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Transport properties of strongly correlated metals: A dynamical mean-field approach

Jaime Merino* and Ross H. McKenzie†

School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 8 September 1999!

The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model
on the hypercubic lattice at half-filling is calculated. Dynamical mean-field theory, which maps the Hubbard
model onto a single impurity Anderson model that is solved self-consistently, and becomes exact in the limit
of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi
liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a
nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in con-
ventional metals. The resistance smoothly increases from a quadratic temperature dependence at low tempera-
tures to large values which can exceed the Mott-Ioffe-Regel value \a/e2 ~where a is a lattice constant!
associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of
quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical
conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including
transition metal oxides, strontium ruthenates, and organic metals.

I. INTRODUCTION

The discovery of heavy fermion metals, metal-insulator
transitions in transition metal oxides, high-temperature su-
perconductivity in copper oxides, and colossal magnetoresis-
tance in manganates has stimulated extensive theoretical
studies of strongly correlated electron models.1,2 In spite of
intensive research over the past decade the nature of the me-
tallic state in strongly correlated materials is still poorly un-
derstood. This is particularly true of the cuprate supercon-
ductors, for which most of the metallic properties cannot be
understood within the Fermi liquid picture that has so suc-
cessfully described conventional metals.3 Yet there are also a
wide range of materials that have low-temperature properties
~e.g., the observation of magnetic oscillations such as the de
Haas–van Alphen effect! consistent with a Fermi liquid but
which at higher temperature are inconsistent with a Fermi
liquid. These include transition metal oxides,4 heavy
fermions,5–7 strontium ruthenates,8 the quasi-two-
dimensional molecular crystals k-(BEDT-TTF)2X ,9 and the
quasi-one-dimensional Bechgaard salts10 (TMTSF)2X

@BEDT-TTF5bis~ethylenedithio!-tetrathiafulvalene TMTSF
5tetramethyltetraselenafulvalene#. In conventional metals
the electronic properties are robust up to temperatures of
some sizable fraction of the Fermi energy. In contrast, in the
above materials the electronic properties change at some
temperature much less than the Fermi energy.

A brief summary is now given of some of the common
differences between the transport properties of strongly cor-
related metals and the properties of elemental metals. Later
in the paper specific references will be given to experimental
results on a wide range of materials.

Resistivity. Boltzmann transport theory gives an expres-
sion for the magnitude of the resistivity in terms of band
parameters and a mean free path between quasiparticle col-
lisions. At low temperatures this expression suggests a mean
free path that is much larger than a lattice constant, as in
conventional metals. However, at higher temperatures the

resistivity smoothly increases to large values that suggest a
mean free path smaller than a lattice constant, implying the
breakdown of a quasiparticle picture.

Thermopower. In conventional metals this is linear in
temperature, has values much lower than kB /e.87 mV/K,
and has the same sign as the charge carriers. In strongly
correlated metals it can have a nonmonotonic temperature
dependence, can change sign, and can have values of the
order kB /e .

Hall resistance. In conventional metals this is weakly
temperature dependent and gives the sign of the charge car-
riers. In strongly correlated metals, the Hall resistance can be
strongly temperature dependent, change sign, and have the
opposite sign to the thermopower.

Optical conductivity. In conventional metals, one ob-
serves a Drude peak at zero frequency, which broadens but
persists to high temperatures. The spectral weight of this
peak is comparable to that predicted from the optical sum
rule and the density of charge carriers ~or the plasma fre-
quency!. In contrast, in strongly correlated metals most of
the spectral weight is in broad features at high energies. Fur-
thermore, the Drude peak only exists at low temperatures.

A. Dynamical mean-field theory

The main purpose of this paper is to show that transport
properties such as those described above are obtained in a
dynamical mean-field treatment of the Hubbard model. Over
the past decade a considerable amount of work has been
done using this approximation to understand the Mott-
Hubbard metal-insulator transition.11,12 This approximation
becomes exact in the limit of either large lattice connectivity
or spatial dimensionality. It has been found to give a good
description of three-dimensional transition metal oxides and
has been argued to be relevant to the properties of the
cuprates.13,14 Whereas most previous studies of transport
properties13–17 have focused on doped Mott insulators we
consider the case where the band is half filled and the Hub-
bard interaction U is less than the minimum value needed for
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the formation of the Mott insulating state. This is the situa-
tion in the metallic phase of the molecular crystals
k-(BEDT-TTF)2X .9

Dynamical mean-field theory maps the Hubbard model
onto a single impurity Anderson model that must be solved
self-consistently. While time-dependent fluctuations are cap-
tured by this approximation, spatially dependent fluctuations
are neglected. Some important physics that emerges12 is that
there is a low-energy scale T0 which is much smaller than
the noninteracting half-bandwidth D and the Coulomb repul-
sion U. D is of the order of the Fermi energy given by band
structure calculations. This energy scale T0 is the analog of
the Kondo temperature for the impurity problem and defines
the energy scale of coherent spin excitations. In the metallic
phase the density of states r(v) contains peaks at energies
v52U/2 and 1U/2 which correspond to the lower and
upper Hubbard bands, respectively, and involve incoherent
charge excitations. These peaks are broad and have width of
order D. At temperatures below T0 a quasiparticle peak with
width of order T0 forms at the Fermi energy ~see Fig. 1!. The
quasiparticle band involves coherent excitations ~i.e., they
have a well-defined dispersion relation! that form a Fermi
liquid. The spectral weight of this peak ~see Fig. 2! vanishes
as the metal-insulator transition is approached. Thus, the
temperature T0 defines an energy scale at which there is a
crossover from Fermi liquid behavior to incoherent excita-
tions. A similar crossover occurs in heavy fermion
materials.5–7

B. Overview

In Sec. II A the model we study is introduced: a Hubbard
model on the hypercubic lattice with one electron per site

~i.e., at half-filling!. As well as a nearest-neighbor hopping t1
a next-nearest-neighbor hopping t2 is also included for sev-
eral reasons. First, this term introduces magnetic frustration
which enhances the stability of the metallic phase by sup-
pressing the Néel temperature for antiferromagnetic
ordering.12 Second, in the absence of this term the model has
exact particle-hole symmetry and the thermopower and Hall
conductivity vanish. Third, the model represents a higher-
dimensional version of a frustrated Hubbard model that de-
scribes the organic conductors k-(BEDT-TTF)2X .9 In Sec.
II B we review how the dynamical mean-field theory reduces
to an impurity problem. In the infinite-dimensional limit all
the vertex corrections to correlation functions vanish and
transport quantities are determined by the one-electron spec-
tral function. The relevant expressions are presented in Sec.
II C. Section II D describes how the local impurity problem
is solved at the level of iterated perturbation theory. This
method is known to give reliable results for the impurity
problem up to moderate interactions.

