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PACS 81.05.ue – Graphene
PACS 72.80.Vp – Electronic transport in graphene

Abstract – We study the effect of extended charge defects in electronic transport properties of
graphene. Extended defects are ubiquitous in chemically and epitaxially grown graphene samples
due to internal strains associated with the lattice mismatch. We show that at low energies these
defects interact quite strongly with the 2D Dirac fermions and have an important effect in the
DC-conductivity of these materials.

Copyright c© EPLA, 2011

Introduction. – Graphene crystals isolated by the
exfoliation method [1] are high-quality films, with high
mobilities even on a SiO2 substrate. While exfoliation
works well for the study of the fundamental physical
properties of graphene [2] it is not a scalable process useful
for technological applications [3]. At the present time, the
most promising scalable growth methods of graphene films
are either based on epitaxial growth on SiC [4] or on
chemical vapor deposition (CVD) of graphene on metal
surfaces [5].
Graphene growth on crystal substrates, independently

of the process, is subject to strain due to lattice mismatch
between graphene and the substrate. The strong sigma
bonding between the carbon atoms makes the graphene
lattice very stiff (the spring constant is of order of
50 eV/Å2) and hence in-plane deformations are energet-
ically costly. Because graphene is the ultimate example of
a 2D film, the strain can be release by two main mecha-
nisms, namely, either by going out of the plane or by the
reconstruction of the chemical bonds.
By exploring the third dimension the graphene film pays

the energetic price of bending (the bending rigidity is of
order of 1 eV) and the loss of interaction energy with the

(a)E-mail: aires.f.ferreira@gmail.com

substrate (which is usually a mix of covalent bonding and
van der Waals interaction). In certain cases, the energetic
price of forming wrinkles and blisters in the graphene film
is smaller than the price of creating structural defects such
as pentagons, heptagons, and octagons. STM studies have
shown that epitaxial graphene grown on 6H-SiC actually
bends and buckles as a result of the compressive strain [6].
The same effect is observed in samples grown by CVD on
Cu [7]. In other cases, when the the interaction between
graphene and the substrate is strong, it is energetically
preferable to reconstruct the bonds with the formation
of lines of defects. This is what happens, for instance, in
graphene grown by CVD on a Ni surface [8]. The surface of
the film reveals the presence of extended one-dimensional
defects. These defects are lines of periodic cells made of
two pentagons followed by one octagon.
The general conclusion is that the intrinsic 2D nature of

graphene makes the presence of one-dimensional extended
defects in artificially grown graphene samples a norm. The
formation of extended structural defects in graphene has
strong consequences for the electronic properties. On the
one hand, localized bending and strain can lead to the
appearance of strong “pseudo-magnetic” fields that create
localized Landau levels. This is the main idea behind
the concept of strain engineering [9]. On the other hand
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pentagons, heptagons, and octagons, act as donors and/or
acceptors relative to the normal benzene ring configu-
ration, and hence also leads to charge localization [10].
All these mechanisms are examples of the more general
concept of self-doping in sp2-bonded carbon [11]. The
existence of the localized states at the defect line lead
to transfer of charge from the bulk of graphene to the
defect —charge accumulates at the extended defect, creat-
ing charged lines. Such type of scattering lines can be the
limiting scattering mechanism of the electronic mobility
in these graphene films. Furthermore, experimental stud-
ies show that these extended defect lines intercept each
other at random angles, forming irregular polygons with
edges showing stochastic distribution of length. A study of
the electronic scattering in chemically produced graphene
needs to take into account such types of random distri-
butions in order to correctly describe the effect of the
extended charge defects in DC-transport.
This letter is organized as follows; we begin by outlining

the experimental procedure used to produce the CVD
graphene samples and briefly characterize the extended
defects seen in the microscopy studies. Then, the main
result is presented and tested against DC-conductivity
data for several CVD graphene samples. In the remainder
we discuss in detail the model of extended charge defects,
the effective scattering potential and its contribution
to the semi-classical conductivity. Last, finer points of
our calculation, such as the effect of disorder in the
length distribution of the defects, and the electron-hole
asymmetry of electronic cross-sections due these defects
are discussed in separate sections.

