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Transport Properties of the One-Dimensional 
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Point scatterers are placed on the real line such that the distances between 
scatterers are independent identically distributed random variables (stationary 
renewal process). For a fixed configuration of scatterers a particle performs the 
following random walk: The particle starts at the point x with velocity v, Iv[ = 1. 
In between scatterers the particle moves freely. At a scatterer the particle is 
either transmitted or reflected, both with probability 1/2. For given initial 
conditions of the particle the velocity autocorrelation function is a random 
variable on the scatterer configurations. If this variable is averaged over the 
distribution of scatterers, it decays not faster than t -3/2. 

KEY WORDS: Long time tails; stochastic Lorentz model; transfer matrix 
method. 

1. INTRODUCTION 

In 1905 Lorentz (1) introduced a model that is presently known as the 
Lorentz gas to describe the conduction of electrons in a metal. In this 
model one considers a mechanical point particle moving among randomly 
distributed hard spherical scatterers. The scatterers are infinitely heavy and 
therefore static. The point particle is specularly reflected at a scatterer and 
moves freely otherwise. 

In the past decades the Lorentz gas has regained a remarkable popu- 
larity in kinetic theory as a relatively simple model for testing theories and 
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conjectures. For example, Van Leeuwen and Weyland (2~ studied the diver- 
gences in the formal density expansion of the self-diffusion coefficient 
(directly related to the conductivity in Lorentz's original interpretation) and 
showed how a resummation of most divergent terms gives rise to contribu- 
tions that are nonanalytic in the density. Ernst and Weyland (3) showed that 
the velocity autocorrelation function of the point particle, the time integral 
of which is directly related to the self-diffusion coefficient, decays for large 
times as t -(d+2)/2, where d is the dimensionality of the system. Hauge (4) 
and McKean (5) studied the solution of the Lorentz-Boltzmann equation, 
the kinetic equation describing the system at low scatterer density. Recently 
Keyes and Mercer (6) and G6tze, Leutheuser, and Yip (7~ proposed theories 
to describe the self-diffusion coefficient and the velocity autocorrelation 
function at higher density. 

In computer experiments the diffusion coefficient and velocity auto- 
correlation function of the Lorentz gas have been studied by various groups 
of people. (8-11~ Data are available up to 20 mean collision times at various 
densities of scatterers. Up to this time it is found that, after an exponential 
initial decay, the velocity autocorrelation function decays rather slowly and 
deviates strongly from the exponential decay predicted by the Lorentz- 
Boltzmann equation. In two dimensions at not too high scatterer density 
the data are fully consistent with the t -2 power law decay predicted by 
Ernst and Weyland, (3~ although the prefactor of this long time tail seems to 
agree with their prediction over a very small density range only. (11~ 

Alder and Alley (J~ also made a molecular dynamics study of an 
interesting modification of the Lorentz gas, replacing the deterministic 
reflection law by a stochastic one. They found a qualitatively similar 
behavior of the velocity autocorrelation function, which, for low scatterer 
density, would follow again from the theory of Ernst and Weyland. This 
indicates that the slow decay of the velocity autocorrelation function may 
be studied in stochastic models just as well as in deterministic ones. 

In the present paper we want to study the long time behavior of the 
velocity autocorrelation function for a particular one-dimensional stochas- 
tic Lorentz model which was suggested to us by J. L. Lebowitz. (A 
preliminary account of our results has been given in Ref. 12.) 

In Section 2 the model will be defined and we will state our main 
result. In Section 3 we compute a suitable form of the Laplace transform of 
the velocity autocorrelation function. In Section 4 we discuss an approxi- 
mate expression for the velocity autocorrelation function. Similar approxi- 
mations have been used before ( ~  and they are useful in higher dimensions 
where no rigorous arguments are known. In Section 5 we develop a transfer 
matrix method which we use in the Sections 6 and 7 to show that the 
approximate solution is asymptotically exact for long times. 
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2, THE O N E - D I M E N S I O N A L  S T O C H A S T I C  L O R E N T Z  M O D E L  

The model consists of a single particle which moves at constant speed 
among scatterers placed randomly on a line. At encounters with a scatterer 
the light particle is reflected or transmitted with equal probability. 

The probability measure for the scatterer configurations is defined as 
follows: Let Q = ( . . . .  q-1, q0, ql, �9 �9 ) be a locally finite configuration of 
scatterers on E (i.e., in each bounded interval a configuration contains only 
a finite number of scatterers), and let 5~ denote the space of all locally 
finite configurations. For Q E 5~ the labeling is chosen such that 

qo < O, ql > O, qj < qj+1. (2.1) 

The probability of coincidence (qj = qj+ l} will be zero. Let 

~j = qj+ 1 -  ~ (2.2) 

Then Q E Y is specified by ql, {~lJ  ~ Z}. We define a translation- 
invariant probability measure on 5~V. Let } > 0, j E 77, be independent, 
identically distributed random variables with a distribution given by a 
probability measure t* on (0, oc) which has a finite sixth moment. To 
achieve translation invariance the joint distribution of ql and ~o has to be 

1 dq 1 i~(d~o ) for 0 < ql < ~o 
(~) (2.3) 

0 otherwise 

Here, ( f (~))  stands for f /~ (dO f(~). This prescription actually defines a 
translation-invariant probability measure on ~ .  Expectation with respect 
to this measure is denoted by ( . ) .  

For a fixed configuration Q E Y the stochastic motion of the particle 
can be described in the following way: Let x ( t ) ~  R denote the position 
and v( t )  ~ ( - 1, 1) the velocity of the particle at time t. The particle starts 
at x ( 0 ) =  x with velocity v(0) = v. Then x ( t )  = x + v(O)t for 0 < t < t o, 
where t o is the time the particle first reaches a scatterer. At this scatterer the 
particle is transmitted with probability 1/2 and reflected with probability 
1/2, i.e., V(to) = _+ 1 with probability 1/2. Then x ( t )  = x + v(O)t o + v(to) 
(t - to) for t o < t < t l, where t 1 is the time the particle reaches a second 
scatterer, etc. The expectation for this stochastic motion is denoted by 
E < Q) For a general initial distribution of the particle one has to average (x,v) �9 
over (x, v) in the usual way. 

