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C Rössler1, S Baer, E de Wiljes, P-L Ardelt, T Ihn, K Ensslin,

C Reichl and W Wegscheider

Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland

E-mail: roessler@phys.ethz.ch

New Journal of Physics 13 (2011) 113006 (16pp)

Received 6 June 2011

Published 3 November 2011

Online at http://www.njp.org/

doi:10.1088/1367-2630/13/11/113006

Abstract. Quantum point contacts are fundamental building blocks for

mesoscopic transport experiments and play an important role in recent

interference and fractional quantum Hall experiments. However, it is unclear

how electron–electron interactions and the random disorder potential influence

the confinement potential and give rise to phenomena such as the mysterious 0.7

anomaly. Novel growth techniques of AlX Ga1−X As heterostructures for high-

mobility two-dimensional electron gases enable us to investigate quantum point

contacts with a strongly suppressed disorder potential. These clean quantum

point contacts indeed show transport features that are obscured by disorder

in standard samples. From these transport data, we are able to extract those

parameters of the confinement potential that describe its shape in the longitudinal

and transverse directions. Knowing the shape (and hence the slope) of the

confinement potential might be crucial for predicting which interaction-induced

states can best form in quantum point contacts.
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1. Introduction

Quantum devices on semiconductor nanostructures rely on quantum point contacts (QPCs) as

the basic building blocks. Quantized conductance was observed early on [1, 2] and has been

used as a signature of the quality of a quantum point contact QPC. With ever improving sample

quality and the methodology for the detection of non-Abelian anyons in the ν = 5/2 fractional

quantum Hall state, several experiments [3–5] have recently used the properties of QPCs

fabricated on ultra-high-mobility two-dimensional electron gases (2DEGs). In view of proposals

to investigate fractional quantum Hall states in confined geometries and interferometer-like

setups, a detailed understanding and the control of QPCs are essential. Here we present

experimental data that go beyond previously published data by demonstrating experiments that

profit from the extraordinary cleanliness of the high-mobility 2DEG. In contrast to standard

2DEGs, we do not observe defect-induced resonances when the QPCs are shifted laterally.

Higher-order half-plateaus are observed in the finite-bias differential conductance (at a magnetic

field B⊥ = 0 T), as well as spin-split half-plateaus at B⊥ = 2 T. Finally, the 0.7 anomaly is

investigated as a function of temperature and in perpendicular magnetic field.

2. Experimental details

The samples are fabricated on a high-mobility wafer with a 2DEG residing z = 160 nm beneath

the surface. The high mobility is achieved by placing Si dopants in a narrow GaAs layer

sandwiched by AlAs layers [6–8]. The population of the X band in AlAs results in hardly mobile

electrons, which screen the static disorder potential but do not cause a measurable parallel

conductance. Optical lithography is employed to define Hall bars via mesa etch and deposition

of Au/Ge Ohmic contacts. Processed Hall bars have an electron density of nS = 3.5 × 1015 m−2

and Drude mobilities in the range of µ = 1000–2000 m2 (Vs)−1. The characterization as well as

subsequent experiments are carried out at a temperature of T = 1.3 K if not stated otherwise.

Schottky electrodes are defined via electron beam lithography and the subsequent deposition of

Ti/Au. AFM micrographs of two QPCs are shown in the insets of figures 1(a) and (b). The gates

appear bright with the gap between them being w = 200 nm (a) and w = 500 nm (b). Applying

a voltage of VG .−1.1 V to the gates depletes the underlying 2DEG and creates a constriction

between source and drain. The source–drain current ISD and the voltage drop across the QPC
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Figure 1. (a) Inset: atomic force micrograph of the sample surface. The two

Schottky gates appear bright; the GaAs surface appears dark. The distance

between the gates is w = 200 nm. When the gates are negatively biased, free

electrons reside only in the electron gas underneath the dark areas. Main graph:

differential conductance of QPC1, measured as a function of the voltage applied

to gates G1 and G2. Quantized conductance in multiples of G = 2 e2/h indicates

the formation of discrete subbands between the tips of the gates. (b) Differential

conductance of QPC2, which is w = 500 nm wide and l ≈ 1 µm long.

VD are measured in four-terminal configuration while applying a small lock in amplitude of

Vac = 100 µV at a frequency of fac = 33 Hz to the source and drain. A dc source–drain voltage

VSD can be added to Vac with both voltages being applied symmetrically with respect to the

common reference potential of the source, drain and gates. Most transport properties of the

employed high-mobility heterostructures are hysteretic as a function of gate bias [9]. Therefore

all traces are recorded in the same sweep direction by sweeping towards more negative values

of gate voltage.

