated by the electric field EAx even without EBx , or
vice versa. κ̄ is the thermal conductivity induced by the heat
current associated to the temperature gradient. α and β are
the thermo-electric and thermo-spin conductivities, respec-
tively. In the absence of the temperature gradient ∇T , they
can also be caused by the heat current with the electric fields
EAx and EBx .

Following the strategy outlined in [98] (also see [72]),
we can work out the DC conductivities. Appendix B has
the complete derivation. For convenience, we’ve also copied
them here:

σ̂A = 1 + k̂2μ4γ (1 + θχ)2

M̂2
hπer f i(

k̂μ
√

γ

2 )2
, (10)
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√
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ˆ̄κ = 16π2T̂

M̂2
h

. (15)

Notice that the hat here, as well as throughout this paper,
indicates dimensionless quantities. M̂h is the effective gravi-
ton mass at the horizon (see Eq. (B24)). In this research,
we will primarily investigate the properties of the electric
and spin–spin conductivities. The thermal conductivities are
then briefly discussed. We are also interested in the Lorentz
ratios, which are connected to the thermal and electric con-
ductivities, and we investigate their characteristics in depth.

3.1 Electric and spin–spin conductivities

We first investigate the properties of electric conductivity in
the absence of doping, for which this theory reduces to the
dual theory of the holographic Horndeski model with lin-
ear axionic fields explored in [71–73]. To this purpose, we
present the temperature behaviors of the DC electric con-
ductivity σ̂A for a given k̂ and varied γ in Fig. 1, and for a
specified γ and various k̂ in Fig. 2. Following is a summary
of the key characteristics.

• When γ = 0, the system is further reduced to the typical
holographic axions model [12], and the DC electric con-
ductivity is temperature independent (see the green line
of left-plot in Fig. 1).

• When the value of γ deviates from zero, the system
displays metallic or insulating behaviors, depending on
whether γ is negative or positive. Particularly for γ >

0, when temperature drops, the electric conductivity
decreases, behaving like an insulator (Fig. 1). For γ < 0,
the inverted behaviors arise, and the system is identified
as a metal (left-plot in Fig. 1). We would like to empha-
size that given γ , the dual system exhibits metallic or
insulating characteristics that are independent of momen-
tum dissipation strength (Fig. 2). This picture closely
resembles the holographic axions model with non-linear
Maxwell field [30,100] or gauge-axion coupling [48,49].

• We would like to mention that MIT can be induced by
the strength of the momentum dissipation in the holo-
graphic EMAW (Einstein–Maxwell-axion-Weyl) theory
[28,101], where a higher-derivative term involving the
coupling between the Weyl tensor and the Maxwell field
is introduced. However, momentum dissipation in our
current model merely suppresses electric conductivity
and does not cause the MIT (Fig. 2).

• In the high temperature limit, electric conductivity
approaches to infinity when γ saturates the upper bound,
i.e., γ = 1/3. When γ deviates from this bound, it tends
to a constant in the hight temperautre limit (right-plot in
Fig. 1).

The effects of doping χ and coupling θ are then inves-
tigated. To that end, in Fig. 3, we present the temperature
behaviors of electric conductivity with various χ for the
selected γ and k̂, and various θ for the selected γ , χ and
k̂ in Fig. 4. The properties are summarized below.

• Qualitatively, the electric conductivity increases or
decreases with decreasing temperature, regardless of
doping. However, doping has a distinct effect on elec-
tric conductivity at various temperatures. Electric con-
ductivity reduces in the high temperature region as dop-
ing increases. An inverted behavior emerges in the low
temperature region (see the inset in Fig. 3).

• Electric conductivity diminishes as θ decreases. The cou-
pling θ , on the other hand, cannot modify the temperature
characteristics of electric conductivity.