We want to study the long time behavior of the velocity autocorre- 
lation function 

E~xQ~ (v (t) v (0)) (2.4) 

still considered as a random variable on ~ ,  as well as its expectation value 
with respect to some initial distribution and with respect to ( �9 ). We do this 
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through the Laplace transform 

s  dt e-ZtE{Q2)(v( t)v(O)) -- F(z, Q Ix, v) (2.5) 

z real and positive, z > 0, and v = v(0). 
The main result of our investigation is as follows: 

Theorem. For given e, 0 < e < 1/2, 

(r(z, QIx, v))= (~>2 + (2z~') '/2 (~2>_ (&2 +~ '-~ (2.6) 
2~ 4"r 

for z --> O. 

Here r is the mean free time between collisions, which is equal to (~> 
with our Choice Ivl = 1 for the speed of the particle. The form of (2.6) is 
independent of this choice. As usual f(z) = g(z) + O(z ~) for z ~ 0 means 
that z-~(f(z) - g(z)) remains bounded as z ~ 0. 

The bound obtained in this theorem is too weak to prove an asymp- 
totic power law decay of the velocity autocorrelation function. Especially 
we cannot exclude the superposition of oscillations. On the other hand, the 
velocity autocorrelation function cannot be bounded as ct-<3 + ~)/2 with any 
8 > 0 .  

For our model the frequency-dependent diffusion coefficient for a 
fixed configuration Q is defined by 

= - -  f /  dx H(z, Q I x) (2.7) D(z, Q) lira 1 t 
L ~  2L /~ 

where iz is the complex frequency and H(z, Q Ix)= ~ _  +_ iF(z, Q Ix, v). 
For its fluctuations we have obtained the following bound < 13) : 

<D(z, Q)2>_ (D(z, Q)>2 

= lim 1 (L  dx[L dy(<H(z, QJx)H(z, Qly)>-<D(z, Q)>2) 
L ~  4L ~ d-L d - - L  

< t-->oolim 2-L1 f?Ldx((H(z ' QIx)Z)_(H(z, Q[x))2) 

= 0(~/z) (2.8) 

Therefore in the static limit, z--> 0, D(z, Q)~ (~)2/2r for almost all 
configurations. 

3. T R A N S F O R M A T I O N  OF F(z, Q I 0, 1) 

For notational simplicity we assume that the particle starts at the 
origin with velocity one. Let us denote by ty the time of the (j + 1)th 
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collision, j = 0, 1 , . . .  ; by yj the label of the scatterer with which the 
( j  + 1)th collision takes place, i.e., x(~) = q~,j = 0, 1 . . . .  ; and let 

vj= y j -  yj_l = v(t) for tj_~ < t < tj 
= velocity of the particle between scatterers yj_ 1 and yj, j = 1,2 . . . .  

[~ys-, if v j=l  
nJ= [ ~yj if vj= - I  

= length of the interval between scatterers yj_ i and yj ,  j = 1 , 2 , . . .  

Since the speed of the particle is one, 

J 
= ql + E ~i (3.1) 

i = 1  

We consider (Y0, Yl . . . .  ) as a path of the symmetric random walk. 
We use y to denote such a path. Let 92n(l ) be the set of all paths of length n 
starting at l and let 92~(k ] l) be the set of all paths of length n starting at l 
and ending at k. 

Let x[a, b] denote the characteristic function of the interval [a, b]. Then 

E(oO~(v(t))=x[O, qt](t) + 2 2 2-nx[t~-l, t , l(t)v,  (3.2) 
n = l  7 C92n(1 ) 

and its Laplace transform is given by 

F(z, Q I0, 1) = s 

1 - -  e - z q ~  n- l 1 - e - z,~ 
+ ~ 2-nlIe-Zq'IXe-Zni v, 

n =  1 yE92n(1  ) i =  l Z 

(3.3) 

It will turn out to be useful to separate (3.3) into the contributions of 
sets consisting of all those paths which end at a given scatterer. For this 
purpose we define 

Pz(kl l )  = ~ 2 2 - "  e -z~' (3.4) 
n = O ' y ~ n ( k l l  ) i = 1  

Pz(kll) is the Laplace transform of the probability density that a particle 
starting at scatterer l at time zero is at scatterer k at time t. Note that if 
~/i = 1 for all i, then P,(k I I) is just the Laplace transform of the transition 
probability of the symmetric random walk. Using (3.4) and the definition of 
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vj we obtain 
! 

F(z ,  Q I0, 1) = z (1 - e - Z q ' )  

1 ~ l - e - Z ~ e - ~ q , [ p ~ ( k ] l )  - pz(k + l l l )  ] 
q" "2 k = - ~  Z 

(3.5) 
The first term comes from the initial motion from the origin to q~. The kth 
term in the sum collects all paths such that qk < x(t) <<. qk+l. The positive 
contribution comes from all those paths which cross the final interval ~k 
from the left to the right and the negative contribution comes from those 
crossing from the right to the left. 

It is instructive to express Pz(k[l)  as matrix elements of an infinite- 
dimensional matrix. Let A be a matrix with matrix elements 

Ajj = O 

Ajj + I = Aj + u = �89 e -Zw 

A , j = 0  for [ i - j [ > l  

A is a positive, symmetric, tridiagonal random matrix. The matrix elements 
A/j represent the Laplace transforms of the direct (without visiting outside 
scatterers) transition probabilities between scatterers i and j .  In terms of A 
we have 

P~(k I l)  = ~] (A")~+= ((1 - A ) - ' ) k  z 
n = 0  

In this form we may think of P~(k[ l) either as the thermal pair correlation 
function of a harmonic chain with random couplings or as the Green's 
function of a tight-binding Hamiltonian with off-diagonal disorder. 