Figure 1(a) shows the differential conductance G = dISD/dVD (VSD = 0 mV) of QPC1,

plotted as a function of the voltage applied to gates G1 and G2. From the Fermi wavelength

of the 2DEG λF =
√

2π/nS = 42 nm and the distance of the gates, it would be expected that

n ≈ w/(kF/2) = 9–10 modes can be observed due to confinement transverse to the electron

flow [2]. Indeed, the number of quantized plateaus in figure 1(a) agrees with this estimation,

indicating that the largest electronic width of the QPC matches the lithographic gap of the
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Figure 2. Transconductance GTC = dG/dVG1&G2 of QPC1, plotted in false colors

as a function of the voltages applied to gates G1 and G2. Integer conductance

values of G = 0, 1, 2, 3, . . . × 2 e2/h result in GTC = 0 (black), steps in-between

integer conductance values appear bright. A faint red stripe with G ≈ 0.7 ×
2 e2/h indicates the presence of a 0.7 anomaly in the QPC. The strong increase

of the conductance at the right and top border (white) marks the gate pinch-

off, where the 2DEG underneath gates G1 (right) and G2 (top) starts to be

depleted. If both gates are biased identically, 12–13 plateaus are observed

between QPC pinch-off and gate pinch-off. When the ratio of gate-voltages is

varied by following the lowest transconductance-stripe, the number of plateaus

in dependence of either VG1 or VG2 can be varied, indicating that the QPC is

shifted laterally between the gates. Scattering centers in-between the gates would

appear as straight lines with the slope corresponding to their capacitance to gates

G1 and G2. No such defects are visible in this scan.

Schottky split-gates. Due to the larger gate-spacing of QPC2, correspondingly more modes are

observed in figure 1(b) and a significantly larger gate bias has to be applied in order to pinch off.

We observe irreversible charging of the sample typically at VG ∼ −5 V, which limits the QPCs’

range of operation.

2.1. Lateral shifting of the quantum point contact (QPC)

QPC1 can be further characterized by varying the voltages applied to each of the gates, which is

not possible for QPC2 due to its extreme pinch-off voltage. Figure 2 shows the transconductance

GTC = dG/dVG1&G2 of QPC1 in grayscale, plotted as a function of VG1 and VG2. Black areas

correspond to pinch-off (bottom left) and successive conductance plateaus (marked by 1, 2, 3).

Such a plot reveals scattering centers in the channel, since changing the ratio of gate voltages

causes the position of the channel to shift laterally between the gates [10]. The shift can be
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approximately determined by counting the number of steps (nG1, nG2) that can be observed

as a function of each gate [11]: 1y = kF/2 × (nG1 − nG2)/2. In the situation marked by white

arrows in figure 2, this amounts to 1y = 21 nm × (9 − 4)/2 = 53 nm. The largest observed shift

is 1y = ±21 nm × (11 − 2)/2 = ±95 nm, which corresponds to the lithographic distance of the

gates. When the QPC is shifted from one gate to the other, its potential would naturally change

if localized impurities in the channel or the static disorder potential created by the dopants were

relevant. Since these defects are fixed in space, they should appear as lines intersecting the QPC

steps, with their slope given by the capacitance to gates G1 and G2. The absence of such defect-

induced lines confirms the cleanliness of the sample and the effectiveness of the screening layers

in suppressing the charged dopants’ disorder potential.

2.2. The 0.7 anomaly in the perpendicular magnetic field

It is noteworthy that the 0.7 anomaly [12–14], an additional plateau with a conductance of

G ≈ 0.7 × 2 e2/h, appears as a weak shoulder close to the pinch-off of both QPCs. In the

transconductance plot in figure 2, the 0.7 anomaly is visible as an asymmetry of the pinch-off

line, giving rise to a gray (red) stripe adjacent to the G = 1 × 2 e2/h plateau. The 0.7 stripe

is continuous and reaches all the way to the extreme QPC shifts, emphasizing that the 0.7

anomaly is an intrinsic property of the QPC. Cuts along the diagonal (where VG1 = VG2) as

well as strongly shifted configurations (either VG1 or VG2 being fixed at −1.7 V) are shown in

figure 3. When the QPC is defined centrally in-between the gates (VG1 = VG2, leftmost trace),

the 0.7 anomaly manifests itself as a weak shoulder below the G = 2 e2/h plateau. The top

left inset shows the numerically derived slope dG/dVG1&G2, which exhibits a clear change of

slope at the position marked by an arrow. The corresponding conductance at this gate voltage

is G = 0.65 × 2 e2/h. For comparison, two configurations with the QPC being defined close

to gate G2 (central trace) or gate G1 (rightmost trace) are plotted on the same gate axis.

We find that both asymmetrically measured traces resemble the shape of the symmetric case.