Furthermore, it is discovered that the effects of doping
χ and coupling θ on the spin–spin conductivity are similar
to those of electric conductivity. However, it is fascinating to
investigate the relative changes in electric and spin–spin con-
ductivities, as shown in Fig. 5. It is easy to find that at a fixed
χ , as θ increases, the two conductivity curves progressively
approach each other, and eventually coincide when θ = 1.
When θ exceeds 1, we observe that as θ increases, the two
conductivity curves begin to separate from each other. When
we change χ , we detect comparable changes between the
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Fig. 1 Electric conductivity σ̂A as a function of the temperature T̂ , with specified k̂ = 1/2 and varying different γ . Here, we’ve set χ = 0, θ = 0

Fig. 2 Electric conductivity σ̂A as a function of the temperature T̂ for varivd different k̂ at γ = 1/5 and −1/10. Here, we’ve set χ = 0, θ = 0

Fig. 3 Electric conductivity σ̂A as a function of the temperature T̂ for various χ values at γ = 1/3, 1/5 and −1/10. Here, we’ve set k̂ = 1/2, θ = 0

electric and spin–spin conductivities for the fixed coupling
parameter θ (also see Fig. 5).

3.2 Thermal conductivities

We’re also interested in the properties of thermal transports.
In addition to the thermal conductivity κ̄ defined in Eq. (B16),

we also introduce another thermal conductivity at zero elec-
tric current:

κA ≡ κ̄ − α2T

σA
, (16)

which is more readily measurable than κ̄ . Then we want to
express both thermal conductivities in terms of the black
hole entropy density s and its charges qA, qB , which are the
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Fig. 4 Electric conductivity σ̂A as a function of the temperature T̂ for various θ values at γ = 1/3, 1/5 and −1/10. Here, we’ve set k̂ = 1/2, χ = 1

Fig. 5 Electric conductivities σ̂A and σ̂B as a function of the temperature T̂ . Here, we’ve specified k̂ = 1/2, γ = 1/5, χ = 0.5, 1.5, θ =
− 0.2, 0.5, 1.2

intrinsic quantities, as follows

κ̄ = (s + 2k2πγ )2T

M2
h

,

κA = (s + 2k2πγ )2T

M2
h + (qA + θqB)2

. (17)

Here, the black hole entropy density s can be calculated by
the Wald formula as s = 4πr2

h (1 − γ

2r2
h
k2) [72]. Obviously,

it relies on the Horndeski parameter γ .

Some comments on both thermal conductivities are pre-
sented as follows:

• The thermal conductivities κ̄ and κA are affected not only
by the intrinsic quantities, such as the black hole entropy
density s and its charges qA, qB , but also by the model
parameters k, γ and θ . When these model parameters
tend to zero, the thermal conductivities reduce to those
of Einstein–Maxwell theory, which are totally governed
by the black hole’s instrinsic quantities.
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• κ̄ is affected by the Horndeski parameter γ but not by
the coupling θ , which describes the coupling between
the two gauge fields. While κA depends on both γ and θ .
Recalling that in [100], the thermal conductivity at zero
current is also affected by the non-linear Maxwell param-
eter, i.e., the Born–Infeld (BI) parameter, while the usual
thermal conductivity κ̄ is unaffected by this BI parameter.

• κA is finite in the small momentum dissipation limit, i.e.,
k → 0, whereas κ̄ diverges. It indicates that, even in the
limit of k → 0, κA is also a well-defined quantity as
compared to κ̄ .

3.3 Lorentz ratios

Fermi liquid has a noteworthy property [102]: the Lorenz
ratio of thermal conductivity to electric conductivity remains
constant at low temperatures. This property is dubbed as
Wiedemann–Franz (WF) law. It may be computed directly
for the Fermi liquid at low temperature as LFL ≡ κ

σT = π2

3
in units with kB = e = 1. However, the WF law is fragile.
This law has been found to be broken in the strongly inter-
acting non-Fermi liquids [103,104]. Because of the inelastic
scattering between charged and neutral degrees of freedom, it
can be ascribed to heat and charge transport in different ways
[103]. Furthermore, it has also been discovered that the WF
law is also violated in the majority of holographic dual sys-
tems [19,98,100,105,106]. However, the mechanism behind
them is still missing. We expect that by analyzing the prop-
erties of the Lorentz ratios in our current model, we may be
able to give some insights to address this issue in the future.
Of this section, we will look more closely at the Lorentz ratio
features in our current holographic model. We would like to
mention that even for the holographic two-currents model
without Horndeski coupling, the Lorentz ratio features are
also absent.