4. AN APPROXIMATION 

In this section we construct an approximation to F(z, Q I0, 1) valid for 
small z. As will be proved later on, this approximation is exact up to order 
~/z inclusive. 

Before doing so we consider a particular case which illustrates the idea 
of the approximation in its simplest form. Let us fix a scatterer configura- 
tion Q'  in such a way that ~j = a > 0 f o r j  v e 0 and 40 = 2a, ql = a. Then in 
computing the velocity autocorrelafion function E{o~))(v(t)), the contribu- 
tion of all those paths for which at time t the distance to the last scatterer 
seen is less than a cancel exactly. The only contribution left comes from 
those paths for which either v(t) = 1 and 0 < x(t) < a or v(t) = - 1 and 
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- a < x(t) < O. Since away from the origin the particle performs a symmet- 
ric random walk, E(oQ~(v(t)) equals 

Prob (even returns to the origin at time t } 
(4.1) 

- Prob (odd returns to the origin at time t) 

where Prob refers to the symmetric random walk. The odd returns carry a 
minus sign, since then the velocity at time t is directed opposite to the 
velocity at time zero. The Laplace transform of (4.1) can be computed 
explicitly. One obtains 

F(z, Q'[O, 1 ) = ( I / z ) ( 1 -  e -Za) [2 - - (1 -  e-2za)l/21-1 

which has the same small - z behavior as (F(z, Q I 0, 1)~ of the Theorem. 
In particular, E(oQ'))(v(t))~ - t -3/2 for large times. We see that the slow 
decay of the velocity autocorrelation function arises from a mismatch 
around the origin. (The obvious generalization of this model to higher 
dimensions can also be treated analytically. (14) One obtains a long time tail 
of the velocity autocorrelation function as t -(a+2)/2 in d dimensions.) 

In the spirit of this example we may hope that for small z only the 
precise length of the initial and final interval counts. For the motion in 
between, the different interval lengths should approximately average out 
and so the motion may be approximated by a random walk of step size ( ~ .  
With these assumptions we approximate F(z, Q ]0,1) for small z by 

if(z, Q[O, 1 )=  ( l / z ) (1  - e --'q') 

+ 2 k = - o o l  ~ l -e -Z~e-Zq~[f fz (k] l )  fiz(k + l l l ) ]  

(4.2) 

~ ( k  I l) is given by (3.4) with (~) substituted for ~/i. fiz(k] 1) is known 
explicitly, 

Fz(kl / ) = -~ a Ik-'l (4.3) 

where/3 = (1 - e-2Z<~>) 1/2 and a = [1 - (1 - e-2~<;))l/2]e ~<;>. The small z 
behavior is ff = (2(f~z) 1/2 + O(z) and a = 1 - (2(f~z) 1/2 + O(z). 

Since F(z, Q [0, 1) as given in (4.2) is a sum of independent variables 
(up to the correlation between ql and f0) its various properties are easily 
investigated. In particular, the mean of F behaves for small z as the mean 
of F in the theorem. Further, it is worth noticing that, in calculating the 
average of if, in general the terms containing ffz(k] 1) and - f f~( (k  - I) + 
1[1) cancel each other, since the distribution of ~k does not depend on k. 
The only nonvanishing contributions just come from correlations between 
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the initial interval q~ and the final interval ~k" Similar correlations between 
initial and final track of the light particle are at the heart of the calculations 
by Ernst and Weyland (3'12) for the Lorentz gas in higher dimensions. 

5. A TRANSFER MATRIX FOR Pz(k[0) 
Equation (3.4) expresses Pz (kl0)  as a sum over paths. Let T be a path 

of the random walk of length n such that y(0) = 0 and y(n) = k, k > 0. 
Then let 2nj('~) be the number of crossings through the interval [j, j + 1] of 
the path ~, in the case that e i ther j  < - 1 o r j  > k and let 2ni(7) + 1 be the 
number of crossings through the interval [j, j + 1] of the path y in the case 
that 0 < j < k - 1. By definition nj = 0, 1, 2 , . . .  with the restriction that 
nj = 0, if n i = 0 with ei therj  < i < - 1 or k < i < j .  The crucial observation 
is that the random weight l-I exp[-zTli] in (3.4) depends on T only through 
the (nj [j E ~}. One obtains 

exp(-z~/i) = exp - 2 z  ~jnj - z ~j (5.1) 
i=1 j= - -oo  

To express the sum over paths as a sum over {nj Ij ~ 7/) one has to 
compute the number of paths corresponding to a specified set of { n)}. We 
will do this by first assuming that n_ N-1 = 0 = n k + M- The general case is 
then obtained by the limiting procedure M, N---> oo. 

One way to solve this combinatorial problem is the following: At each 
site one specifies a finite sequence of the symbols L, R (e.g., R R L L R )  such 
that at site j there are 

nj - 1 times L for a l l j  

nj t imesR if either j < - I  or j > k  

n j + l t i m e s R  if 0 < j < k - 1  

For given sequences of L, R symbols a path of the random walker is 
constructed: The random walker starts at the origin. If the first symbol at 
zero is L the walker goes to the left and if it is R the walker goes to the 
right. If the walker returns for the nth time to the origin he uses the 
(n + 1)th symbol of the sequence at the origin to continue his path. The 
same prescription applies to all other sites. If in addition we require that the 
last symbols in the sequences for sitesj < k are R and for sitesj '  > k are L, 
then there is a one-to-one correspondence between sequences of L,R-  
symbols and paths of the random walk which start at 0, end at k, and have 
a number of crossings as specified by the set ( n j l j E 7 / ) ,  n N _ l = 0  
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= nk+M+ 1 . TO count the number of these paths, one has to count the 
number of allowed L, R sequences. These are 

j =  - N \ nj  j =  - I nj  j =  k /'/j + 1 

As usual, 

(n-n 1 t = 3 " ~  (5.3) 

With this convention the restriction on the nj's mentioned before can be 
lifted, because all sequences not satisfying this restriction yield vanishing 
contributions. 