The conductance value of the 0.7 anomaly does not change when shifting the QPC laterally;

however, our accuracy of determining it is limited to G = 0.65 ± 0.05 × 2 e2/h due to switching

events caused by the more negative gate voltages required for pinch-off in an asymmetric gate

configuration. In agreement with previous studies [12–14], we find that the 0.7 anomaly is less

pronounced in 2DEGs with high density (here: nS = 3.5 × 1015 m−2) compared to samples with

electron densities in the range of nS ∼ 1 × 1015 m−2.

In order to compare the results obtained on low-density 2DEGs to the behavior of our

system, the temperature and magnetic field dependence is investigated in detail. However,

similar to recent work performed on comparable high-mobility 2DEGs [15], we find a

suppression of the Hall mobility in the parallel magnetic field, which is accompanied in our

devices by a suppression of the QPCs’ spin splitting (data not shown). We are hence limited

to applying a magnetic field perpendicular to the 2DEG, which should also weaken the 0.7

anomaly by lifting the spin degeneracy. Since the differential conductance is strongly modified

by the presence of edge channels in the quantum Hall regime, the filling factor νQPC is obtained

from the diagonal voltage drop across QPC1. Figure 4(a) shows the lower part of the pinch-

off trace for different temperatures without a magnetic field being applied. As expected, the

0.7 anomaly evolves into a more pronounced shoulder when the temperature is increased from

T = 1.3 K (left) to T = 15 K (right). The marked value of νQPC = 1.3 (dashed line) corresponds

to the conductance of G = 0.65 × 2 e2/h extracted from figure 3.
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Figure 3. Pinch-off traces for different positions of the QPC. The traces have

been shifted and linearly scaled along the gate axis for better comparison.

From left to right: simultaneously sweeping VG1 = VG2; sweeping VG2 while

VG1 = −1.7 V; and sweeping VG1 while VG2 = −1.7 V. The 0.7 anomaly appears

as a shoulder (change of slope dG/dVG1&G2, see inset) at G ≈ 0.65 × 2 e2/h.

Switching events in the two rightmost traces arise because the more negative

gate voltage has to be biased with VG .−3 V in order to pinch off.

By applying a magnetic field perpendicular to the 2DEG, we expect the 0.7 anomaly to

be influenced by the increase of both the energetic and spatial separation of the lowest two

spin channels. This idea of ‘mimicking the 0.7 scenario’ was previously investigated in [16],

but the interpretation of the data proved difficult due to additional resonances in the pinch-

off traces. Figure 4(b) is recorded at B⊥ = 2 T, where spin-resolved edge channels begin to

form at T = 1.3 K. The data show a well-pronounced plateau at νQPC = 1.3, which is weakened

when the temperature is increased to T > 5 K. Figure 4(c) shows the same measurement at

B⊥ = 3 T, where the edge channels are further separated energetically as well as spatially. Now,

the temperature dependence is non-monotonic with the 0.7 anomaly first rising almost to the

expected transmission of νQPC = 1.3 and then decaying to lower transmission. Data taken at

B⊥ = 5 T are shown in figure 4(d). The structure is more complex now due to the formation

of fractional edge channels and does not show a feature which is unambiguously related to

the 0.7 anomaly. The observed shoulders and plateaus wash out, perhaps with the plateau at

νQPC ≈ 0.7 being more resilient than all other features at νQPC < 2. The overall dependence of

the 0.7 anomaly on the magnetic field is in contrast to observations in two-dimensional hole

gases where the 0.7 anomaly was found to evolve into a resonance for a strong perpendicular

magnetic field [17]. There, the appearance of a resonance was discussed in view of a quasi-

localized state in combination with the Kondo effect.
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Figure 4. Transmission νQPC through QPC1 measured as a function of

symmetrically applied gate bias at different temperatures (from left to right:

T = 1.3 K/2.5 K/5 K/10 K/15 K). The traces are plotted with horizontal offset

for clarity. A dashed horizontal line marks the transmission value of νQPC =
1.3 associated with the 0.7 anomaly. (a) The 0.7 anomaly becomes more

pronounced with increasing temperature. At T = 10 K the subband quantization

is completely washed out but the 0.7 anomaly is still clearly visible. (b) In a

magnetic field of B⊥ = 2 T applied perpendicular to the plane of the 2DEG,

the shoulder at νQPC = 1.3 is well developed at low temperature and shifts to

lower transmission with increased temperature. (c) At B⊥ = 3 T, the transmission

shows a non-monotonic behavior as a function of temperature. The transmission

of the 0.7 anomaly first recovers almost to its zero-field value, then decreases

again for T > 5 K. (d) At B⊥ = 5 T, various plateaus related to the transmission

of (fractional) edge channels are observed. These features wash out when the

temperature is increased.