Before we go any further, let’s go through the major
aspects of the Lorentz ratios for the typical linear axions
model. We are interested in the scenario of the zero tempera-
ture limit, where the Lorentz ratios can be written as [19,98]

ˆ̄L A

∣∣∣
T̂→0

≡ ˆ̄κ
σ̂ T̂

= 16π2

μ2(k̂2 + 1)
, (18)

L̂ A

∣∣∣
T̂→0

≡ κ̂

σ̂ T̂
= 16π2k̂2

μ2(k̂2 + 1)2
. (19)

To visualize this picture, we show the Lorentz ratios L̂ A

and ˆ̄L A as a function of k̂ in Fig. 6. We see that the Lorentz
ratios increases as the momentum dissipation increases. As a
result, the WF law is broken as expected. However, it is dis-
covered that there exist two bounds, the upper bound and the
lower bound, which are established by two extremal limits,
k̂ 	 1 and k̂ 
 1, respectively. Furthermore, we may work

out these two bounds explicitly in both extreme limits:

ˆ̄L A =
{

4π2

3 , k̂ 	 1
8π2

3 , k̂ 
 1
, (20)

L̂ A =
{

0, k̂ 	 1
8π2

3 , k̂ 
 1
. (21)

We discover that, while the Lorentz ratios tend to constants
in these extreme limits, the values differ from the Fermi-
liquid case. It indicates that holographic systems are the ones
with strongly interaction, akin to the non-Fermi liquid theory
[103,104].

Then we turn to the holographic two-currents model with-
out Horndeski coupling, for which the Lorentz ratios L̂ A and
ˆ̄L A in the zero temperature limit can be generalized to be2

ˆ̄L A

∣∣∣
T̂→0

= 16π2

μ2(k̂2 + (1 + θχ)2)
, (22)

L̂ A

∣∣∣
T̂→0

= 16π2k̂2

μ2(k̂2 + (1 + θχ)2)2
. (23)

We can observe that the system parameters θ and χ have
an impact on the Lorentz ratios. Figure 7 shows the Lorentz
ratios as a function of k̂ for various different coupling param-
eters θ and the fixed χ . We have observed that the holographic
two-currents model follows the same pattern as the typical
axions model, where the Lorentz ratios increase with increas-
ing strength of momentum dissipation. However, the lower

bound of ˆ̄L A varies with the system parameters θ and χ (left-
plot in Fig. 7). In particular, in the small momentum dissipa-

tion region, we have illustrated the variation of ˆ̄L A as a func-
tion of χ for different θ in Fig. 8. We confirm the observation
in [86] that the existence of a new current can significantly
violates the WF law. Additionally, we have observed that the
kinetic mixing term either increases or decreases the heat
transport relative to the charge transport depending on the
coupling θ . This finding provides us with the opportunity to
finely adjust the coupling parameters and accurately model
real-world condensed matter phenomena, such as graphene.

In addition, we compute the bounds in both extreme limits,
k̂ 	 1 and k̂ 
 1, analytically, as follows:

ˆ̄L A =
{

4π2

3
1+2θχ+χ2

(1+θχ)2 , k̂ 	 1
8π2

3 , k̂ 
 1
, (24)

L̂ A =
{

0, k̂ 	 1
8π2

3 , k̂ 
 1
. (25)

This analytical result backs with our observation from Fig. 7.

Aside from the lower bound of ˆ̄L A, the other bounds are the

2 Here we discuss solely the Lorentz ratios for gauge field A, which we

label as L̂ A and ˆ̄LA.
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Fig. 6 The Lorentz ratios L̂ A and ˆ̄LA as a function of k̂ in the zero temperature limit for the typical linear axions model. The red dashed line
indicates the upper bound given by the limit k̂ 
 1, while the black dashed line represents the lower bound set by the limit k̂ 	 1

same as for the typical axions model and are independent of
the two-currents model parameters.

We are particularly interested in the lower bound of ˆ̄L A.
Left plot in Fig. 9 shows this bound as a function of θ for
the fixed χ = 1/2. We find that the behavior of this bound
is nonmonotonic with θ . We especially notice that when θ is
less than a certain value, the Lorentz ratio might be negative,
which is usually forbade. We also present a 3D visualization
of the lower bound as a function of χ and θ . It is obvious that
there are certain locations where the Lorentz ratio is negative.
Simultaneously, we see certain infinite peaks for some system
parameters. To keep the Lorentz ratio positive and free of
divergence, we can impose the following conditions: 1 +
2θχ + χ2 > 0 and θχ �= −1.