Using (5.1) and (5.2) Pz(kl0) is given by the sum 

P~(klO )= lim lim ~ . . .  
M-->~ N-->~ n _ N ~  0 nk+M_l=O 

• .~) exp(_Z~_N2n_u ) - - N + I  . . .  
n _  N 

n_ 2 2 exp(-- z~- 12n- 1 no 

• (�89176 l e x p [ -  z~(2no + 1 ) ] - . .  

"~2nk I r 
• ( 1 )  e x p l - z ~ _ , ( 2 n ~ _ ,  + 1)] 

• \ nk nk+ l 

\ n~+M-: -1 ) exp(-z~+M-12nk+M-') 

(5.4) 

This equation can be understood in terms of a transfer matrix formula- 
tion. We define three matrices T, S, and R with matrix elements 

T(m,n)=(1)n+'r re+n-1 ) (5.5) 

S(m,n) = (�89 + 1))( m n + n) (5.6) 

R(m,n)=(�89 n) (5.7) 
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with 

~b(nz) = (e-z,~> = f I* (a~) e - ~"~ (5.8) 

m, n = 0, 1,2 . . . . .  We think of these matrices as acting on either II(N ) or 
12(•). Note that if +o(n)= 8o,, then (Tq~0)(m)= T ( m , 0 ) =  (�89 
Therefore for k > 0 

(P~(klO)) = lim lim (TN~oIRSkT~tqj0~ (5.9) 
N-+r  M - - ~  

Here ( .  [. ~ denotes the scalar product in 12(N ). 
We will investigate first 

lira T?eq~ 0 
N---~ ao 

In order to do so it is useful to keep in mind the probabilistic interpretation 
of the matrix T. Le t j  > k. Then T(mj, nj+ 1) is the Laplace transform of the 
conditional probability for the interval ~ being traversed 2mj times during 
time t conditioned on the interval ~j+s being traversed 2nj+ I times. The 
matrix S may be interpreted in a similar way. 

6. BOUNDS ON THE INVARIANT VECTOR OF T 

Let l 1 be the space of sequences with norm 

II~ll = ~ I~(n)l (6.1) 
n = 0  

Let l~ be the subspace of vectors with first component zero. Since 

(T~)(0) = q~(0) (6.2) 

l~ is mapped into itself under T. 

Proposition 1, T is a strict contraction in Ii • satisfying 

I[ Tq,[I < ~(2z)l[q,[[ (6.3) 

for c) ~ l~ .  

Proof. Let ~(0) --- 0. Then, since ~ is decreasing, 

IITq'll < ~ 2-~n+m)d~(2zn n + m - 1 , ( m )  I 
n = l m = l  m 

< ~(2z) ~ ~ 2-(n+m)(n+m-1) tdp(m) l  
m = l n = l  m 

= ~(22) ~ I~,(m)l = 'I'(2z)11~,11 (6.4) 
m = l  
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For the last equality we used the series expansion 
oo 

Ixl<' �9 (6.5) 

Proposition 2. There is a unique vector ~p E I 1 with ~p(0) = 1 which is 
invariant under T. TN% is a pointwise increasing sequence in N and 

lira TN~po = tp = Ttp (6.6) 
N--> oo 

Furthermore, 

1 (6.7a) I[~PI[ < ] _ ~ ( 2 z )  

0 < ~p(n) ~< s (6.7b) 

Proof. Let 
r = 2-"q~(2zn), n > 0, ~,(0) = 0 

Then T~Po = tp0 + ~, T2~ = 4'0 + ~ + T~, etc. Hence, by contraction, 

lim TU~P0 = ~p = ~P0 + 1 
N--> oo 

Now II'/'ll < ~(2z) and therefore, by (6.3), 
oo 

I[~1[ < ~ ~(2z)", 
n = 0  

proving (6.7a). 
Since ~(2nz) is decreasing in z, we conclude from (6.6) that ~p(n) is 

also decreasing in z. Introducing explicitly the z dependence, [T(z)Ntpo](n) 
< [T(0)Ntp0](n), which implies ~p(n) < limu_~oo[T(0)utp0] = 1. Inserting this 
bound in ~p = TLp results in (6.7b). �9 

~p(n) has the following probabilistic interpretation. Let 92(n) be the set 
of all paths of arbitrary length which start from 0, end at 0, always stay to 
the right of 0, and return exactly n times to the origin. Then, of. (3.4), 

~(n)= ~ 2n(l~i eZn~ ) (6.8) 
y Eg~(n)  

So tp(n) is the Laplace transform of the probability of the nth return to the 
origin at time t with reflecting boundary conditions at the origin. (This 
boundary condition is responsible for the factor 2n.) 

In the random walk approximation, as used already in Section 4, 

~p(n)~a ~ (6.9) 

cf. (4.3). This suggests breaking up (0, 1, 2 . . . .  ) into two parts. 
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(i) 0 < n < 

where ~ is the largest integer such that 

< Z - ( l / 2 ) - e  (6.10) 

For n < ~, nz is a small quantity. So by expanding ~b(nz)/a" in powers 
of z one may obtain approximations to the invariant vector + with (6.9) as 
zeroth-order approximation. Our interest in relatively fine details forces us 
to expand through fifth order, which leads to rather extensive calculations. 

(ii) n > 

In this case a ' ~  e -  z-~. The contributions to q~ of paths returning very often 
to the origin are extremely small and can be estimated not to contribute to 
the z-dependent velocity autocorrelation function in the orders we are 
interested in. 