At low temperatures and low energies the electron self-
energy has a Fermi liquid form and in Sec. III we present
analytical results for the different transport quantities in this
regime. An expression is derived for the Kadowaki-Woods
ratio: the ratio of the T2 coefficient of the resistivity to the
square of the linear specific heat coefficient g . For strong
interactions it is shown to be independent of the band param-
eters and the strength of the interactions. The ratio of the
thermopower to gT is shown to be independent of the
strength of the interactions.

The temperature dependence of the different transport
quantities is presented in Sec. IV. In particular we focus on
the effect of the crossover from coherent to incoherent exci-
tations with increasing temperature. For moderate to strong
interactions the resistivity smoothly increases from a T2 de-
pendence at low temperatures to large values corresponding
to mean free paths less than a lattice constant. For strong
interactions the resistivity can have a nonmonotonic tem-

FIG. 1. Strong temperature dependence of the spectral density
of the strongly correlated metallic phase of a Hubbard model at
half-filling and in large dimensions. Note that only at the low tem-
peratures does a coherent quasiparticle band form near the chemical
potential m . The broad features near v2m.6U/2 are the lower
and upper Hubbard bands. The results shown are for U54t1* and a
degree of magnetic frustration of t2*50.3t1* . For comparison we
also show the noninteracting density of states (U50), for which
the square-root singularity placed at the upper band edge is not
plotted. It is this strong temperature dependence of the spectral
density that leads to many of the unconventional transport proper-
ties discussed in this paper.

FIG. 2. Dependence of the Fermi liquid quasiparticle weight Z

on the Hubbard interaction U. This paper focuses on the case of
moderate interactions, 2,U/t1*,4, corresponding to effective
mass enhancements (m*/mb51/Z) of 2–4, as observed in many
organic metals ~Refs. 9 and 38! and Sr2RuO4 ~Ref. 39!. Even for
such moderate interactions the transport properties turn out to be
strongly temperature dependent. The curves shown are for t2*
50.1t1* , but virtually identical results are obtained for t2*50.3t1* .
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perature dependence; at temperatures several times the co-
herence temperature it decreases with increasing tempera-
ture. The thermopower is linear in temperature up to a
temperature of the order of the coherence temperature at
which it decreases. The resulting peak is similar to the peak
that occurs in the electronic specific heat and is associated
with the thermal destruction of the quasiparticles. For strong
interactions most of the spectral weight in the optical con-
ductivity is associated with transitions from ~to! the lower
~upper! Hubbard band. A Drude peak only exists for tem-
peratures less than the coherence temperature.

II. DYNAMICAL MEAN-FIELD THEORY

A. The model

We consider a Hubbard model with nearest-neighbor hop-
ping, t1, and next-nearest-neighbor hopping, t2, on a given
lattice. The Hamiltonian is

H5t1(
i j ,s

~c is
† c js1H.c.!1t2(

ik ,s
~c is

† cks1H.c.!

1U(
i

n i↑n i↓2m(
is

n is ~1!

where U is the Coulomb repulsion between two electrons on
the same site and m is the chemical potential. We will only
consider the case of half-filling, i.e., one electron per site.
We treat the case of a d-dimensional hypercubic lattice with
connectivity z, which has t1 hopping to any of the 2z (z

52d) neighbors and t2 along the diagonals of the elemen-
tary unit cell. In order to have a finite kinetic energy in the
d→` limit the hoppings are rescaled as t1*5A2zt1 and t2*
5A2z(z21)t2, with z52d , z being the connectivity of the
lattice. The noninteracting (U50) density of states, D0(e)
5(kd(e2ek), associated with this lattice in the limit of in-
finite dimensions (d→`) reads18,12

D0~e !5S 2

p D 1/2 1

E~e !
coshS E~e !t1*

2t2*
2 D expS t1*

2
2E~e !2

4t2*
2 D

~2!

with E(e)5(t1*
2
12t2*

2
22A2t2*e)1/2. D0(e)50, whenever

E(e) is not real. Note that D0(e) has a finite band edge with
a square-root divergence. We set t1* as the unit of energy.
The reason for choosing this lattice is that we can treat a
varying degree of frustration by tuning the ratio t2*/t1* ,
which changes the shape of the bare density of states. Other
lattices, such as the Bethe lattice with next-nearest neigh-
bors, can also be used, but its density of states remains sym-
metric and therefore is qualitatively the same as its nonfrus-
trated counterpart. Before considering how this model can be
studied using dynamical mean-field theory, we note a pos-
sible alternate approach to that used here. If one is interested
in weak to intermediate values of U/t , one can directly start
from a weak-coupling treatment of the infinite dimensional
model. Such an approach was taken in Schweitzer’s and
Czycholl’s19 treatment of transport properties for the peri-
odic Anderson model.

B. Local impurity self-consistent approximation

In the limit of infinite dimensions, mean-field theory of
the full interacting lattice problem becomes exact and the
problem reduces to solving a set of dynamical mean-field
equations.11,12 Therefore, the original Hubbard model is
mapped to an impurity problem in the presence of a bath of
electrons which describes the rest of the lattice electrons and
that has to be found self-consistently. More precisely, one
has to solve the associated single impurity Anderson model:

H5(
k ,s

~ek2m !cks
† cks1(

s
~ed2m !nds

1(
k ,s

Vkd~cds
† cks1cks

† cds!1Und↑nd↓ , ~3!

where the parameters ek and Vkd describe the bath of elec-
trons through the hybridization function, which is defined as

D~ ivn!5(
k

uVku
2

ivn2ek

. ~4!

This function represents the amplitudes for the lattice elec-
trons to leave a site and, after wandering around the lattice,
to return. Therefore the problem remains local in space co-
ordinates but time-dependent correlations are fully taken into
account. This is because in the large coordination limit, an
electron can only hop once from one site to its nearest neigh-
bor. Processes in which an electron can repeat a given path
from one site to another in the lattice are suppressed as they
are at least of order 1/d . Some preliminary work is just
appearing20, that tries to extend the zero-order expansion to
include this type of higher-order process.

The bath function D(ivn) is determined self-consistently,
from the following condition:

D~ ivn!5ivn2S~ ivn!2G21~ ivn!, ~5!

where the self-energy S(ivn) is determined by solving the
Anderson Hamiltonian ~3!, which is local in space, i.e., does
not depend on momentum. G(ivn) is the lattice Green’s
function from which the spectral densities can be obtained,

r~v !52

1

p
Im G~v1ih !. ~6!