One possible interpretation of our magnetic field dependence follows the idea of two spin-

polarized channels leading to the 0.7 scenario [16]. A moderate magnetic field (B⊥ = 2 T)

increases the spin polarization, thereby enhancing the 0.7 anomaly. Stronger fields increase the

spatial separation between the edge channels, thereby reducing interactions and weakening the

0.7 anomaly. At B⊥ = 3 T, the spatial separation can be overcome by increasing the temperature

to a value where thermal energy and B-field-induced spin splitting become comparable in

magnitude. At even stronger magnetic fields, other many-body effects besides the 0.7 anomaly
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Figure 5. Pinch-off trace (left) and schematic view (right) for different values

of the source–drain bias VSD. (a) Linear-response regime VSD = 0 mV. The

measured trace displays plateaus at the expected conductance values. The

conductance value of G = 3 × 2 e2/h corresponding to the sketched situation

(right) is marked by a dashed line. In the depicted situation the gate voltage is

set such that three (spin degenerate) subband bottoms lie below the chemical

potential of the source (µS) and the drain (µD). The energies of the subband

bottoms are labeled E1, E2, . . . . (b) Finite bias measurement with one subband

bottom in-between µS and µD. The expected half-plateau conductance of G =
2.5 × 2 e2/h is marked by a dashed line in the experimental trace. (c) Two

subband bottoms reside in-between µS and µD. Integer plateau values are

expected and can be observed as shoulders in the pinch-off curve.

might become relevant, which makes a detailed interpretation difficult. For future studies it

might prove worthwhile to investigate the zero-bias anomaly in the perpendicular magnetic

field in order to check if the interpretation of spatially separated edge channels is consistent

with other experimental findings.

2.3. Finite bias spectroscopy

Further characterization of QPC1 requires finite-bias measurements, because employing VSD

as an energy reference gives access to the QPC’s subband spacings [18–21]. Three exemplary

gate traces are depicted in figure 5. Figure 5(a) shows the linear-response regime VSD = 0 mV,

which is identical to the trace shown in figure 1(a). A sketch of the energy landscape is shown

on the right-hand side. The parabolic electron dispersions are energetically separated by the

subband spacing 1SB due to transversal confinement. In the depicted situation, three subband

bottoms reside below the chemical potentials of source and drain, giving rise to a conductance

of G = 3 × 2 e2/h. Figure 5(b) shows the pinch-off trace for VSD = −2.6 mV, where plateaus
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appear at half-integer values of the conductance. The sketch corresponding to a conductance

of G = 2.5 × 2 e2/h is shown on the right-hand side: two subbands contribute fully and one

subband contributes half to the overall conductance.

The so-called half-plateaus can only be observed in clean samples, presumably because

scattering events inside the QPC become more likely when more unoccupied subband states

are energetically available at larger source–drain bias. At even higher bias, the conductance is

usually obscured by noise [22] or increases/decreases due to various self-gating effects [13, 20].

In QPC1, however, the return of integer conductance quantization for two subband bottoms

residing in-between µS and µD is observable in figure 5(c) at VSD = −5.5 mV. We interpret this

observation as another result of the cleanliness of the QPC, which reduces the probability for

backscattering.

In order to retrieve full information about the confinement potential, the transconductance

of QPC1 is plotted in figure 6(a) as a function of VSD and VG1&G2. Integer conductance plateaus

without subband minima between µS and µD (labeled 1, 2, 3) appear as black diamonds around

VSD = 0 mV. Half-plateaus (1.5, 2.5, 3.5) and second order integer plateaus (2, 3, 4) appear in a

regular pattern at finite source–drain bias.

In our experience, the higher-order plateaus cannot be observed in samples with mobility

µ. 10 m2 (Vs)−1 (cf [22]). Comparing our data to those of a defect-free QPC [21] defined in

a 2DEG with mobility µ = 150 m2 (Vs)−1, we find subtle differences in the transconductance

pattern. Although the QPC in [21] is measured at a lower temperature (T = 90 mK) than for

our device (T = 1.3 K), second-order integer plateaus seem to be suppressed as long as no

magnetic field is applied perpendicular to the 2DEG. The authors state ‘Due to the suppression

of backscattering in the presence of a small magnetic field the reappearance of the integer

plateaus at high VSD can be clearly observed’. Our QPC is defined in a 2DEG with mobility

µ& 1000 m2 (Vs)−1 and second-order integer plateaus are clearly resolved at B⊥ = 0 T. These

observations indicate that even though the mean free path of the electrons is much larger than

the length of the QPC in both cases, a higher electron mobility still manifests itself as reduced

backscattering in the regime of nonlinear conductance.

As seen from the sketches in figure 5, the maximum extent of the diamonds in VSD

corresponds to the energy spacing 1SB of the involved QPC subbands. The whole pattern of

transconductance diamonds is sheared with features at positive VSD shifted by about 5% to a

more positive gate voltage than in a perfectly symmetric configuration. This asymmetry could

hint at a slight asymmetry of the QPC’s coupling to source and drain, but might also be explained

by a gradual drift of the local potential over the measurement time of 21 h.