Let P be the projection onto the subspace of vectors + such that 
+(n) = 0 for n > ~. (Note that P depends on z.) 

We want to construct upper and lower bounds for the invariant vector 
in the form 

( P q J ) ( n )  - AqJ(n) < ~p(n) < (PqJ+)(n) + A+(n) (6.11) 

where tlh+(n)[[ < ce -S~  
We first construct the q J  and ~+ in the form of an expansion of 

++ (n) in powers of n. In principle this expansion can be carried through 
any order. We expand through order n 5, since this is the case that will be 
needed later on. 

We define 

x = 1 - (1 - e-2Z(~>) 1/2 (6.12) 

x equals ae -~ (~  and it satisfies 

2 1 (6.13) 
x -  2 ~  2e2~(~> 

The form of the bound on tp is specified in the following lemma. 

Lemma 1. Let 

++(_)(n) = x"  {1 + a~zn + a2z3/2n 2 + a3zS/2n 3 + a4z3n 4 + a+(_)z4-Cn 5} 
with z-dependent coefficients a] . . . . .  a n which tend to a finite limit as 
z ~ 0 and with z-independent a + (a _ ). These coefficients can be chosen in 
such a way that for z small enough 

( P T ~ + ) ( n )  < (P~+) (n )  (6.14) 
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and 

(6.15) 

Proof. We make the ansatz 

( ' )  ~(n) = x" 1 + • bjnJ (6.16) 
j = l  

with z-dependent coefficients bj. Then 

( ' )  (Teo)(n) = gP(2zn)e2"<~)x " 1 + • 9n  j 
j = l  

using the identity 

( n + m - - 1 ) y m m J = ( y  d ) J ( l _ y ) - "  for j > 0  
m=0 m 

The coefficient 9 is a linear combination of bj, bj+ 1 . . . .  , b s. We only need 
that 

5 
cj= ( x )Jbj + 2 cjibi (6.17) 

i = j + l  

where the ej~ have a finite limit as z ~ 0 .  For n < z -(1/2)-~, we want to 
show that by a suitable choice of the bj's 

(T~)(n) < @(n) (6.18) 

Equivalently, 
5 

{l -[e2Z<'>"dP(2zn)]-l}(l +j~=ibynJ ) 

'( ' I  - -  - -  E crib, n j (6.19) 

We expand 1 -  [e2~<~>"ag(2zn)] -1 in powers of zn. Recalling that we 
required the sixth moment of /~(d~) to exist and that nz < z (1/2)-', we 
obtain 

5 
[I-(eZZ<~>"@(2zn)] -'= ~. dy(nz)Y+ O(rt6z 6) (6.20) 

j=l 
The coefficients dj are independent of z. Since x --~ l as z --~ 0, 

[ l - ( 2-@-~x )J] = z'/2cjy (6.21) 

where cjy has a finite strictly positive limit as z ~ 0. We insert (6.20) and 
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(6.21) in (6.19) and equate the coefficients of n j ,  1 -<< j ~ 4, in (6.19). For 
j = l  

b 1 = Z-1/2r Clib i (6.22) 

F o r j  = 2 

b 2 = cf21(z3/2d2 

We insert (6.23) in (6.22). Then 

-[- Z-112  E c2ib i (6.23) 
i=3 ] 

= , -1 , (6.24) b I e l i  + z c i j  �9 

with new coefficients which have a finite limit as z---> 0. Proceeding in this 
fashion up to j = 4, one obtains 

b I = za  I + z -2c~sb5 

b 2 = z3/2a2 + z-3/2c~25b 5 
(6.25) 

b 3 = zS/2a3 + z -  le'35b 5 

b 4 = z3a4 + Z - I/2cl45b 5 

with coefficients having a finite limit as z ~ 0 .  Inserting (6.25) in (6.19) 
disregarding the terms proportional to b 5, the dominant contribution for 
z ~ 0 and n < z -  1/2-, is 

d2a4n6z 5 <. n S ~  b5 (6.26) 

Choosing b~ = z 4 - ' a + ,  with a+ independent of z, (6.26) can be satisfied 
for all n < z - ( l / z ) - ' .  With this choice of b 5 in each equation of (6.25) the 
first term dominates the second one. 

For the lower bound only the sign of (6.26) is reversed, 

nS~/-z bs < d2a4n6z 5 (6.27) 

(6.27) is satisfied with b 5 = a z 4-~,  a _  = - a +. [] 

With the aid of this Lemma the proof of (6.11) is provided in the 
following proposition. 

Proposition 3. Let ~+ and qJ_ be as in Lemma 1. Then, for z small 
enough, there exists a vector A+ such that 

[IAt~ll < ce - z - ' / z  (6.28) 
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and such that 

++ ( , )  < ( e++) (n )  + (A#+)(,) 
+_ (,,) >~ ( p + _ ) ( , )  - (A+)(,,) 

(6.29) 

Proof. From Lemma  1 (PT~p+ )(n) <. (Ptp+ )(n). Then 

(TPq++)(n) = (PTq++)(n) + [(1 - P)Tq++ ] (n) - [ T(1 - P )~+  ](n) 

< ( P ~ + ) ( n ) + [ ( I - P ) T ~ + ] ( n ) - [ T ( 1 - P ) ~ + ] ( n )  (6.30) 

We act with T on both  sides of (6.30). Since T is positive, the inequality is 
preserved. We obtain the term TP~p+ which is est imated by (6.30). Iterating 
this procedure,  one has 

N - - 1  

(rNP++)(.) ~(P++) ( , , )  + E I t  J(1 - e ) r + + ] ( . )  
j=0 

N - ]  