C. Transport quantities

In the limit of infinite dimensions, transport quantities can
be calculated straightforwardly, due to the local nature of the
self-energy. For example, the evaluation of the optical con-
ductivity simplifies drastically as only the particle-hole
bubble has to be evaluated in the Kubo formula. Contribu-
tions due to higher-order processes included in vertex cor-
rections cancel exactly.21 For a more detailed discussion of
the derivation of the expressions presented here see Refs. 12
and 13.

Several transport quantities of interest can be obtained
from the spectral density. The real part of the optical con-
ductivity in the x direction is given by
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sxx~n !5s0E
2`

`

dv
f ~v !2 f ~v1n !

n

1

N

3(
ks

S ]ek

]kx
D 2

rk~v !rk~v1n !, ~7!

where a is the lattice constant, s05e2p/2\a , and N is the
total number of sites in the system.

In the low-frequency limit, n→0, the Hall conductivity
reduces to

sxy
H

5s0
HE

2`

`

dv
] f ~v !

]v

1

N (
ks

S ]ek

]kx
D 2 ]2ek

]ky
2 rk~v !3, ~8!

where B is an external magnetic field that points in the z

direction and s0
H

52p2ueu3aB/3\2. From the above equa-
tions we can evaluate the Hall coefficient, RH

[sxy /(sxx
2 B). RH can be derived from a more general

expression22 which correctly describes the high- and low-
frequency limits. This generalized expression involves inte-
grations all over the Brillouin zone which, for frequencies
n.max(U,t), cannot be written as an integral over the Fermi
surface such as the ones that appear in Eqs. ~7! and ~8!.
Therefore, the Hall coefficient we have computed remains
valid only in the low-frequency limit. Calculations within
dynamical mean-field theory using iterative perturbation
theory ~IPT! for the high-frequency Hall coefficient RH

* have
been carried out by Majumdar and Krishnamurthy23 for the
doped Mott insulator.

The thermopower is defined as

S52

kB

ueuT

L12

L11
, ~9!

where the transport integrals reduce in the d→` limit to

L jk5E
2`

`

dvS 2

] f ~v !

]v D F 1

N (
ks

S ]ek

]kx
D 2

rk~v !2G j

vk21.

~10!

In the above expressions, a further simplification can be
made in the case of a simple hypercubic lattice, as all sums
in the momentum reduce to integrations in energy weighted
by the density of states:

1

N (
ks

S ]ek

]kx
D 2

rk~v !2
5

2

d
E

2`

`

deD0~e !r~e ,v !2, ~11!

1

N (
ks

S ]ek

]kx
D 2 ]2ek

]ky
2

rk~v !3

52

1

2d2E
2`

`

deD0~e !er~e ,v !3, ~12!

with the spectral densities given by

r~e ,v !52

1

p
ImS 1

v1m2e2S~v1ih !
D . ~13!

We will use this simplification in order to avoid the cumber-
some sums over momentum. In particular the dc conductivity
reduces to the following expression:

sxx5

2s0

d
E

2`

`

deD0~e !E
2`

`

dvS 2

] f ~v !

]v D r~e ,v !2

~14!

for the simple hypercubic lattice.
For reasons of simplicity, we will still use the above ex-

pressions in the presence of a nonzero t2* . This is because
the focus of this paper is on many-body effects and not on
how different band structures may change the results
slightly.

D. Iterative perturbation theory

A wide range of techniques have been used to solve the
Anderson model ~3!. An extensive review has been given by
Hewson.24 Among them the iterative perturbation theory is
straightforward and at the same time gives a qualitatively
correct description because it recovers exactly the atomic
(U/D→`) and the noninteracting (U50) limits. It also pro-
vides a fast way of scanning a wide range of parameters in
the Anderson model, which, by means of other methods such
as exact diagonalization and quantum-Monte Carlo is com-
putationally very demanding. Other approximate schemes
such as the noncrossing approximation, which takes an infi-
nite resummation of a certain class of perturbative diagrams,
is limited in its applicability to high temperatures.25

Originally, the iterative perturbation scheme could be ap-
plied only for systems at half-filling and with particle-hole
symmetry. This limitation comes from the fact that the high-
energy behavior of the spectral density is exactly reproduced
for half-filling by accident but this is not true at arbitrary
filling. However, our main interest in this work is to study
frustrated models where the noninteracting density of states
is nonsymmetric and, consequently, particle-hole symmetry
is broken. Recently Kajueter and Kotliar26 have modified the
standard iterative perturbation theory to treat asymmetric
cases, based on the earlier work of Martin-Rodero et al.27 by
which the self-energy is built up as an interpolative solution
that recovers both the strong- and weak-coupling limits and
satisifies the Friedel-Langreth sum rule. Other authors28 have
extended this framework to compute more accurately the
high-energy features of the spectral densities. Nevertheless,
all of them approximately agree with exact diagonalization
calculations when the interaction U is relatively large.

Our present work analyzes the transport properties of met-
als that are strongly correlated but sufficiently away from the
Mott transition so that well-defined quasiparticles exist at
low temperatures. This means that we are always in the me-
tallic side of the Mott transition but not too close to the
critical point at which the quasiparticle weight vanishes.
Some controversy has arisen recently29 on the reliability of
IPT even for moderate couplings of the interaction.
Müller-Hartman30 and also Schweitzer and Czycholl31 had
earlier shown that a second-order expansion in terms of the
skeleton diagrams which depend on the interacting Green’s
function, G(ivn) instead of G0(ivn), does not reproduce the
upper and lower Hubbard bands: only a Fermi liquid type
peak is found in the spectral density. The skeleton diagrams
enter the expansion of the Luttinger-Ward functional and are
the ones that collapse into a local form as d→` , giving a
local self-energy.11,12 However, Yamada32 has shown that
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when taking into account all the fourth order terms, the upper
and lower Hubbard bands are reproduced, in agreement with
the IPT results. This means that an expansion up to second
order in the interacting Green’s functions is insufficient to
grasp the correct behavior of the spectral density. Moreover,
recent nonperturbative calculations done by Bulla, Hewson,
and Pruschke,33 using the numerical renormalization group
for the Hubbard model in infinite dimensions, clearly show
the formation of the upper and lower Hubbard bands. There-
fore, we believe that the method used here can be safely
applied, giving a qualitative description of strongly corre-
lated metals.

We use the finite-temperature version of the formalism,
instead of the one used by Kajueter and Kotliar,26 valid at
T50, as we are interested in the thermodynamic properties
of correlated metals over a wide range of temperatures.

We briefly outline the method used and refer the reader to
the more detailed work recently published.26,34,28

~i! Guess of an effective hybridization function D(ivn)
and input of the chemical potential of the system m together
with the chemical potential of the effective bath m0. We fix
the population per site of the interacting lattice to be n

[^ns&50.5, and it is kept fixed along the rest of the steps.
~ii! Computation of the Green’s function of the effective

bath

G0~ ivn!5

1

ivn1m02D~ ivn!
~15!

and computation of the population of the bath n0[^n0s&
52G0(t502).