The effect of VSD on the confinement potential, so-called self-gating, manifests itself as

a deviation from a pattern of straight lines [13]. From figure 6(a), it appears that self-gating

plays an important role mainly close to pinch-off (white dashed line) and perhaps at very large

VSD, where clear quantization is no longer observed. Since self-gating appears not to dominate

the shape of the transconductance pattern, it is possible to learn more about the confinement

potential by comparing the position of transconductance nodes in figure 6(a). Three exemplary

nodes are highlighted by white circles. They correspond to the resonance conditions (from top to

bottom) (µS = E4, µD = E6), (µS = E5 = µD) and (µS = E6, µD = E4), respectively. The fact

that these resonance conditions occur at almost the same gate voltage (along a straight line)

means that the subband spacings 145 = E5 − E4 and 156 = E6 − E5 are very similar at this

gate voltage (compare sketches in figure 5). Therefore the transversal confinement can be well

described by a harmonic potential. If the confinement potential were, for example, a square
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Figure 6. (a) Transconductance GTC = dG/dVG1&G2 of QPC1, plotted as a

function of source–drain bias VSD and voltage VG1&G2 applied to gates G1 and

G2. Plateaus in the differential conductance of G = 1, 2, 3, . . . × 2 e2/h appear

as black diamonds centered around VSD = 0 mV. Their extent in VSD corresponds

to the subband spacing 1SB. Higher-order half-plateaus (G = 1.5, 2.5, 3.5, . . . ×
2 e2/h) and second-order integer-plateaus (G = 2, 3, 4, . . . × 2 e2/h) appear as

black diamonds at finite source–drain bias. (b) Transconductance of QPC2.

Integer plateaus around VSD = 0 mV are resolved. For gate voltages VG1&G2 .
−2.5 V, higher-order plateaus are obscured by noise.

well, the subband spacings would increase with higher mode number and hence the higher-

order modes would occur at a more positive gate voltage than the linear response node.

In comparison to the clean and regular pattern of QPC1, figure 6(b) shows the

transconductance of QPC2. Higher-order plateaus are visible for VG1&G2 &−2.5 V but are
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obscured by noise at more negative bias, which is usually related to tunneling events from

the gates into the doping layer [23]. Furthermore, the shape of the five leftmost diamonds is

distorted with the upper and lower tips being shifted to more negative gate bias. This shift, as

well as the curvature of the plateau borders, follows the dependence observed in quantum wires

and arises from the requirement of satisfying charge neutrality with a one-dimensional density

of states while applying a finite source–drain voltage [24]. The quantum wire-like characteristic

is consistent with the geometry of the gates, which should create a channel that is longer

than the screening length of the 2DEG (compare the inset of figure 1(b)). It is noteworthy

that also in the quantum wire-like QPC2, we observe a well-pronounced half-plateau related

to the 0.7 anomaly which resembles the features observed in [24]. Since we do not observe

defect-related resonances in QPC2, the design might be extended to even longer gate-defined

quantum wires [25–27] in order to study the length dependence of the 0.7 anomaly. However,

the observation of diffusive transport [26] in LQWR > 5 µm long quantum wires (with the mean

free path in the 2DEG being LMF ∼ 40 µm) suggests that gate-defined quantum wires might

not profit from an increased free electron mobility at least if split-gate technology is used for

confinement.

2.4. Extracting the QPCs’ shape parameters

As discussed earlier, the transconductance plot can now be used to reconstruct the confinement

potential. The subband spacing can be determined from the VSD position of the borders of the

transconductance diamonds [20]. Due to the finite resistance of the leads RS = 400 �, a fraction

of the applied dc-bias VSD does not drop at the QPC. Using RS and the measured four-terminal

conductance G, this is taken into account via 1SB = VSD/(1 + G RS). The thereby determined

subband spacings are plotted as a function of VG1&G2 in figure 7(a) for QPC1 (left) and QPC2

(right). The subband spacings increase monotonically with more negative gate bias, indicating

that the confinement potential becomes narrower and steeper while approaching pinch-off.

This trend has been observed previously [20] and can be explained by the reduced influence

of screening on the confinement potential when the local electron density is reduced [28].

Since the higher-order plateaus indicate that the confinement potential of QPC1 has a close

to harmonic shape, we can now use the measured subband spacings to apply Büttiker’s saddle-

point model [29] to our linear response data and extract all parameters of the potential profile

at the constriction. Since QPC2 shows quantum wire-like transport characteristics, the model is

not expected to reflect the exact potential shape of QPC2, but should still give qualitatively

meaningful results. Temperature broadening is not accounted for in this model since the

subband-spacings 1SB > 1 meV are much larger than the thermal broadening kBT ≈ 0.1 meV.