- ~,, ( T / + ' ( I  - P ) ~ +  ) (n )  (6.31) 
j = 0  

Since ~p + (0) = 1, by Propositions 1 and 2, 

lira TNp++ = q~ (6.32) 
N--~ oo 

Therefore  

+(,,) < (P++ ) ( , )  + #7+ (n) 

with 

~+ = ~, [ TJ (1 -  P)T~p+ - TJ+ ' (1  - P ) ~ +  ] (6.33) 
j=0 

By Proposit ion 1 

1 
ll~+ II < 1 - ~ (2z )  (ll(1 - P)T~+ [[ + I[(1 - P ) f f +  II) (6.34) 

A typical term in this norm is 0(n) = x ' n :  with j = 0, 1 . . . . .  5. Then  
oo oo 

ll(l - e)q'l[ = ~ x"n/= x ~ ~ x ' (n  + ~)J (6.35) 
n = f i + l  n = l  

Since x ~ 1 - (2(~)z)  W2, 

x ~ <~ ce-Z , (6.36) 

for z small enough. The sum grows as an inverse power depending on j .  
ll(1 - P)Tq~[] is estimated similarly. 
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with 

By the same method one obtains 

~b(n) > (Pq;_)(n) - ~_ (n) 

Finally ~ is chosen as (kq~)(n) = [~+ (n)[ + Iq~_ (n)l. 

~ _ ( n ) =  ~ [ T J + ' ( 1 - P ) ~ _ - T J ( 1 - P ) T q J  ] 
j=0 

[] 

(6.37) 

(6.38) 

7. THE AVERAGE <F(z, Q]0, 1)> FOR SMALL z 

Having introduced the transfer matrices T, S, and R and having 
derived upper and lower bounds on the invariant vector of T, we are now 
in a position to prove the theorem. Starting from (3.5) we average F(z, 
Q]0, 1) with the aid of (2.3) first over ql and then over the ~]s. The result 
reads 

(F(z, Q[0, 1)> = ~ (~0 + (1/z)(e-~o _ 1)> 

+ 1 k ((1 - e -z~~ - e -z~ + e-~~ - ~ )  
2z2(~) k = - ~  

x [ e z ( k l l ) -  P~(k + l[1)] ) (7.1) 

Since for z > 0 the sum is absolutely convergent, we may freely rearrange 
the various terms. The sum ~k[Pz(k[ 1) -- P~(k + 1 [ 1)] vanishes pointwise. 
Therefore the sum ~k((1  - e-~~ ] 1) - P~(k + 111)]> vanishes. For 
the sum ~,k(e-~k[P~(kl 1) -- Pz(k + 1 [ 1)]) we use the shift invariance of 
the average to relabel the ~j's such that ~k has always the new label zero. 
Then by the previous argument this sum also vanishes. For the remaining 
sum one uses again the shift invariance of the average to obtain 

(F(z, O l0, 1)> = ~ ( 4  + (l/z)(e -z*- 1)> 

2z2(~> k = - ~  ((e-Z~k - e-Zr ')e-~ 'Pz(k[O)) (7.2) 

Finally, by reflection symmetry, 

<F(z, Q I 0, 1)> 

_ 1 /,,~+ (1/z)(e-Z~ ,)> 
z<~> 

+ ~ ~ ((e - ~ ~  e-~-')(e -z~k-' - e-~)P~(k[O)> (7.3) 
4z2<~> k = - ~  
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As a next step (F(z ,  Q 10, 1)) is broken up into four terms: 

Fl(Z ) = ~ <~ + ( 1 / z ) ( e  -z  - 1)}. 

1 k~_z<(e-Z~o_ e - ~ _ , ) ( e - ~ _ , _  e-~k)p~(k lO)> F2(z ) - 2z2(~> 
(7.4) 

- 1 ( ( e - ~ o _  e - ~  ~)2e~(010)> F3(z ) - 4z2(~} 

1 ( ( e - ~ o _  e - ~  , ) ( e - ~ o _  e-Z~,)p~(110)> F4(z ) - 2(~>z2 

We discuss the small-z behavior of each term separately. The results for F l 
through F 4 are expressed in Lemmas 2 to 5, respectively. 

I.emma 2. 

( ~ >  + o(~)  (7.5) F,(z)  = 2(~> 

L e m m a  3. 

F2(z ) = O(z '-6") (7.6) 

Proof. Let 

1 re+n+, d~(2zn)d~(z(2m + 2)) -- qb(z(2n + 1))dP(z(2m + 1)) 
g (m ,n )  = ( ~ )  ~(2zn) 

• (n + n m) (7.7) 

Then for k > 2 

((e-Z~o - e-Z~-,)(e-Z~-,  _ e-Z~k)pz(k[O)) 

= (g~  ] RSk-2g+)  (7.8) 

~(n) for n < 
(e '~ ) (n )  = x",~(0) for n > n 

Then we decompose (7.8) into 

( ~V, I R S k -  2g~ ) = ( , , ~ e ' +  l R ( e S e  ) ~- ~ e g e ' ~ , )  

+ (PS(1  - P')q, IR(PSP)k-2PgP'+) 
+ ((1 - , ' ) g ~ , l R ( e s e ) k - 2 e g e ' ~ , >  

+ . . .  + <f f~ IRS  k 25~(1 - P ' )~ )  (7.9) 
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We first estimate the terms containing (1 - P) and (1 - P'). Since I(S~)(n)l 
< (SqJ)(n), these are hounded by 

{<PS(1 - e ' ) ~ l  R ( e s e ) k - 2 e s e ' ~ >  + . . .  + <S+I RSk-2S(1 - P')~>} 

(7.10)' 

We have for n ~< 

�9 (z(2n + 1)) 
(SP+)(n) <. (S~)(n) - ~(z(2n  + 2)) ( r~ ) (~  + 1) 

O(z(2n + 1)) 
= q)(z(2n + 2)) ~(n + 1) ~< eZ<~)+(n + 1) 