~iii! Ansatz for the self-energy, which is given by

S~ ivn!5Un1

AS (2)~ ivn!

12BS (2)~ ivn!
~16!

with A and B defined as

A5

n~12n !

n0~12n0!
B5

U~12n !2m1m0

U2n0~12n0!
. ~17!

The second-order self-energy S (2)(ivn) is computed from
the imaginary time-dependent Green’s function of the bath

S (2)~ ivn!5E
0

b

dte ivntS~t ! ~18!

where S(t)52U2G0(t)G0(t)G0(2t). We use fast Fou-
rier transforms to go back and forth from time to energy
variables. The expression obtained for A, Eq. ~17!, comes
from fixing the m52 moment of the spectral density as ex-
plained in Ref. 28:

M (m)
5E

2`

`

wmr~w !dw ~19!

where M (m) can be computed from the Heisenberg equations
of motion. The parameter B is fixed from the exact atomic
limit solution, Vkd→0.

~iv! Computation of the impurity Green’s function

G~ ivn!5(
k

G~ ivn ,k !5E
2`

` D0~e !de

ivn1m2e2S~ ivn!
.

~20!

The free parameters (m0 ,m), can be now fixed from the
following set of equations:

n52G~t502!50.5,

n5n0 . ~21!

The last condition, originally introduced by Martin-Rodero
et al.27 together with the expressions for the interpolative
self-energy ~16! and ~17!, is nearly equivalent to the Lut-
tinger condition or the Friedel-Langreth sum rule,35 and fixes
the correct low-energy behavior of the self-energy. Numeri-
cally this condition is much easier and faster to handle than
the Luttinger one. Results from both of these conditions
agree equally well with results from exact diagonalization of
finite clusters.28 Finding (m0 ,m) takes around four to six
iterations using Broyden’s method.36

~v! The final step is the requirement that the lattice
Green’s funtion G(ivn) coincide with the Green’s function
of the associated impurity problem given by the Anderson
Hamiltonian. This condition is expressed in Eq. ~5!.

The above steps ~i!–~v! are repeated until a self-consistent
bath function is obtained. Note that the calculations are kept
on the imaginary frequency axis: this makes the computation
much faster and more efficient with the use of fast Fourier
transform algorithms. Analytical continuation to the real fre-
quency axis is needed in order to compute the spectral den-
sities entering the different transport quantities. This continu-
ation is numerically implemented using Padé
approximants.37

III. FERMI LIQUID BEHAVIOR

AT LOW TEMPERATURES

For temperatures and frequencies much less than the
Kondo temperature the self-energy S(v) of the Anderson
model has the Fermi liquid form24

S~v ,T !5vS 12

1

Z
D2iC@v2

1~pkBT !2# , ~22!

where Z is the quasiparticle weight and C is a positive con-
stant. At sufficiently low temperatures and energies the
imaginary part becomes much smaller than the bandwidth
and the spectral function ~13! will have well-defined peaks
when v5ZEk , where Ek is the band dispersion relation in
the absence of interactions. The dependence of the quasipar-
ticle weight Z on the Hubbard interaction U is shown in Fig.
2. The specific heat will be linear in temperature at low tem-
peratures with a slope that is 1/Z times larger than the non-
interacting value. The effective mass m* deduced from mag-
netic oscillations will also be larger than mb , the value
predicted by band structure calculations, by the same factor
(m*/mb51/Z). This enhancement is found to be about two
to four in many organic metals9,38 and Sr2RuO4.39 In this
section we consider the low-temperature transport properties
that follow from this form of the self-energy.
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A. Resistivity

The resistivity in a Fermi liquid behaves as

r.AT2. ~23!

Such a temperature dependence is characteristic of metals in
which the dominant scattering mechanism is the interaction
of the electrons with one another and is observed in transi-
tion metals,4 various organic conductors,9 and heavy
fermions.5

Yamada and Yosida40 demonstrated this behavior for an
Anderson lattice and showed that Umklapp scattering events
should dominate the contribution to the resistivity because
momentum conservation would give an infinite conductivity
when the lattice is not present. Uhrig and Vollhardt have
shown how in the limit of large dimensions the umklapp
processes lead to a finite conductivity.41 Cox and Grewe
pointed out that in an anisotropic system when the electron
velocity and momentum are no longer parallel normal scat-
tering can contribute to the resistivity.6

In transition metals and heavy fermions the Kadowaki-
Woods rule42,43 relates the coefficient A to the linear coeffi-
cient for the specific heat, g:A/g2

5const. The constant is
4.0310213 V cm (mol/mJ)2 for transition metals, and
1.0310211 V cm (mol/mJ)2 for most heavy fermions and
for transition metal oxides near the Mott-Hubbard
transition.44 However, recent measurements on UPt52xAu
found values of 10212 V cm (mol/mJ)2 for x50,0.5 but in-
creasing to 10211 V cm (mol/mJ)2 for x.1.1.45

We now evaluate the ratio A/g2 using our results. From
the self-energy ~22!, the resistivity in the low-temperature
limit associated with expression ~14! is

r~T !.
2dA2pkB

2 \a

e2DI01
CT2, ~24!

where we have numerically integrated

Inm[E
2`

` dxxn

~x2
1p2!m

ex

~11ex!2 ~25!

and find I01.1/12. Expression ~24! is the resistivity at low
temperatures for the case of a simple hypercubic lattice, for

which the density of states is D0(e)5(1/Apt1*)e2e2/t1*
2

and
t1*

2
54t1

2d . D is the effective half-bandwidth defined as D

5A2t1* .
The linear specific heat term for the same density of states

is

g5

2A2ppkB
2

3ZD
, ~26!

where Z is the quasiparticle weight. Combining expressions
~24! and ~26! we obtain

A

g2 5

9dA2p\a

4p3kB
2 I01e

2 DCZ2. ~27!

Hence, we see that if the dimensionless quantity DCZ2 is
universal then so will be the ratio A/g2. Insight into this
question can be gained by considering first a pure Anderson

model, for which we take a constant hybridization D5D .
For this case, it is found that24 C5(R21)2/2DZ2, where R

is Wilson’s ratio,

R5

x loc /x loc
0

g/g0
, ~28!

and x loc is the local susceptibility, g is the linear coefficient
for the specific heat, and the zero superscript denotes the
values in the absence of interactions. R takes values between
1 for U50 and the universal value 2 for uU/Du>1 ~Kondo
regime!.24

We also find that this scaling holds for the Anderson
model with the self-consistent bath. We found C by fitting
the imaginary part of the self-energy obtained from our dy-
namical mean-field theory calculations to the low-frequency
and low-temperature form ~22!, for different values of U. As
shown in Table I, we find that C scales with 1/Z2 for U

>2t1* as expected as we are in the Kondo regime, giving a
universal behavior of the A/g2 ratio. However, it decreases
for U<2, consistent with the result from the Anderson
model that R→1 in the U→0 limit.