Neglecting inter-mode scattering and including spin degeneracy, the transmission of the

nth subband is given by

Tn = 2/(1 + exp(−πεn/h̄ωX)) (1)

with the energy of the nth subband

εn = 2(h̄ωY (n + 1/2) − ECB). (2)

The gate dependence ωY (VG1&G2) is known from figure 7(a); the gate dependence of the

conduction band bottom ECB(VG1&G2) is approximated by ECB(VG1&G2) = E0 + α × VG1&G2 for

each conductance step with the lever arm α converting gate voltage to energy. Usually, the lever

arm can be determined by taking the source–drain bias as an energy reference and comparing
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Figure 7. (a) Subband spacings 1SB of QPC1 (left) and QPC2 (right), as

determined from finite bias transport measurements. With more negative gate

voltage, the subband spacings increase. (b) Differential conductance, plotted as

a function of gate voltage. The measured curve (black) can be fit by assuming

a saddle-point potential and calculating the transversal harmonic confinement

potential from the subband spacing in (a). The resulting fit for each step is plotted

at the bottom. (c) Subband spacing of the transversal (squares) and longitudinal

(circles) confinement potential, as extracted from the fits in (b). Approaching

pinch-off, QPC1 (left) becomes much narrower but only slightly shorter. The

longitudinal curvature of QPC2 (right) is smaller than that of QPC1, which is in

agreement with the lithographic dimensions of the gates.

it to the gate dependence of a given transport resonance [30]. But as shown in figure 7(a),

the gate voltage not only lifts ECB but also increases the subband spacing, giving rise to a

seemingly increased lever arm. Knowing that the confinement potential is harmonic enables

an alternative way to determine α. At the position of the conductance steps in figure 7(a) (at

G = (n − 0.5) × 2e2/h), the conduction band bottom is ECB = (n − 0.5) h̄ωY below the Fermi

energy. Hence, the lever arm in-between two successive steps is given by

α = (n + 1 − 1/2) h̄ωY,n+1 − (n − 1/2) h̄ωY,n (3)

with ωY,n being the confinement at the nth step as extracted from figure 7(a). Now the only

fitting parameters are the longitudinal curvature ωX and the energy offset E0.
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Figure 7(b) shows the pinch-off curve of QPC1 (left) and the fits resulting from the

described procedure. All fits are plotted below G = 2 e2/h for clarity. The same procedure

applied to QPC2 is shown on the right hand side. Figure 7(c) shows the extracted values for

the longitudinal curvature (circles) of QPC1 (left) and QPC2 (right). The transversal curvature

is plotted as squares for comparison. In both QPCs, ωX is smaller than ωY , as required for the

observation of conductance quantization [29]. Approaching pinch-off, QPC1 becomes much

narrower (strong increase of h̄ωY ) and slightly shorter (increase of h̄ωX ). QPC2 also becomes

much narrower but there is no strong increase of h̄ωX . Although the saddle-point model might

not be the ideal model for a quantum wire, this fits the intuitive picture of a one-dimensional

channel with a lithography-defined length and voltage-controlled width.

Comparing the parameters obtained from our analysis to those from earlier investigations,

we find surprising discrepancies despite similar 2DEG density and gate spacings. The data

analyzed in [31] are well described by h̄ωY = 0.9 meV, h̄ωX = 0.3 meV with both values being

independent of gate voltage. In our devices, the shape of the confinement potential changes

dramatically as a function of gate voltage and reaches oscillator strengths of h̄ωY > 4 meV,

h̄ωX > 1 meV close to pinch-off. We interpret this observation as the result of the screening

properties of the screening layers that are grown into the heterostructure in order to achieve ultra-

high electron mobilities [6–8]. Screening should reduce the range of the gate-induced potential

and thereby increase the slope of the confinement potential.

2.5. Spin-resolved transport at low temperatures

Additional changes in the confinement can be created by applying a magnetic field B⊥
perpendicular to the plane of the 2DEG, which lifts the spin degeneracy and increases the

subband spacing [1, 9, 12, 21, 32]. QPC3 was not equipped with a 2DEG terminal that could be

used to measure the diagonal voltage, so the filling factor of the QPC νQPC is calculated from

the longitudinal four-terminal resistance: in analogy to magnetotransport through a barrier [33],

νQPC relates via RQPC × e2/h = 1/νQPC + 1/νBulk to the number of occupied Landau levels in the

bulk νBulk = nS h/eB⊥. Knowing the electron density nS and Planck’s constant h, the measured

four-terminal resistance RQPC can be directly converted to νQPC. Figure 8(a) shows data of

QPC3 (split-gate gap w = 250 nm), measured at a temperature of T = 0.1 K with B⊥ = 2 T.