Outline. – The theory described below has been used
to interpret the transport data of graphene grown using
the roll-to-roll method [12]. An AFM image of a CVD
graphene film transferred to SiO2 is shown in fig. 1;
extended line defects, few nanometers long, can be seen.
Sample preparation and measurement were performed
using standard methods: graphene samples are grown on
Cu substrates by chemical vapor deposition (CVD) [12].
To characterize CVD graphene samples, standard Hall
bars are patterned by e-beam lithography, followed by
thermal evaporation of Cr/Au (5/25 nm). An additional
e-beam lithography step followed by O2 plasma etching
is performed to define Hall bar device as shown in the
inset of fig. 1. Measurements are performed as a function
of temperature down to 3.5K using standard lock-in
amplifier techniques.
The central result of this work is an expression for

the semi-classical DC-conductivity of graphene due to
extended charge defects,

σl =
16e2

h

πk2F
nl

(

e

ql

)2

G(kFW ) , (1)

where nl is a finite density of effective extended defects
(see next section), made of lines with charge ql and
G − 1(x) =

∫

dθ(1 − cos θ)(π − θ)2[5 + 4 cos(x−x cos θ)].

Fig. 1: (Colour on-line) Tapping mode atomic force microscope
(AFM) image of a CVD graphene film transferred on SiO2.
Different thermal expansion of the Cu foil and the graphene
sheet result in the formation of a few nm high ripples. Locally
cracks can form during the transfer process and occasionally
one is left with PMMA residues. Inset: Hall bar device used to
measure the conductivity of CVD grown graphene (scale bar is
5µm). Representative data is given in figs. 2 and 5.

Fig. 2: (Colour on-line) Conductivity measured in CVD-
synthesized graphene at T = 3.5K (data points shown in
blue) [5] is fitted to eq. (1) as function of V = Vg −Vmin (dashed
line). The optimal parameters are found to be W ≃ 14.6 nm;
γ ≃ 2.14× 1011 cm−2(V � 0) and γ ≃ 2.28× 1011 cm−2(V < 0).
The inclusion of midgap states (i.e. resonant scatterers) is
shown in thick lines (red (V � 0) and green (V < 0)) and
modifies γ to 1.15× 1011m−2 (V � 0) and 1.27× 1011m−2

(V < 0). The midgap parameters are ns = 1.6× 10
11 cm−2 and

R= 2a0, with a0 = 0.14 nm; the experimental data was shifted
as to have a minimum of zero at the Dirac point (Vmin ≃ 5.5V
and σmin ≃ 0.1e

2/h). Fits to other CVD samples are shown in
fig. 5.

For the sake of simplicity, in deriving the latter equation,
we have considered a graphene structure constant α= 1/2.
The Fermi momentum kF relates to the electronic carrier
density nc according to kF =

√
πnc, which can be

controlled by the application of a back-gate voltage,
Vg, after transferring the graphene sheet to a dielectric
substrate, typically silicon oxide, 300 nm thickness, for
which one has nc = 7.2× 1014Vg (SI units). To test
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our results, we used experimental data of conductivity
measurements in several graphene samples grown by
CVD on Cu, using the roll-to-roll method [12]. The fitting
parameters in our theory are W and γ ≡ nlq2l /e2. The
former has units of length and is roughly the mesh size
originated by the intersection of defect lines, whereas the
latter measures the scattering strength of the extended
defects. Figure 2 shows a high-quality fit to the CVD
data. For moderate to high carrier densities, we find that
eq. (1) fits perfectly well the data, indicating that linear
charged lines formed during the CVD growth process
can play a key role in DC-transport at finite electronic
densities. The line separation was found to lie within
the range 10–15 nm in all samples. We also found that
the inclusion of strong (resonant) short-range disorder
improves the agreement with the experimental data for
lower carrier densities, more precisely, |Vg −Vmin|� 10V.
(Recall that resonant scattering has recently emerged as
one of the main mechanisms limiting DC-transport of
non-suspended graphene [13,14].) In what follows, we give
a detailed description of our model of extended charge
defects in graphene.