We will now investigate the effect of the Horndeski cou-
pling. Using the same approach, we may obtain the Lorentz
ratio expressions in Horndeski theory as follows:

ˆ̄L A = 64π3E2
f

k̂2μ2
(

2π
(
γ

(
k̂2μ2 − 6

)
+ 2

)
E2

f + γμ2
(

4(θχ + 1)2 + γ k̂2μ2
(
2θχ + χ2 + 1

))) ,

L̂ A =
64π3E2

f

(
2π

(
γ

(
k̂2μ2 − 6

)
+ 2

)
E2

f + γ 2k̂2μ4
(
2θχ + χ2 + 1

))
(

2π k̂μ
(
γ

(
k̂2μ2 − 6

)
+ 2

)
E2

f + γ k̂μ3
(

4(θχ + 1)2 + γ k̂2μ2
(
2θχ + χ2 + 1

)))2 , (26)

where E f = e f ri
(

1
2
√

γ k̂μ
)

. Both formulations are

tedious, preventing intuitive insight, and we would want to
expand them in the small γ limit to the following forms:

ˆ̄L A = 16π2k̂2

μ2(k̂2 + (1 + θχ)2)2
− 4π2k̂2γ

3μ2(k̂2 + (1 + θχ)2)3(
6k̂4μ2 − 3(1 + θχ)2(μ2(1 + 2θχ + χ2) − 12)

−k̂2(36 + μ2(7 + χ(2θ(7 + 5θχ) − 3χ)))
)

+O(γ 2), (27)

L̂ A = 16π2k̂2

μ2(k̂2 + (1 + θχ)2)

−4k̂2π2γ (μ2(1 + 6k̂2 + 2θχ + 3χ2 − 2θ2χ2))

3μ2(k̂ + (1 + θχ)2)2

+O(γ 2). (28)

It is self-evident that the Horndeski coupling parameter γ

always appears in pairs with k̂. It means that the parameter
γ has no effect on the Lorentz ratio bounds. Furthermore,
we depict the Lorentz ratios as a function k̂ for various γ

(Fig. 10). It validates the finding that when γ is small, it has
no effect on the Lorentz ratio bounds.

4 Conclusion and discussion

We investigate the transport features of the holographic
two-currents model in the Horndeski gravity framework in
this research. The DC conductivities, including the elec-
tric and spin–spin conductivities associated with both gauge
fields, the thermo-electric and thermo-spin conductivities,
and the thermal and spin conductivities, are derived. Then,
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Fig. 7 The Lorentz ratios L̂ A and ˆ̄LA as a function of k̂ for the holographic two-currents model. The red dashed line represents the upper bound
established by the limit k̂ 
 1, while the black dashed line represents the lower bound set by the limit k̂ 	 1

Fig. 8 The Lorentz ratios ˆ̄LA as a function of χ for different θ . Here
we have set k̂ = 1/2, γ = 0

we primarily study the properties of the electric and spin–
spin conductivities. An interesting characteristic is that this
holographic system exhibits metallic or insulating behaviors
depending on whether the Horndeski parameter γ is nega-
tive or positive, but is independent of other system parameters
such as momentum dissipation strength k̂, doping χ and cou-
pling θ . Furthermore, we discover that doping χ and coupling
θ have comparable effects on the spin–spin conductivity as
they do on electric conductivity.

We also look at the thermal conductivities κ̄ and κA briefly.
These thermal conductivities, as we know, may be deter-
mined by the intrinsic quantities, the black hole entropy den-
sity and its charges, in the typical axions model. However it
is discovered that in the Horndeski framework that thermal
conductivities are affected not only by intrinsic quantities but
also by model parameters.

The Lorentz ratios’ properties are then investigated. We
pay special attention to the scenario of the zero temperature

limit. In the holographic two-currents model without Horn-
deski coupling, the system parameters θ and χ both impact
the Lorentz ratios and the WF law is broken. By studying the
case in the extremal limits, k̂ 	 1 and k̂ 
 1, we discover the
upper and lower bounds of the Lorentz ratio L̂ A, and the upper

bound of ˆ̄L A. These bounds are the same as the typical axions

model. Of special interest is the lower bound of ˆ̄L A, which
relies on the doping parameter χ and the coupling parameter
θ . It is different from the case of the typical axions model.
To keep the Lorentz ratio positive and free of divergence, the
following requirements must be met: 1 + 2θχ + χ2 > 0
and θχ �= − 1. Furthermore, in the Horndeski framework,
the coupling parameter γ is always found in pairs with k̂. It
suggests that the Horndeski coupling parameter has no effect
on the Lorentz ratio bounds.