From the numerical values of C in Table I, we can com-
pute the A/g2 ratio, using the density of states of a simple
hypercubic lattice: we get for U'3.0 ~Kondo regime! a ratio
of (1.24a)310212 V cm. This result is comparable to ex-
perimental findings for transition metal oxides if we take the
lattice constant to be a'10 Å.

Previous calculations using a highly accurate projective
method to solve the dynamical mean-field theory on the Be-
the lattice find that very close to the Mott-Hubbard transition
A/g2

5(2.3a)310212 V cm(mol/mJ)2 where a is the lattice
constant in Å of a three-dimensional system at half-filling.46

This differs from our result by a factor of 2 but turns out to
be due to the different lattice used. In order to make a direct
comparison with the results obtained in Ref. 46 we have
repeated our calculations using iterative perturbation theory
for a Bethe lattice at half-filling. We take a noninteracting
density of states D0(e)5(1/t1*p)A22(e/t1*)2. The fitting
parameters of the self-energy to the low-temperature form
for the Bethe lattice are shown in Table II. We find that
already for moderate values of U, the value of CZ2 con-
verges rapidly to the value obtained in Ref. 46, providing a
stringest test of the method used here.

TABLE I. Values of the fitting parameter C and quasiparticle
weights for different values of the Coulomb repulsion U for the
frustrated hypercubic lattice. Note that C scales with 1/Z2 even for
values of the interaction such that the metallic phase has well de-
fined quasiparticles with only moderate enhancements of the effec-
tive masses.

U/t1* Ct1* Z(U) CZ2t1*

1 0.1 0.9 0.08
1.5 0.23 0.8 0.16
2 0.44 0.67 0.20
2.5 0.70 0.55 0.21
3 1.07 0.45 0.22
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B. Thermopower

Similarly to the above analysis for the resistivity we can
gain some insight into the behavior of the thermopower at
low temperatures from the Anderson model. It can be shown
for the N-fold degenerate Anderson model,47 that the ther-
mopower increases linearly with temperature at low tempera-
tures. Its slope scales as 1/Z , in the same way as the slope of
the specific heat. Therefore, within the Anderson model the
ratio of the thermopower to the linear coefficient of the spe-
cific heat is independent of Coulomb interaction. However, it
depends on the band filling: it drops to zero as half-filling is
reached, as it should, as for a system with particle-hole sym-
metry at half-filling the thermopower is zero.

The low-temperature behavior of the transport integral
L12 defined in Eq. ~10!, can be shown to be

L125
]D0~e !

]e
U

e5eF

1

2pZC
I21 ~29!

where I21 is the integral defined by Eq. ~25! and the term
proportional to the bare density of states at the Fermi energy
vanishes as the integral is antisymmetric. On the other hand,
L11 is proportional to the dc conductivity and reduces for low
temperatures to the T2 behavior analyzed in Sec. III A.
Therefore expression ~9! reduces to

S~T !5

2kB

ueu

]D0~e !/]e

D0~e !
U

e5eF

I21

I01

T

Z
, ~30!

where we again numerically compute the ratio of the inte-
grals I21 /I0152.65. A similar expression was recently given
by Palsson and Kotliar, who considered the thermopower in
a doped Mott insulator.16 The sign of the thermopower gives
information on the type of charge carriers ~electron or holes!
that are contributing mostly to the transport. This sign comes
in our expressions from the slope of the density of states at
the Fermi energy.

The ratio of the thermopower to the specific heat at low
temperatures is given by

S~T !

gT
52

1

ueu

3

2p2

]D0~e !/]e

D0~e !2 U
e5eF

I21

I01
, ~31!

which is universal, i.e., independent of the interactions for a
given degree of frustration in the lattice.

A simpler expression for the slope of the thermopower
can be found in the limit t2*/t1*→0; in this case, expression
~9! reduces to

S~T !'
2kB

ueu

I21

I01
A2

t2*

Zt1*
2 T . ~32!

The slope of the thermopower is, therefore, directly propor-
tional to the degree of frustration present in the frustrated
hypercubic lattice. We have checked that at low temperatures
our numerical results are in good agreement with this expres-
sion.

The simple expression ~31! may explain the huge values
(S.kB /e at 300 K! recently observed48 for NaCo2O4, which
has potential applications as a thermoelectric material.49 This
material consists of layers of CoO2 with the crystal structure
of a triangular lattice. For such a lattice the noninteracting
density of states can be expressed analytically as shown in
Ref. 50. Evaluating the derivative at the Fermi energy for a
half-filled band gives

]D0~e !/]e

D0~e !2 U
e5eF

521.24 ~33!

and so Eq. ~31! predicts a ratio of 1/2ueu, which reexpressed
in appropiate units is 5.2331023 m V mol/mJ. The mea-
sured thermopower is approximately linear in temperature up
to about T5200 K, at which it has a value of about
80 mV/K. The measured specific heat coefficient51 is g
548 mJ/(mol K2) giving a ratio S(T)/gT of
831023 mV mol/mJ. This suggests that the large value of
the thermopower of this material is not just due to strong
correlations enhancing the effective mass but also due to the
large particle-hole asymmetry associated with the triangular
lattice. Also, the theory presented predicts a positive ther-
mopower at low temperatures for the triangular lattice, con-
sistent with experiment.48

C. Hall resistance

In the low-temperature limit, the Hall conductivity ~8!
reduces to

sxy
H

5

s0
H

2d2

3

8p2D0~e5eF!
eF

C2T4I02 ~34!

where the integral I02 is defined by Eq. ~25! and is equal to
0.007 30. This expression depends on the interaction through
C}1/Z2. A similar expression was recently found by Lange
and Kotliar.17

The Hall coefficient reduces at low temperatures to

RH'
a3

6ueu

I02

I01
2

m2Re S~v5m !

t1*
2D0~eF!

~35!

where I02 /I01
2

51.06. Expression ~35! shows temperature de-
pendence through the chemical potential m5m(T). At T

50, expression ~35! is independent of U because from Lut-
tinger’s theorem eF[m2Re S(v5m). Moreover, in the U

→0 limit, and in the particle-hole symmetric case, expres-
sion ~35! reduces to zero, RH50 for T→0, as it should, as
the density of holes cancels exactly the density of electrons

TABLE II. The same as in Table I for the Bethe lattice. The
final entry is the result obtained in Ref. 46 using a highly accurate
projective method. Uc54.13t1* refers to the critical value at which
the T50 second order metal-insulator transition takes place.