Theory. – We start by characterizing the scattering
potential created by a single extended charge defect. We
take the charged defect to be an infinite line along the y-
axis, with linear charge density λl, embedded in graphene,
which is lying in the xy-plane. Its 3D charge density
has the form ρline(r) = λlδ(x)δ(z). Basic electrostatics
predicts that single line of charge in vacuum produces
a logarithmic potential in space. Clearly, embedded in a
metal, the potential is modified by screening effects. The
screening can be taken into account within the Thomas-
Fermi (TF) approximation [15]. The TF assumes that the
local electronic charge density, ρ(r), changes due to the
effective potential, φeff(r), created by the extended defect
according to

δρ(r)≃−eρ(EF )eφeff(r), (2)

where ρ(EF ) = 2kF /(π�vF ) is the bare density of states
per unit of area (spin and valley degeneracies included)
and kF (vF ) is the Fermi momentum (velocity).
The effective potential, φeff , is determined by Poisson’s

equation: ∇2φeff =−(ρline+ δρ)/ǫd, that is

ǫd∇2φeff(x, z) =
[

2e2kF
π�vF

φeff(x)−λlδ(x)
]

δ(z), (3)

where ǫd is the dielectric constant of the medium (notice
that δρ=−e2ρ(EF )φeff(x, z = 0)). This equation can be
solved by Fourier transform followed by an integration over
the z-coordinate. The form of the potential in momentum
space is

φ̃eff(qx) =
λl
2ǫd

1

|qx|+ qTF
, (4)

where qTF ≡ 4αkF is the TF wave vector, with the
effective graphene’s structure function given by
α≡ e2/(4πǫd�vF ). We note that φeff(x) shows a

Fig. 3: (Colour on-line) Left: schematic of a small area of CVD
graphene with charged lines with several length; the area (in
yellow) encompassed by 3 lines defines the intersection zone
of the effective extended charged defect. Right: the effective
extended defect is built, from three lines initially at x= 0,
translating one line (e.g., l3) along the x-axis by W and
rotating the lines by ϕi about the z-axis. In the picture ϕ1 = 0
to make it easy to visualize; the origin of the coordinate system
is represented as a black dot.

logarithmic divergence at the origin and asymptotic
behavior (qTFx≫ 1) given by

φeff(x)→ λl/
[

2ǫdπ(qTFx)
2
]

. (5)

In contrast with the screened Coulomb potential created
by a point charged impurity, the potential of a charged
defect line does not decay exponentially away from the
scattering center, and hence can lead to a strong effect on
electronic transport, as we show below.
Atomic force microscopy of small areas of graphene

(∼0.1μm2) shows extended defects with several lengths
and orientations [5]. We model these extended defects as
straight lines that intersect forming polygons (see fig. 3).
The electronic scattering is determined by the polygons
formed by the defect lines (see later). The network of
defects is built from a number of base lines (labeled li),
initially lying along the y-axis, in two steps: translating
each line li by a vector Ri = (xi, yi), and finally rotating
them about the z-axis by random angles {ϕi}. Throughout
the paper we assume that the size L of these lines is much
larger than other length scales in the problem. For N base
lines the screened potential reads

φ̃Neff(q) =
N
∑

i=1

qi
2ǫd

e−iq·Ri

|Q(ϕi)|+ qTF
, (6)

where Q(ϕi) = qx cosϕi− qy sinϕi is the projection of the
wave vector q onto the direction perpendicular to the
line li, defining the direction of momentum transfer in
an electron-defect scattering event, and qi ≡ λlLi is the
charge of line li. (To obtain this result, we approximated
the 2D electrostatic potential of a single line (e.g. oriented
along the y-axis) using φ̃eff(q) =

∫

dyφeff(qx)θ(L/2− |y|),
where θ(y) is the Heaviside function and φeff(x) is the
potential of an infinite charged line embedded in graphene
(eq. (4)).)
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Fig. 4: (Colour on-line) An effective extended defect with
triangular intersection (three lines in black) is replicated and
translated according to the green arrow, producing a mesh
containing several types of irregular polygons.