Plotting νQPC as a function of VG1&G2 reveals integer filling factors related to the magneto-

electric subband spacing (νQPC = 2, νQPC = 4) but also smaller plateaus due to the lifted spin

degeneracy (νQPC = 3, νQPC = 5). The energy diagram corresponding to νQPC = 3 is shown on

the right-hand side. The lowest spin-split plateau is obscured by the 0.7 anomaly [12]. The same

trace repeated at finite source–drain bias VSD = 2 mV is shown in figure 8(b). Additional half-

plateaus with νQPC = 2.5 and νQPC = 3.5 appear which correspond to a situation as depicted to

the right: one spin-split mode is situated in-between µS and µD. The 0.7 anomaly has evolved

into a plateau with νQPC = 1.8. Figure 8(c) shows a false color plot of the transconductance

GTC = dG/dVG1&G2, plotted as a function of VSD and VG1&G2. Similar to the transconductance

plots in figures 6, regions of integer filling factor appear as black diamonds. Due to the different

sizes of the subband-split levels (labeled 2, 4 and 6) and the spin-split levels (3 and 5), the

half-plateaus at finite VSD appear as black stripes. A clear deviation from the regular even–odd

pattern is observed at low filling factors, where νQPC = 0.5, 1, 1.5 are replaced by a νQPC = 1.8

plateau related to the 0.7 anomaly.
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Figure 8. (a) Filling factor νQPC of QPC3 (split-gate gap w = 250 nm), plotted

as a function of VG1&G2. Measured at a temperature of T = 100 mK, the spin

degeneracy is lifted by a magnetic field B⊥ = 2 T applied perpendicular to the

plane of the 2DEG. The situation corresponding to νQPC = 3 is sketched on

the right hand side: three non-degenerate subbands reside below the chemical

potentials of the source and drain. (b) Filling factor of QPC3 as a function

of VG1&G2 while a source–drain bias of VSD = 2 mV is applied. Filling factors

νQPC = 2.5 and νQPC = 3.5 are observed when one spin-split level lies in-

between µS and µD (sketched on the right-hand side). (c) False-color plot of

the transconductance GTC = dG/dVG1&G2 of QPC3 (inset), plotted as a function

of VSD and VG1&G2. Regions of integer filling factor νQPC = 2, 3, 4, 5, 6 appear

as black diamonds centered around VSD = 0 mV, half plateaus with νQPC =
2.5, 3.5, 4.5 appear as black stripes at finite source–drain bias. The 0.7 anomaly

creates a plateau with νQPC = 1.8.

From the extent of the spin-split plateaus the exchange-enhanced g-factor g∗ can be

extracted via VSD = 1Spin = g∗µB B⊥, where g∗ is the effective g-factor and µB the Bohr

magneton. Compared to the bare g-factor of GaAs (g = −0.44), we find a strongly enhanced
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g∗ = 4.4 at νQPC = 3 and g∗ = 3.8 at νQPC = 5. Similar to the findings of Thomas et al [12],

g∗ increases with lower mode number. However, the magnitude of the exchange enhancement

is different: 0.4 < g∗ < 1.3 was reported by Thomas et al, while our results indicate a much

stronger enhancement. Assuming that disorder reduces the effectiveness of the exchange

enhancement, the observation of strongly enhanced g-factors can be interpreted as another

manifestation of good sample quality.

3. Conclusion

In conclusion, we investigated the transport properties of two differently shaped constrictions

that were defined within a high-mobility 2DEG. Transport spectroscopy in the linear response

regime demonstrates that conductance quantization is observed and that no scattering centers

are found when shifting QPC1 between the gates. The 0.7 anomaly is investigated by varying

the temperature and by applying a magnetic field perpendicular to the 2DEG. Depending on

the ratio of these two parameters we observe either a weakening or an enhancement of the

0.7 anomaly, which is discussed in view of spin-polarized edge channels mimicking the 0.7

scenario. Measurements at finite source–drain bias give access to the subband spacings of the

QPC and reveal that QPC1 is described best by a short constriction, whereas QPC2 shows

quantum wire-like characteristics. In addition to QPCs defined in standard 2DEGs, resonances

at large bias are observed in QPC1 that correspond to higher-order transport conditions. These

higher-order resonance conditions give valuable information about the shape of the confinement

potential and enable the reconstruction of the full saddle-point potential in the constriction.

Knowing the shape (and hence the slope) might prove important for the investigation of many-

body states such as the 0.7 anomaly or the transmission of fractional quantum Hall states. At

finite magnetic field and lower temperature, a strongly exchange-enhanced g-factor is observed,

which we interpret as the result of a very smooth confinement potential. While measurements

on QPCs are possible with a high signal-to-noise ratio if the gate voltages are always swept in

the same regime and direction, it was not possible to form a stable quantum dot with the same

technique on the same wafer. For future interferometer experiments on high-mobility samples

in the fractional quantum Hall regime, it is desirable to prepare split-gate electrodes on high-

mobility wafers that do not rely on screening electrons at the X-valley and thereby allow stable

gate operation.