< eZ<~ > t~+ (n + 1) 
tp_(n) t)(n) < ( 1 - a ' , f ~ ) t ) ( n )  (7.11) 

with strictly positive constant a], where we used Proposition 3 and Lemma 
1 in the last step. The second inequality, which is valid for all n, implies 

I1(1 - P)Sg4 <~ e Z < e > l l ( l  - P ) ~ [ I  (7.12) 

Furthermore, from the definition of S, 

IlS~ll ~< q~(z)llq'll (7.13) 

Let x(n) = x". Since x n < (Tx)(n), (P'+)(n) < ~(n), which implies firstly 
that 

I1( 1 - P ' )~ I I  ~< I1( x - e ) ~ l l  ( 7 . 1 4 )  

and secondly that (7.11) and (7.12) are still valid with P replaced by P'.  By 
(6.7b) 

I<~l R~'>I ~< 2eZ<e>llS'#]l (7.15) 

Using (7.11) to (7.15) the various terms of (7.10) can be estimated. We 
have 

<~[ RSg(1 - P')~> 4 2eZ<~>llsk+l(1 - e')~ll 

< 2eZ<~>q~(z)~+lll(1 - P)@II ~< 2eZ<~>~(z) k+le-z '/2 

(7.16) 

by Proposition 3, For j = 1 , . . . ,  k we have 

<~Pl Rsk -J (  1 - P ' ) (SP)  j -  'SWap) < (1 - a]~/~) J- '<~1 RsK-J(  1 -- P)S~> 

< (1 - a~ ~ )  J-  '2e 2~<~> ~(z) k-je-~ "/2 

(7.17) 
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Finally, 

r k 
(~ l (1  - P')R(PS)kp'~/) < (1 - a , ~ )  (q~l (1 - P')RV~> 

< (1 - ai~)k~(z)2e2Z<~)e -z '/2 (7.18) 

Therefore the sum of all terms in F2(z ) of the form (7.10) is bounded by 

k 
ce -S'/2 ~ • ( 1 -  a' f f  )Jq~(z) k-j 

k = 2 j = 0  

which is exponentially small. So we are left with the main contribution 

oo 
~_j (PSP'~b I R (PSP )k-2pgp,~) (7.19) 

k=2  

For m,n < z - ( [ / 2 ) - "  one has 

dp(2zn)-'{cb(2zm)dP(z(2n + 2)) - qb(z(2m + 1))q)(z(2n + 1))} 

= ClZ2(n + 1 - m) + O(z 2-2') (7.20) 

with c~ > 0. Then for n < 

,(PSP't~)(n), < ciz 2 ~ {I )m+n+l(/,/ ) "4- l-- m) m=O ~, 2 +mm- e'@(m)(n 

co .~_ ) m + n +  1 
+ c2z2-2, (n + ) ( ~ + ) ( m )  

=0 m 

C Z 2 -- Y/ + 

m=O 

@C322Z(I/2)-2r ~ ( 1 ) m+n+l m = 0  " ~ (n+mm)xmz-fl/e)-~ 

< cz2-3'(P'~b+ )(n) (7.21) 

In the third step we used Lemma 1 which bounds the higher terms in 6 by 
z (~/2) -2~ and 

oo m m 1 2 ~ + l  ~orn(~) (n+m)=(x~x)(22--~x) "+ =(n+ I)(2_--Z--~} 

= (, + l)[x + o(~)] ~ 
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By (7.11) 
t - -  k - 2  1 

(PSP'+R(PSPlk-2ps,  P'+) < r 1 6 2  - a,~/z) (P  ++ [RP'++ ) 

(P ' f f+  I RP'@+ ) grows as z -~/2 for small z. 
Summing over k we obtain 

IF2(z)l < CZ--224--6~2--1/2 ~ ( l -  a i r - ) k - 2  < c'z 1 - 6 c  

k = 2  

Let 

(7.22) 

[] (7.23) 

~o(n) = x ~ {1 + alzn + a223/2rt 2 + a325/2n 3 + a423n 4} (7.24) 

with coefficients as in Lemma 1 and let 

[r + 2)) - 2qb(z(2n + 1))~b(z(2m + 1)) 

+ ~(z (2n + 2))~(z2m)]/z2~b(2zm)dP(2zn) 

= boo + z(b,on + bo,m + b,) + z2(b2o m2 + b,,nm + b02 n2) 

+ O(z3n 3 + z3n2m + z3nm 2 + z3m 3) + O(zZn + zZm) (7.25) 

for m,n < z -(~/2~-'. The explicit values of the b 0 are given in the Appen- 
dix. 

Lemma 4. 

1 ~n= (n + mu 
F3(z) = 4(~) m o m t "  "~o '~o 

, = 

• ( b o 0 + z ( b , 0 n + b 0 1 m + b , ) + z 2 ( b 2 0 m Z + b , l n m + b o 2 n Z ) )  

+ O(z ' - ' )  (7.26) 

Proof. We have 

1 ~ ~(m) , (n ) (n+m)2-~ , .+~  1 
F3(z) = 4(~)z 2 m,n=O m d~(2zm)d~(2zn) 

• [dg(z2n)dP(z(2m + 2)) - 2~(z(2n + 1))~b(z(2m + 1)) 

+ qb(z(2n + 2))~b(z2m)] (7.27) 

We restrict the sums up to ~. This causes an exponentially small error. We 
then use the expansion (7.25) and the bounds of Proposition 3. We extend 
the sum again up to ~ causing another exponentially small error. Then we 
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have a sum of terms of the form 

xnxm( n +mm)2-(m+n)nC~m B (7.28) 
rt,m = O 

with integer a, fl = 0, 1 . . . . .  The sum (7.28) diverges as z -(~+~+I)/2 as 
z ~ 0 .  The error term in Proposition 3 is of the order za- 'n 5. Its contribu- 
tion behaves then as z ~-'. The errors from expanding the term in square 
brackets in (7.27) are of the order z3n 3 or z2n. Their contribution behaves 
then as z. �9 