Model of the extended defect. Transport through
nano-electronic graphene devices with extended charge
defects is tackled here from the point of view of a single
effective defect “cell”, from which a prototype network of
charged lines can be reproduced. The effective extended
defect is made of three lines, with equal lengths, which
intersect forming a triangle (see fig. 3); choosing R1(2) =
(0, 0) and R3 = (W, 0), introduces a new length scale, W ,
the amount of translation of l3, here referred to as line
separation. Its scattering potential (denoted by φ△,eff) is
given by eq. (6) setting N = 3. Figure 4 shows how many
such defects give rise to all sort of polygons.
The large-distance behavior of the potential due to

a charged line in graphene (see eq. (4)) renders the
Born series particularly suitable to compute scattering
amplitudes. In the first Born approximation (FBA), the
elastic scattering amplitude for massless Dirac fermions in
2D reads [16]

f(θ) =
Ξ(θ)

�vF

√

|p|
8π
e〈φ̃△,eff(q)〉, (7)

where p (|p|= kF ) is the wave vector of the incident
electron (we choose p= |p|ex), q= p′−p the transferred
wave vector (p′ stands for the “out” wave vector), θ=
∠(p′,p) is the scattering angle and 〈φ△,eff(q)〉 is the
scattering potential conveniently averaged as to include
rotational disorder (disorder inW will also be considered);
the factor Ξ(θ) = 1+ eiθ originates from graphene’s Berry
phase precluding electrons from back-scatter [17]. The
main result (1) is obtained within the Boltzmann approach
using the FBA,

σl = (1/2)e
2v2F ρ(EF )τl, (8)

where the relaxation time is given by 1/τl = nlvF
∫

dθ(1−
cos θ)|f(θ)|2 [15].
Rotational disorder. Within the model depicted in

fig. 3, rotational disorder can be taken into account by
averaging the scattering potential φ△,eff over the angles
{ϕi}. The scattering potential due to a single △ extended
charge defect was averaged using a uniform random

Fig. 5: (Colour on-line) Conductivity measured in CVD-
synthesized graphene at T = 3.5K for two samples with
different mobilities (blue dots) and respective fits to the
semi-classical calculation with resonant scatterers contri-
bution included. Sample with higher (lower) mobility:
W ≃ 10.0(11.5) nm; γ ≃ 5.38(4.84)× 1010 cm−2(V � 0) and γ ≃
4.63(5.56)× 1010 cm−2(V < 0). The midgap parameters are
ns = 1.5(3.0)× 10

11 cm−2 and R= a0, with a0 = 0.14 nm; the
experimental data was shifted as to have a minimum of zero at
the Dirac point: Vmin ≃ 8.0(5.5)V and σmin ≃ 0.2(0.1)e

2/h.

distribution of angles:

〈φ̃△,eff(q)〉 ≡ π−3
∫ π

0

3
∏

i=1

dϕiφ̃△,eff(q). (9)

The influence of the particular lines orientation on
transport depends strongly on the screening length. For
graphene on top of SiO2, the graphene structure constant
α is expected to be around 0.5 and thus qTF ∼ 2kF . In
this case, the variation of the extended charge defect
potential (φ△,eff) with the angles {ϕi} is hindered by a
TF wave vector qTF with the same order of magnitude
than Q(ϕi), as direct inspection of eq. (6) shows. As a
consequence, σl becomes little sensitive to the particular
random distribution adopted. At the Fermi level, the
averaged scattering potential reads (see appendix),

〈φ̃△,eff〉=
ql

4πkF ǫd

∣

∣

∣

∣

π− θ
cos (θ/2)

∣

∣

∣

∣

[

2+ eikF (cos θ−1)W
]

. (10)

Interestingly, the line separation W adds an oscillating
factor to the scattering amplitude (last term in (10)),
with the consequence that the familiar V-shape in the
conductivity as function of the gate voltage [13,14] (which
requires f(θ)∼ 1/

√
kF ) will not be observed in samples

with a high density of extended charge defects. This
manifests in a change of curvature in a σ vs. Vg plot, a
bona fide signature of scattering due to extended charge
defects. This oscillating factor is essential to the high-
quality fit of the data, as shown in figs. 2 and 5.