U/t1* Ct1* Z(U) CZ2t1*

1.5 0.35 0.72 0.18
2.0 0.70 0.57 0.23
2.5 1.40 0.42 0.25

Uc54.13 0.29
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contributing to the transport in the system. As soon as the
degree of frustration t2*/t1*Þ0, then, the Hall coefficient is
nonzero, and, again at T50, independent of the Coulomb
interaction. The sign of the Hall coefficient depends on the
sign of the real part of the self-energy referred to the chemi-
cal potential. This means that, in general, it is possible to
have a different sign for the thermopower and the Hall factor
at low temperatures depending on the shape of the bare den-
sity of states and the Fermi energy.

D. Optical conductivity

At low temperatures the optical conductivity ~7! reduces
to

s~v !5

s0D~eF!

dp
E dn

f ~n !2 f ~n1v !

v

3

@1/t~n !11/t~n1v !#

~v/Z !2
1

1

4
@1/t~n !11/t~n1v !#2

, ~36!

where 1/t(n)52 Im S(n), similar to an expression first ob-
tained by Murata.52 For v!pT , the frequency dependence
of the self-energy can be neglected and the above expression
reduces to

s~v ,T !5

2s0D0~eF!Z

dp

t*~T !

11@vt*~T !#2 , ~37!

where 1/t(T)52 Im S(0,T)'2C(pT)2 and t*(T)
5t(T)/Z .

IV. CROSSOVER TO INCOHERENT EXCITATIONS

The Fermi liquid behavior discussed in the previous sec-
tion occurs only up to some temperature of the order of the
coherence temperature T0. There is then a smooth crossover
to the case where all of the low-energy excitations are inco-
herent ~see Fig. 1!. In this section we present results showing
the effect of this crossover on transport properties.

A. Resistivity

The temperature dependence of the resistivity is shown in
Fig. 3 for t2*/t1*50.1 and various interaction strengths. It has
two properties often observed in strongly correlated metals:
~i! for strong interactions a nonmonotonic temperature de-
pendence occurs, and ~ii! for high temperatures it smoothly
increases to large values corresponding to mean free paths
less than a lattice constant.

For values of the interaction comparable to the band-
width, U'4t1* , the resistivity shows a peak at a temperature
of about 0.2t1* . The temperature at which this peak appears
corresponds approximately to the temperature at which there
are no longer Fermi liquid quasiparticles present ~see Fig. 1!.
The decreasing resistance with increasing temperature, char-
acteristic of a semiconductor or insulator, is due to thermal
excitations to the upper Hubbard band. Note that the peak
temperature is not the Kondo temperature, which in our cal-
culations is at much lower temperatures. Such a peak in the
resistivity is observed in heavy fermion sytems5 and some of

the k-(BEDT-TTF)2X family of organic superconductors.9

Results similar to Fig. 3 were obtained previously for the
simple hypercubic lattice (t250) when the impurity problem
was solved using quantum Monte Carlo calculations and the
noncrossing approximation,25 and for the Bethe lattice when
the impurity problem was solved using iterative perturbation
theory.53

Bad metals. In conventional metals transport occurs by
well-defined quasiparticles; they have a wavelength
(;1/kF) much less than the mean free path l and so transport
properties can be described by the Boltzmann equation.
However, if the scattering is sufficiently strong that the mean
free path is comparable to a lattice constant (l;a) then
kFl;p and the quasiparticle concept breaks down. This is
often referred to as the Mott-Ioffe-Regel limit.54 For an iso-
tropic three-dimensional metal this corresponds to a conduc-
tivity of s5e2/(3\a), and is sometimes referred to as the
Mott minimum conductivity. However, for a wide range of
strongly correlated metals, including the cuprates,55 fullerene
metals (A3C60),56 the organic superconductors
k-(BEDT-TTF)2X ,9 Sr2RuO4,57 SrRuO3,58 and VO2,59 it is
observed that as the temperature increases the resistivity can
increase to values corresponding to mean free paths much
less than a lattice constant. Such materials have been referred
to as ‘‘bad metals.’’60 In contrast, in the A-15 metals the
resistivity appears to ‘saturate’ at a high-temperature value
corresponding to the Mott-Ioffe-Regel limit.61 However, it
has recently been suggested that the resistivity does not satu-
rate but rather a change in temperature dependence occurs
when the scattering is strong enough to cause a breakdown
of the Migdal approximation.62 Emery and Kivelson
proposed60 that the smooth temperature dependence of the
resistance in bad metals suggests that the low-temperature
transport is also not due to quasiparticles.

At low temperatures the resistivity given by ~24! can be
written

FIG. 3. Temperature dependence of the resistivity in the frus-
trated hypercubic lattice for t2*/t1*50.1 and for different values of
U/t1*52, 3, 3.5, and 4. For U54t1* there is a crossover from me-
tallic behavior at low temperatures to insulating behavior at high
temperatures. The resistivity is given in units of r05\a/e2, where
a is a lattice constant which corresponds to a value of the resistivity
at which the mean free path is comparable to a lattice constant.
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r.d~2p !1/2
\a

e2

1

tD
, ~38!

where t is the scattering time. The Mott-Ioffe-Regel condi-
tion (l.a) is equivalent to tD.2p , leading to a resistivity

r0.
\a

e2 . ~39!

For a510 Å this corresponds to a resistivity of 3 mV cm.
Figure 3 shows that even for moderate interaction strengths
the resistivity can smoothly increase to values much larger
than this. Furthermore, our results provide a counterexample
to the ideas of Emery and Kivelson60 since there is a smooth
crossover from transport by incoherent excitations at high
temperatures to Fermi liquid transport at low temperatures.

B. Thermopower

In Fig. 4, we show the results for the thermopower as a
function of temperature for different values of the Coulomb
interaction U and in the nearly symmetric case t2*/t1*50.1.

The low-temperature behavior is correctly described by
Eq. ~9!. As can be observed, the slope of the thermopower at
low temperatures increases with increasing U, scaling as the
effective mass m*/m51/Z . We find a minimum in the ther-
mopower which is rather shallow for small U and becomes
increasingly pronounced with increasing U. A similar feature
also occurs for doped Mott insulators13 and for the Anderson
lattice.19 We observe that the mimimum moves to higher
temperatures as U/t1* is decreased. This is a consequence of
the increase in the Kondo scale with decreasing U and is
supported by the observation that this minimum follows the
peak in the specific heat. To illustrate the close relationship
between the thermopower and the specific heat, Fig. 5 shows
the specific heat for the same parameter values as Fig. 4.