Le t  

1 (cb(2zk)d~(2zn)dp(z(Zm + 3)) 
z2~(2zk)d~(2zn) 

+4)(z(2k  + 1))~(z(2m + 1))(b(z(2n + 1)) 

- qb(z(2k + 1))q)(z(2m + 2))qb(z2n) 

- (b(z2k)~p(z(2m + 2))Cb(z(2n + 1))} 

= Coo o + z(Clook + Colom + Coo]n + cl) 

I " 
2 

+Z2 E Cijl kimjnl + O( n3z3 "b m3z 3 + k3z 3) 
[ i ,j,l= 0 
t-i+j+ 1=2 

+ O(z2m + z2n + z2k) (7,29) 

for k ,m ,n  < z -(1/2)-'.  The explicit values of the co. z are given in the 
Appendix. 

Lemma 5. 

1 ~ ~o(k)~Po(n)(k-bm)2-(k+m) 
F 4 ( z ) -  4(~) k,m,n=O k 

•  m]2-(m+n)[ c m l ) ooo + z(Clook + Co]0m + c0oln "+" Cl) 

k 

+ z  2 c~lUmJn t + O(z ~-~) 
[ i j j=o 
ki+j+l~2 

(7.30) 
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Proof. We have 

l ~ , ,~p (k )~p (n ) ( k+m)2- (k+m)  
F 4 ( z ) -  4(~)z 2 k,m,n=O k 

x ( n + m ) 2 - ( m + , )  1 
n ~(2zk)~(2zn) 

• I~(2zk)qJ(z(2m + 3))~(2zn) 

+ qb(z(2k + 1))~(z(2m + 1))qb(z(2n + 1)) 

- qb(z(2k + 1))(b(z(Zm + 2) )~(z(2n))  

- r + 2))~(z(Zn + l ) ) ]  (7.31) 

We restrict the sums up to ~. This causes an exponentially small error. We 
then use the expansion (7.29) and the bounds of Proposition 3. We extend 
the sums to oo causing another exponentially small error. Then we have a 
sum of terms of the form 

Z xkxn( k + m)2-(k+m)( m + n) 2-(m+n)kamBnv (7.32) 
k,m,n k n 

with integer a, 13, , /=0,1 . . . .  The sum diverges as z -("+~+v+1)/2 as 
z---> 0. As in the proof of Lemma 4 one checks that the error term is of 
o r d e r z l - L  [] 

We note that F3(z ) and F4(z ) diverge as z -1/2 as z o O .  However, the 
leading terms cancel exactly. The remainder consists of terms of the order 
Z j /2 ,  j = 0, 1 . . . . .  So Fa(z ) + F4(z ) = c I + c2(-z + O(z l - ' ) .  By explicit 
computation one checks that the coefficients c I and c 2 are as stated in the 
theorem. This concludes the proof of the theorem. 

8. CONCLUSIONS 

We found that the velocity autocorrelation function decays on the 
average as t -3/2. A problem not answered by our result is, How long does 
one have to wait before the velocity autocorrelation function actually 
assumes its asymptotic behavior? One way to investigate this is by means of 
computer simulations of the model. Grassberger (15) has performed such 
simulations (in fact, he studies the more general case, where reflection and 
transmission probability at a scatterer differ from each other). For our 
model his results indicate that the asymptotic regime for the average 
velocity autocorrelation function is reached after 15 mean collision times. 

A model similar to the stochastic Lorentz gas has been investigated in 
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Ref. 12. In this model one considers the situation where the time of flight 
between two scatterers is very short compared to the waiting time at a 
scatterer and therefore may be approximated to be zero. So, on randomly 
placed points on the line a particle performs a continuous time random 
walk. Since the transition probabilities for this process are known, quanti- 
ties such as the mean and variance of the square displacement can be 
computed explicitly. With an appropriately defined velocity, one finds the 
same asymptotic behavior of the velocity autocorrelation function as for 
the stochastic Lorentz gas. 

It is our intention to investigate the theory of the stochastic Lorentz 
model in two further papers. In the first of these we will investigate the 
fluctuations in the velocity autocorrelation function originating from the 
random distribution of scatterers, and in the second we will investigate the 
low-frequency, small-wave-number behavior of the Green's function for the 
moving particle. 
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A P P E N D I X  

For the convenience of the reader we report the numerical values of 
the coefficients which are needed for the computation at the end of Sec- 
tion 7. 

(i) The coefficients of the invariant vector (Lemma l) in the limit 
z o O  are 

1 
a , -  8(~) 

1 
a 2 - 4(2(~))1/2 

(ii) The coefficients in Lemma 4 are 

boo = 2(~ 2) _ (~)2 

bl0 = b01 - - - -  _ 2(~ a) + 6(~2)(~) - 4(~) 3 

b20 = bo2 - -  2 ( ~  4)  - 8 ( ~ 3 ) ( ~ )  - 2 ( ~ 2 ) ( ~  2)  + 1 6 ( ~ 2 ) ( ~ )  2 - 8 (~> 4 

b l l  = - - 8 ( ~ 2 ) ( ~  2)  --[- 16(t2)(~> 2 --  8 ( ~ )  4 
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( i i i )  T h e  c o e f f i c i e n t s  i n  L e m m a  5 a r e  

Cooo = ( ~ 2 )  _ ( ~ ) 2  

CIO 0 = COO l ~--" 0 

Col 0 = -- 2(~  3)> + 4 ( @ ( ~  2) _ 2(~)3 

C l o l  = - -  C l lO = - -  COl, = 4 ( ( ~ j  2 )  _ ( ~ > 2 )  2 

C020 = 2(~  4) -- 4 ( ~ ) ( ~  3) + 2 ( ~ 2 ) ( ~ )  2 

C200 -'~ Co02 = 0 
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