Disorder in the mesh size. Experimental studies
in CVD graphene show extended defects with many
geometries, the fact that the △ extended defect fits well the
data indicates that such defect constitutes the dominant
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type of scatterer within our model. As discussed above,
albeit for α∼ 1/2 the conductivity is barely affected by
the specific orientation of the lines, it is very sensitive
to changes in W , since this parameter measures roughly
the defect mesh size, and hence is directly related to
the scattering strength experienced by the electronic
carriers. A careful inspection shows that a change of 5%
in W is enough to deteriorate the fits. This parameter
sets the departure from the σ∼ nc (or equivalently, σ∼
V ) behavior, similar to that originated from charged
impurities located in the substrate, to a more involved
carrier-density dependence, namely that of eq. (1).
The effect of disorder in W can be estimated by assum-

ing a normal distribution p(W ) with average line separa-
tion W̄ and variance dW 2. The potential accounting this
kind of disorder is obtained by replacing the exponential
factor in eq. (10) according to,

eiqxW → eiqxW̄ e−(qxdW )2/2, (11)

where qx = kF (cos θ− 1) is the transferred momentum
along the x-axis; a finite variance dW 2 changes the
previous results (i.e. without disorder in W ) whenever
(qxdW )

2 �O(1). We find W̄/10� dW � W̄/100, in all
samples, showing that our model predicts that prominent
extended defects form intersection edges with lengths
centered around W ≃O(10 nm) with small variance.
Other scattering mechanisms. So far we have analyzed

the effect of extended charge defects in DC-transport in
graphene. Notwithstanding, other mechanisms are in play
which can provide important corrections to our model,
especially in the regime of low carrier density, where the
fit to eq. (1) is less accurate (see dashed line in fig. 2).
We focus our attention on midgap states, presumably

the most important scattering mechanism in mechanically
cleaved non-suspended graphene samples at finite densi-
ties and not too high temperatures [13,14,18,19], here also
playing an important role as we will briefly see. Midgap
states emerge due to resonant scatterers (RS), whose phys-
ical realization could be vacancies or adsorbed hydro-
carbons in the surface of graphene. Indeed, we assume
a typical value for the density of resonant scatterers,
ns ∼ 1011 cm−2, and take the radius of the scattering disk
R to be of the order of carbon-carbon distance. The correc-
tion to the conductivity (eq. (1)) is then calculated using
Matthiessen’s rule, σ−1 = σ−1l +σ

−1
s , where,

σs ≃
2e2

hπ2ns
k2F ln

2 (kFR) , (12)

is the conductivity due to resonant scatterers [13,14,20].
The new fits are obtained by keeping W fixed from its
previous value (i.e. with just extended charge defects
considered) and varying γ —fig. 2 shows that midgap
states yield an important correction in the low to moderate
density regime.

Electron-hole asymmetry. We finally discuss the
origin of the electron-hole asymmetry in DC-transport,
highlighted in fig. 2 by using different colors to represent

p and n conductivity. The asymmetry between holes and
electrons mobility

μ= (1/e)dσ/dnc, (13)

is clearly shown in most transport studies in graphene; in
CVD samples |μp−μn|/μn is about a few percent. This
asymmetry may have two distinct physical origins: 1) a
potentially significant charge transfer from the metallic
contacts to graphene [21], and 2) scattering cross-sections
sensible to the carriers polarity.
In order to estimate the contribution of the extended

defects to the conductivity asymmetry, we compute the
next term in the Born series for a single charged line. The
2nd Born correction to the scattering amplitude δf(θ) is,

δf(θ)

f(θ)
= 2p

evF�

φ̃eff(q)

∫

d2k

(2π)
2 φ̃eff(p

′−k)GD(k)φ̃eff(k−p),

where the 2D Dirac propagator reads

GD(k) =
1

v2F�
2 (|p|2−k2+ i0+) , (14)

and the screened potential φ̃eff is given by eq. (4) with
λlL= ql. The differential cross-section |f + δf |2 has now a
term proportional to φ̃3eff , and thus is no longer invariant
under a change of electrical charge sign e→−e. For small
density of charge |ql/e|� 0.1, the conductivity in the 2nd
Born approximation, σ(2), relates to the FBA value, σ(1),
according to

σ(2) ≃ σ(1)
[

1− g(α)ql
e

]

, (15)

where g(α) reflects the importance of the dielectric
medium. For graphene on top of silicon oxide we obtain
g(1/2)≃ 1.2, entailing a negligible difference between
the conductivity for carriers with opposite polarities as
long as ql≪ e. In general, for extended defects made of a
single line of charge, the 2nd Born approximation yields
a global multiplicative factor in the conductivity; notice
that the term inside brackets in eq. (15) just depends on
the charge of the defect and on the sign of carriers, ql/e,
and therefore is constant throughout the entire range of
carrier density. Indeed, one can absorb the correction from
the 2nd Born approximation into γ = nlql/e