Recalling that the real part of AC conductivity exhibits a
dip at low frequency in the holographic two-currents model
without momentum dissipation [87]. In particular, a soft gap
with power law decay emerges in the low frequency region.
As a result, it is intriguing to investigate the AC conductivi-
ties in our current model further, and it is expected that some
novel phenomena will emerge. Furthermore, it would be very
worthwhile to study incoherent transports in holographic
two-currents model with momentum dissipation, and further
in the Horndeski gravity framework, in order to address the
roles of doping and coupling θ in low-frequency transports. It
is demonstrated that the high derivative term generally vio-
lates the diffusivity bounds, see for example [107,108]. It
will be fascinating to see if the diffusivity bounds hold in our
current model. We will return tueryo these topics in the near
future.
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Fig. 9 Left plot: the lower bound as a function of θ for fixed χ . Right plot: 3D plot of the lower bound as a function of χ and θ

Fig. 10 The Lorentz ratios ˆ̄LA as a function of k̂ for different Horn-
deski parameter γ
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Appendix A: Equations of motion

We will derive the EOMs for this model in this appendix.
Applying the variational approach to the action (1), the EOMs
are derived as:

Gμν + �gμν − 1

2
T (A)

μν − 1

2
T (B)

μν − θT (AB)
μν

−1

2
T (φ)

μν −
2∑

I=1

γ

2
T G

μν
= 0, (A1)

∇μ[(gμν − γGμν)∂νφ
I ] = 0, (A2)

∇μ(Fμν + θYμν) = ∇μ(Yμν + θFμν) = 0, (A3)

where energy-momentum tensors T (φ)
μν , T (A)

μν , T (B)
μν , T (AB)

μν

and T (G)
μν in the Einstein equation (A1) are defined as

T (A)
μν = FμρF

ρ
ν − 1

4
gμνF

2,

T (B)
μν = YμρY

ρ
ν − 1

4
gμνY

2,

T (AB)
μν = F(μ|ρ|Y ρ

ν) − 1

4
gμνFαβY

αβ,

T (φ)
μν =

2∑
I=1

(∂μφ I ∂νφ
I − 1

2
gμν(∂φ I )2),
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T (G)
μν = 1

2
∂μφ I ∂νφ

I R − 2∂ρφ I ∂(μφ I Rν)
ρ

−∂ρφ I ∂σ φ I Rμ
ρ

ν
σ

−(∇μ∇ρφ I )(∇ν∇ρφ I ) + (∇μ∇νφ
I )�φ I

+1

2
Gμν(∂φ I )2 − gμν

[
− 1

2
(∇ρ∇σ φ I )(∇ρ∇σ φ I )

+1

2
(�φ I )2 − ∂ρφ I ∂σ φ I Rρσ

]
. (A4)

Substituting the ansatz (2) into the above EOMs, we find that
the equation of axions field (A2) is automatically satisfied.
The Einstein and Maxwell equations can be written down
explicitly

f ′ +
(

1

r
− k2γ

2r3

)
f + r fF(At , Bt )

4h
+ k2 − 6r2

2r
= 0,

(A5)

h′ + (k2γ f + 2r2 f + k2r2 − 6r4)

2r3 f
h + rF(At , Bt )

4
= 0,

(A6)

h′′ + r2 + k2γ

r3 h′ − (12r4 + 2k2γ f − (2r3 + k2rγ ) f ′)
2r4 f

h

−1

2
F(At , Bt ) = 0, (A7)

A′′
t + 1

2

(
4

r
+ f ′

f
− h′

h

)
A′
t = 0, (A8)

B ′′
t + 1

2

(
4

r
+ f ′

f
− h′

h

)
B ′
t = 0, (A9)

where F(At , Bt ) = A′2
t + 2θ A′

t B
′
t + B ′2

t and the functions
h, f, At and Bt only depend on the radial direction r .

Appendix B: Derivation of DC conductivity

In this appendix, we demonstrate the procedure for calcu-
lating DC conductivity using the method proposed in [98].
The key point of this method is to build a radially-conserved
current that connects the horizon and the boundary. Thus, the
DC conductivity of the dual boundary system can be read off
by the horizon datas directly.