Acknowledgment

We acknowledge support from the ETH FIRST laboratory and financial support from the Swiss

Science Foundation (Schweizerischer Nationalfonds, NCCR Nanoscience).

References

[1] Wharam D A, Thornton T J, Newbury R, Pepper M, Ahmed H, Frost J E F, Hasko D G, Peacock D C, Ritchie

D A and Jones G A C 1988 J. Phys. C.: Solid State Phys. 21 L209

[2] van Wees B J, van Houten H, Beenakker C W J, Williamson J G, Kouwenhoven L P, van der Marel D and

Foxon C T 1988 Phys. Rev. Lett. 60 848

[3] Willett R, Eisenstein J P, Störmer H L, Tsui D C, Gossard A C and English J H 1987 Phys. Rev. Lett. 59 1776

New Journal of Physics 13 (2011) 113006 (http://www.njp.org/)

http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevLett.59.1776
http://www.njp.org/


16
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[22] Rössler C, Herz M, Bichler M and Ludwig S 2010 Solid State Commun. 150 861

[23] Pioro-Ladriere M, Davies J H, Long A R, Sachrajda A R, Gaudreau L, Zawadzki P, Lapointe J, Gupta J,

Wasilewski Z and Studenikin S 2005 Phys. Rev. B 72 115331

[24] de Picciotto R, Pfeiffer L N, Baldwin K W and West K W 2004 Phys. Rev. Lett. 93 36805

[25] Tarucha S, Honda T and Saku T 1995 Solid State Commun. 94 413

[26] Liang C-T, Simmons M Y, Smith C G, Ritchie D A and Pepper M 1999 Appl. Phys. Lett. 75 2975

[27] Morimoto T, Henmi M, Naito R, Tsubaki K, Aoki N, Bird J P and Ochiai Y 2006 Phys. Rev. Lett. 97 096801

[28] Laux S E, Frank D J and Stern F 1988 Surf. Sci. 196 101

[29] Büttiker M 1990 Phys. Rev. B 41 7906

[30] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701

[31] Taboryski R, Kristensen A, Sorensen C B and Lindelof P E 1995 Phys. Rev. B 51 2282

[32] van Wees B J, Kouwenhoven L P, van Houten H, Beenakker C W J, Mooij J E, Foxon C T and Harris J J 1988

Phys. Rev. B 38 3625

[33] Haug R J, MacDonald A H, Streda P and von Klitzing K 1988 Phys. Rev. Lett. 61 2797

New Journal of Physics 13 (2011) 113006 (http://www.njp.org/)

http://dx.doi.org/10.1038/nphys658
http://dx.doi.org/10.1038/nature06855
http://dx.doi.org/10.1103/PhysRevLett.77.4616
http://dx.doi.org/10.1063/1.119829
http://dx.doi.org/10.1103/PhysRevB.77.235437
http://dx.doi.org/10.1088/1367-2630/12/4/043007
http://dx.doi.org/10.1103/PhysRevB.42.7675
http://arxiv.org/abs/1109.1544v1
http://dx.doi.org/10.1103/PhysRevLett.77.135
http://dx.doi.org/10.1103/PhysRevB.62.10950
http://dx.doi.org/10.1103/PhysRevLett.88.226805
http://dx.doi.org/10.1103/PhysRevB.83.081301
http://dx.doi.org/10.1088/0953-8984/18/12/009
http://dx.doi.org/10.1209/0295-5075/91/67010
http://dx.doi.org/10.1209/0295-5075/9/3/013
http://dx.doi.org/10.1088/0953-8984/2/34/018
http://dx.doi.org/10.1103/PhysRevB.44.13549
http://dx.doi.org/10.1063/1.115498
http://dx.doi.org/10.1016/j.ssc.2010.02.005
http://dx.doi.org/10.1103/PhysRevB.72.115331
http://dx.doi.org/10.1103/PhysRevLett.92.036805
http://dx.doi.org/10.1016/0038-1098(95)00102-6
http://dx.doi.org/10.1063/1.125206
http://dx.doi.org/10.1103/PhysRevLett.97.096801
http://dx.doi.org/10.1016/0039-6028(88)90671-1
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1088/0034-4885/64/6/201
http://dx.doi.org/10.1103/PhysRevB.51.2282
http://dx.doi.org/10.1103/PhysRevB.38.3625
http://dx.doi.org/10.1103/PhysRevLett.61.2797
http://www.njp.org/

	1. Introduction
	2. Experimental details
	2.1. Lateral shifting of the quantum point contact (QPC)
	2.2. The 0.7 anomaly in the perpendicular magnetic field
	2.3. Finite bias spectroscopy
	2.4. Extracting the QPCs' shape parameters
	2.5. Spin-resolved transport at low temperatures

	3. Conclusion
	Acknowledgment
	References