The peak in the specific heat, already analyzed by several
authors,63 is associated with the binding energy of the Kondo
spin screening cloud which eventually forms at each lattice
site. The high-temperature behavior found is typical of sys-
tems that have a depleted density of states at the Fermi en-
ergy, for example, in semimetals and insulators one expects
the magnitude of the thermopower to decrease as the tem-
perature is decreased. This is more easily understood from
the behavior of the spectral densities which show this effec-
tive depletion of quasiparticle excitations at the Fermi energy
~see Fig. 1!.

The change in sign of the thermopower at intermediate
temperatures T'0.2t1* for U53.5t1* can be explained from
the fact that the spectral weight of the quasiparticle excita-
tions is transferred mostly to the lower rather than to the
upper Hubbard band, making the holes, rather than the elec-
trons, the dominant carriers contributing to energy transport
~see Fig. 1!.

It is worth stressing that it is not necessary to get to too
large values of U/t1* to find a clear signature of the minimum
in the thermopower and strong temperature behavior. This is
a feature that one can find in sufficiently correlated systems
far from the Mott transition as can be checked from the ef-
fective masses we obtain, m*/m , which in our calculations
vary between 2 and 4 for U'2 and 4, respectively.

Figure 6 shows the thermopower when the frustration is
increased to t2*/t1*50.3. The magnitude of the thermopower
is enhanced as a result of the larger asymmetry present in the
particle-hole excitations of the system. Thus, the slope at low
temperatures is increased by a factor of about 3, as expected
from Eq. ~32!. The main features remain similar to the less
frustrated case t2*/t1*'0.1, although the minimum of the
thermopower is more pronounced for a larger degree of frus-
tration.

FIG. 4. Temperature dependence of the thermopower for the
frustrated hypercubic lattice for t2*/t1*50.1 and for different values
of U/t1*52, 3, 3.5, and 4. The dashed lines are based on linear
extrapolations to zero temperature as expressed in Eq. ~32!. The
curves show how interactions between electrons significantly
change the magnitude and temperature dependence from the linear
behavior expected for a weakly interacting Fermi liquid. Indeed, the
appearance of a minimum in the thermopower is a signature of
thermal destruction of the coherent Fermi liquid state that exists at
low temperatures.

FIG. 5. Specific heat in units of the gas constant R, for the
frustrated hypercubic lattice for t2*/t1*50.1 and for different values
of U/t1*52, 3, 3.5, and 4. Note that the peak occurs at a tempera-
ture comparable to that at which the peak in the thermopower oc-
curs ~compare with Fig. 4!. The dashed lines are linear extrapola-
tions to zero temperature. As in the case of the thermopower, the
simple linear behavior found for the noninteracting case is qualita-
tively changed and a peak at low temperatures shows up for U/t1*
>3. The temperature scale at which this peak appears is set by the
binding energy of the spin-screening cloud formed at each lattice
site due to the Kondo effect.
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The thermopower of the cuprates64 and the organic super-
conductors k-(BEDT-TTF)2X ~Ref. 65! and
b-(BEDT-TTF)2X ~Ref. 66! has the common properties that
it is not a monotonic function of temperature and has large
values of order 10–50 mV/K at 100 K. For the organics
these properties cannot be explained in terms of the calcu-
lated band structures and a weakly interacting Fermi
liquid.65,66 For Sr2RuO4 the thermopower increases nonlin-
early with temperature from 4 K to 300 K, appearing to
saturate at high temperatures, and has the opposite sign to the
Hall coefficient.67

As discussed above a peak or minimum in the ther-
mopower is a signature of the decay of coherent excitations
with increasing temperature. It is desirable to see if this fea-
ture can be observed in experiments on other strongly corre-
lated metals. Such a peak should be clearly distinguishable
from a peak due to phonon drag68 by several features. The
latter produces a thermopower that is proportional to the lat-
tice specific heat and thus cubic in the temperature for T

!uD . For higher temperatures the phonon drag ther-
mopower goes like 1/T . The result is a peak around a tem-
perature of (0.1–0.2)uD . Values of uD can be deduced from
the specific heat data. Thus, it should be possible to distin-
guish whether an observed peak in a material is due to pho-
non drag or loss of Fermi liquid coherence because of the
different temperatures at which they occur and because of
the different behavior at higher temperatures.

Zhou and Goodenough have observed peaks around 100
K in the thermopower of CaVO3 ~Ref. 69! and
La12xNdxCuO3.70 They attribute these peaks to phonon drag.
This peak cannot be due to the correlation effects considered
here because it occurs at too low a temperature. In CaVO3
the optical conductivity still has a Drude peak at 300 K,71

and it is estimated that D51 eV and U53 eV. Conse-
quently, the coherence temperature will be of the order of
1000 K.

The peak in the electronic specific heat would be ex-
tremely difficult to observe because it will be masked by the

T3 phonon contribution. In contrast, the phonon contribution
to the thermopower decreases with increasing temperature
and so should not mask the feature due to correlations.

C. Hall resistance

In Figs. 7 and 8 we show results for the temperature de-
pendence of the Hall coefficient RH for t2*/t1*50.1 and 0.3,
respectively. We observe from the curves that for small val-
ues of the U/t1* ratio, the Hall coefficient is nearly indepen-
dent of temperature, whereas for larger values of the interac-
tion there is an increase in the Hall coefficient for increasing
T reaching a maximum at T'0.3t1* . This fact is observed
for both values of the frustration shown. Note that the sign of
the Hall coefficient is not necessarily the same as the sign of
the thermopower.

For a given value of the frustration, all curves converge to
the same value at T50 as expected from Eq. ~35!. However,

FIG. 6. Temperature dependence of the thermopower for the
frustrated hypercubic lattice with t2*/t1*50.3 and U/t1*52, 3, 3.5,
and 4. The dashed lines are extrapolations to zero temperature. The
effect of frustration is more clearly seen when comparing this figure
with the case t2*/t1*50.1. The values of the thermopower are in-
creased as well as the slope at low temperatures. However, the
position of the minimum is nearly independent of the degree of
frustration.

FIG. 7. Temperature dependence of the Hall coefficient for the
frustrated hypercubic lattice with t2*/t1*50.1 and for different val-
ues of U/t1*52, 3, 3.5, and 4. Note the saturation of the Hall coef-
ficient at low temperatures for all values of U/t1* . As the interac-
tion is increased strong temperature dependence arises.