2 according
to γ→ γ/[1− g(α)ql/e].
It would be desirable to perform the same calculation

for a △ defect. Unfortunately, however, in this case,
the 2nd Born correction becomes much involved. Despite
that, we can get some intuition by studying a specific
configuration; we have performed a numerical evaluation
of g(α) for a N = 3 extended defect with ϕ1(2)(3) = 0,
R1(2) = (0, 0), R3 = (W, 0) (see fig. 3 for definitions of ϕi
andRi) andW = 10nm; a strong dependence of g(α) with
kF was observed, more precisely, a variation of ∼ 30% by
increasing the gate voltage from 1V to 50V. We leave
as an open question whether the inclusion of the 2nd
Born amplitude in the calculation of the conductivity leads
to a qualitative improvement of the fits of experimental

28003-p5



Aires Ferreira et al.

data to our model — this would elucidate about the
precise amount of electron-asymmetry possibly induced by
charged extended in CVD graphene.
The experimental data shown in figs. 2 and 5 disclose

a small but perceivable change of mobility from p to n
carriers. In the light of the latter results, this suggests
that the 2nd Born correction cannot be too large in these
samples (discarding the remote possibility that a large
second-order correction is balanced with a charge transfer
from the Hall probes).

Conclusions. – Extended defects are prevalent in
CVD graphene and arise in SEM studies as cracks with
several sizes and oriented at random. Due to the self-
doping mechanism [11] such cracks will act as charged
scattering centers. In this letter, we have studied the
impact of such defects in the DC-transport properties
of graphene films. By constructing a simple model of
extended defects, a semi-classical computation of the DC-
conductivity was carried out taking into account disorder
on the extended defects geometry and the screening
by graphene electrons. We have shown that charged
extended defects lead to a very distinctive dependence
of DC-conductivity with carrier density compared to
previously studied mechanisms [13,14]. Our findings show
that extended charge defects can play an important role in
DC-transport of chemically grown graphene samples with
a large density of cracks.
Growing graphene via CVD is a very promising route

towards scalable fabrication of two-dimensional high-
quality carbon films. The understanding of the scattering
mechanisms in chemically grown graphene samples is thus
of uppermost importance to increase electronic mobilities
currently limited to ≃ 4000 cm2 ·V−1 · s−1. Given the
stringent constraints on electronic mobilities required for
technological applications of graphene, our results show
that the control of such defects can be of fundamental
importance for further development of a graphene-based
electronics.
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Appendix

The Thomas-Fermi renormalized electrostatic potential
for the extended charge defect △ depicted in fig. 3 reads,

φ̃△,eff(q) =
ql
2ǫd

[

1

|qx cosϕ1− qy sinϕ1|+ qTF
+

1

|qx cosϕ2− qy sinϕ2|+ qTF

+
eiqxW

|qx cosϕ3− qy sinϕ3|+ qTF

]

. (A.1)

The potential depends on the relative orientation of
the lines through the angles {ϕi}. To get a meaningful
result we have to consider a statistical distribution of
such angles. For α� 1/2 the denominators in (A.1) are
dominated by qTF and hence we can safely integrate the
{ϕi} dependences using a uniform distribution. Choosing
q= kF (cos θ− 1, sin θ), we obtain,

〈φ̃△,eff〉 =
ql
2ǫdkF

∣

∣

∣

∣

∣

∣

π+2
∑1
β=−1 arctan

(

fβα
wα

)

πwα

∣

∣

∣

∣

∣

∣

×
(

2+ eikF (cos θ−1)W
)

, (A.2)

with wα =
√

2 (8α2+cos θ− 1), f0α = |sin θ|, f±1α =
G±α /

(

sin2 θ2
)

, where

G±α = [cos θ− 1∓ 4α]
∣

∣

∣

∣

sin
θ

2

∣

∣

∣

∣

± 2α |sin θ| . (A.3)

Setting α= 1/2 in (A.2) one obtains eq. (10).
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