The consistent perturbations around the background are
given by

gtx = H(r)t + r2δhtx (r), grx = r2δhrx (r),

φx = kx + δχx (r), (B1)

Ax = EApt + δax (r), Bx = EBpt + δbx (r), (B2)

H(r) = −ζh(r), EAp = −EAx + ζ At (r),

EBp = −EBx + ζ Bt (r), (B3)

where EAx and EBx are external electric fields and ζ =
−∇x T/T is the temperature gradient. From the Maxwell
and Einstein equations, one can construct radially-conserved
currents in the bulk, which have the following forms:

J xA = −√−g(Frx + θYrx ), J xB = −√−g(Yrx + θFrx ),

(B4)

Qx = 2
√−g∇r kx − At J

x
A − Bt J

x
B,

(B5)

where kx is the killing vector (kx = ∂t ). Furthermore, the
electric and heat currents can be explicitly given by

J xA = −
√

f

h
((Ht + r2δhtx )(A

′
t + θB ′

t )

+h((E ′
Ap + θE ′

Bp)t + δa′
x + θδb′

x )), (B6)

J xB = −
√

f

h
((Ht + r2δhtx )(B

′
t + θ A′

t )

+h((E ′
Bp + θE ′

Ap)t + δb′
x + θδa′

x )), (B7)

Qx = h
3
2 f

1
2

(gtx
h

)′ − At J
x
A − Bt J

x
B, (B8)

where A′
t = −

√
h
f
qA
r2 and B ′

t = −
√

h
f
qB
r2 have been taken

into account. One can easily show that ∂r J xA = ∂r J xB =
∂r Qx = 0. The regular boundary condition near the horizon
requires that

δa′
x = EAp√

f h
, δb′

x = EBp√
f h

, δhtx = δhrx
√

f h, (B9)

along with the following constraint relation derived from the
linearized Einstein equation

δhrx = 2(r(qA + θqB)EAp
√
h + r(qB + θqA)EBp

√
h + √

f (2r2H + k2γ H − r3H ′))
r
√

f ((q2
A + q2

B + 2qAqBθ − 12r4 + 4(r2 + k2γ ) f )h + 2r(2r2 + k2γ ) f h′)
. (B10)
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From the generalized Ohm’s law (9) and the above rela-
tions, the DC conductivities are

σA = ∂ J xA(rh)

∂EAx

= 1 + (qA + θqB)2

M2
h

, (B11)

σB = ∂ J xB(rh)

∂EBx

= 1 + (qB + θqA)2

M2
h

, (B12)

α = 1

T

∂ J xA(rh)

∂ζ
= 4π(qA + θqB)

M2
h

, (B13)

β = 1

T

∂ J xB(rh)

∂ζ
= 4π(qB + θqA)

M2
h

, (B14)

η = ∂ J xA(rh)

∂EBx

= ∂ J xB(rh)

∂EAx

= θ + (qA + θqB)(qB + θqA)

M2
h

,

(B15)

κ̄ = ∂Q(rh)

∂ζ
= 16π2T

M2
h

, (B16)

where M2
h is the effective graviton mass at the horizon

M2
h = k2(1 − 4e− k2γ

4 πT γ ). (B17)

One can also express the DC conductivities by dimensionless
quantities denoted by the hat symbols

σ̂A = 1 + k̂2μ4γ (1 + θχ)2

M̂2
hπer f i(

k̂μ
√

γ

2 )2
, (B18)

σ̂B = 1 + k̂2μ4γ (θ + χ)2

M̂2
hπer f i(

k̂μ
√

γ

2 )2
, (B19)

α̂ = 4k̂μ2√π
√

γ (1 + θχ)

M̂2
h er f i(

k̂μ
√

γ

2 )

, (B20)

β̂ = 4k̂μ2√π
√

γ (θ + χ)

M̂2
h er f i(

k̂μ
√

γ

2 )

, (B21)

η̂ = θ + k̂2μ4γ (θ + χ)(1 + θχ)

M̂2
hπer f i(

k̂μ
√

γ

2 )2
, (B22)

ˆ̄κ = 16π2T̂

M̂2
h

, (B23)

where

M̂2
h = k̂2μ2

(
1 − 4e− k̂2μ2γ

4 π T̂ γμ

)
. (B24)
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