FIG. 8. Temperature dependence of the Hall coefficient for the
frustrated hypercubic lattice with t2*/t1*50.3 and for different val-
ues of U/t1*52, 3, 3.5, and 4. A greater degree of asymmetry can
enhance some features of the Hall resistance. At low temperatures,
it is more strongly temperature dependent than for t2*/t1*50.1 and
an upturn in the Hall coefficient can even arise.
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the temperature dependence at low temperatures for t2*/t1*
50.3 differs from the t2*/t1*50.1 case. The behavior at low
temperatures is determined by the temperature dependence
of the chemical potential, which depends on the lattice ana-
lyzed through the bare density of states and the value of
U/t1* . For the case t2*/t1*50.3, the Hall coefficient is more
strongly dependent on U than for the t2*/t1*50.1 case. More-
over, an upturn of the Hall coefficient is found in the low-
temperature limit T→0 in the latter case. This means that,
although qualitatively the situation is similar for different
degrees of frustration, some features can be enhanced and
may depend on the details of the band structure and the bare
density of states of the material.

The Hall coefficient for a doped Mott insulator on a
simple hypercubic lattice was calculated previously by Prus-
chke et al.13 and Lange and Kotliar17 using dynamical mean-
field theory and found to have a qualitatively similar tem-
perature dependence.

The layered perovskite Sr2RuO4 has Fermi liquid proper-
ties at low temperatures8 but the Hall resistance of Sr2RuO4
is strongly temperature dependent.72 It has a value of
about 21.15310210 m3 C21 below 1 K and then increases
rapidly with temperature and changes sign around 35 K and
saturates at high temperatures to a value of about
20.1310210 m3 C21. The behavior and value below 1 K
can be explained within a Fermi liquid picture.72 However,
the sign change can only be explained if the temperature
dependence of the scattering rate in the different bands is
significantly different.73 An alternative explanation for the
temperature dependence is the decay of coherence discussed
here.

Experiments on organic metals k-(BEDT-TTF)2X show
a temperature-dependent Hall coefficient.74 For
b-(BEDT-TTF)2I3 the Hall resistance has a broad maxi-
mum around 40 K.75

D. Optical conductivity

Figure 9 shows the frequency-dependent conductivity cal-
culated for our model with U54t1* and t2*50.1t1* at three
different temperatures. It shows the important features noted
below for a range of strongly correlated metals: ~i! the Drude
peak only exists at low temperatures, and ~ii! most of the
spectral weight is contained in broad high-energy features.
Similar features were found previously using dynamical
mean-field theory and exact diagonalization and iterated per-
turbation theory,71,53 and for doped Mott insulators using
quantum Monte Carlo calculations.76

Infrared measurements77–79 of the frequency-dependent
conductivity s(v) of k-(BEDT-TTF)2X deviate from the
Drude behavior found in conventional metals. At room tem-
perature s(v) is dominated by a broad peak around 300 or
400 meV ~depending on the polarization and anion X) with a
width of about 150 meV. Even down to 50 K no Drude-like
peak at zero frequency is present ~see Fig. 2 in Ref. 9!. At 25
K the high-energy peak decreases slightly in temperature and
a Drude-like peak appears but can only be fitted to a Drude
form if the scattering rate and effective mass are frequency
dependent.77 Similar results are obtained for
a-(BEDT-TTF)2NH4Hg(SCN)4.80

Experiments on b-(BEDT-TTF)2X where X5I3 ,IBr2,
and AuI2 at 30 K show no Drude peak.81 Experiments on
b9-(BEDT-TTF)2SF5CH2CF2SO3 show no Drude peak,
even down to 14 K.82 Furthermore, it does not appear that
the spectral weight is conserved as the temperature varies.

For (TMTSF)2PF6 at 20 K there is a Drude peak and a
broad peak around 200 cm21.83 The Drude peak contains
less than one percent of the total spectral weight and is not
present at 100 K. The Drude peak has been fitted to a gen-
eralized Drude form with a frequency-dependent scattering
rate 1/t(v);v2, given by a phenomenological form used
previously for the heavy fermion compound UPt3.

For SrRuO3 a Drude peak was observed at 40 K but not
above about 100 K.84 The conductivity s(v);1/v1/2 above
a temperature-dependent crossover frequency of about
3kBT/\ , whereas in conventional metals, s(v);1/v2. The
low-temperature Drude peak could be fitted to a generalized
Drude form with 1/t(v);v .

V. CONCLUSIONS

In order to gain a better understanding of why the trans-
port properties of strongly correlated metals deviate signifi-
cantly from the properties of elemental metals the transport
properties of a specific Hubbard model were calculated. The
transport properties are strongly temperature dependent be-
cause as the temperature increases there is a smooth cross-
over from coherent Fermi liquid excitations to incoherent
excitations. This leads to a nonmonotonic temperature de-
pendence for the resistance, thermopower, and Hall coeffi-
cient. The resistance smoothly increases from a quadratic
temperature dependence at low temperatures, obeying the
Kadowaki-Woods rule, to large values characteristic of a bad
metal. Further signatures of the thermal destruction of qua-
siparticle excitations are a peak in the thermopower and the

FIG. 9. Strong temperature dependence of the optical conduc-
tivity. The curves shown are for U54t1* , t2*50.1t1* , at three dif-
ferent temperatures. A Drude peak at zero frequency only occurs at
low temperatures. The feature around v'U/2 is due to transitions
from the coherent quasiparticle band at the Fermi energy to the
upper Hubbard band and from the lower Hubbard band to the qua-
siparticle band. The broad feature at v'U at higher temperatures is
due to transitions from the lower to the upper Hubbard band ~com-
pare Fig. 1!. Note that most of the spectral weight is contained in
the high-frequency features.
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absence of a Drude peak in the optical conductivity.
The results presented here are qualitatively similar to the

observed transport properties of a wide range of strongly
correlated metals, including transition metal oxides, stron-
tium ruthenates, and organic metals. For example, the physi-
cal picture presents a natural explanation of the recently pre-
sented puzzle85,84 of the properties of SrRuO3. Although
Shubnikov–de Haas oscillations, with a Fermi liquid tem-
perature dependence, were observed at low temperatures,85 it
was found that the optical conductivity deviated significantly
from a Drude form84 and it is a bad metal at high
temperatures.57 This is because the latter measurements in-
volve energy scales ~in frequency and/or temperature! much
larger than the coherence temperature associated with Fermi
liquid excitations.

Finally, it is particularly desirable that measurements of
the temperature dependence of the thermopower be made on
a wide range of materials because the peak that we find rep-
resents a well-defined signature of the thermal destruction of

quasiparticle excitations. Furthermore, measurements on a
single material of all the transport properties calculated here
are needed in order to provide a comprehensive test of the
physical picture presented. Ideal candidate materials, since
they are metallic at ambient temperature and have coherence
temperatures of the order of 50–100 K, are Sr2RuO4 ,
k-(BEDT-TTF)2Cu(SCN)2, and b-(BEDT-TTF)2IBr2. A
quantitative comparison of theory with experiment will re-
quire that the theory presented here be modified to include
the effects of band structure.86
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