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Abstract

In this work, we present a theoretical study of the transport properties of two finite and parallel armchair graphene

nanoribbons connected to two semi-infinite leads of the same material. Using a single π -band tight binding

Hamiltonian and based on Green’s function formalisms within a real space renormalization techniques, we have

calculated the density of states and the conductance of these systems considering the effects of the geometric

confinement and the presence of a uniform magnetic field applied perpendicularly to the heterostructure. Our results

exhibit a resonant tunneling behaviour and periodic modulations of the transport properties as a function of the

geometry of the considered conductors and as a function of the magnetic flux that crosses the heterostructure. We

have observed Aharonov-Bohm type of interference representing by periodic metal-semiconductor transitions in the

DOS and conductance curves of the nanostructures.
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Background

Graphene is a single layer of carbon atoms ordered in

a two-dimensional hexagonal lattice. In the literature, it

is possible to find different experimental techniques in

order to obtain graphene such as mechanical peeling,

epitaxial growth or assembled by atomic manipulation

of carbon monoxide molecules over a conventional two-

dimensional electron system at a copper surface [1-4]. The

physical properties of this crystal have been studied over

the last 70 years; however, the recent experimental break-

throughs have revealed that there are still a lot of open

questions, such as time-dependent transport properties of

graphene-based heterostructures, the thermoelectric and

thermal transport properties of graphene-based systems

in the presence of external perturbations, the thermal

transport properties of graphene under time-dependent

gradients of temperatures, etc.

On the other hand, graphene nanoribbons (GNRs) are

quasi one-dimensional systems based on graphene which

can be obtained by different experimental techniques

[5-8]. The electronic behaviour of these nanostructures

is determined by their geometric confinement which
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allows the observation of quantum effects. The controlled

manipulation of these effects, by applying external pertur-

bations to the nanostructures or bymodifying the geomet-

rical confinement [9-13], could be used to develop new

technological applications, such as graphene-based com-

posite materials [14], molecular sensor devices [15-17]

and nanotransistors [18].

One important aspect of the transport properties of

these quasi one-dimensional systems is the resonant tun-

neling behaviour which, for certain configurations of

conductors or external perturbations, appears into the

system. It is has been reported that in S- and U-shaped

ribbons, and due to quasi-bound states present in the het-

erostructure, it is possible to obtain a rich structure of

resonant tunneling peaks by tuning through the modifi-

cation of the geometrical confinement of the heterostruc-

ture [19]. Another way to obtain resonant tunneling in

graphene is considering a nanoring structure in the pres-

ence of external magnetic field. It has been reported that

these annular structures present resonance in the con-

ductance at defined energies, which can be tuned by

gate potentials, the intensity of the magnetic field or by

modifying their geometry [20]. From the experimental

side, the literature shows the possibility of modulating

the transport response as a function of the intensity of

the external magnetic field. In some configuration of gate
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potential applied to the rings, it has been observed that

the Aharonov-Bohm oscillations have good resolution

[21-23].

In this context, in this work, we present a theoretical

study of the transport properties of GNR-based con-

ductors composed of two finite and parallel armchair

nanoribbons (A-GNRs) of widths Nd and Nu, and length

L (measured in unit cell units), connected to two semi-

infinite contacts of width N made of the same material.

We have thought this system as two parallel ‘wires’ con-

nected to the same reservoirs, whether the the leads are

made of graphene or another material. This considera-

tion allows us to study the transport of a hypothetical

circuit made of graphene ‘wires’ in different scenarios.

A schematic view of a considered system is shown in

Figure 1. We have focused our analysis on the electronic

transport modulations due to the geometric confinement

and the presence of an external magnetic field. In this

sense, we have studied the transport response due to vari-

ations of the length and widths of the central ribbons,

considering symmetric and asymmetric configurations.

We have obtained interference effects at low energies due

to the extra spatial confinement, which is manifested by

the apparition of resonant states at this energy range, and

consequently, a resonant tunneling behaviour in the con-

ductance curves. On the other hand, we have considered

the interaction of electrons with a uniform external mag-

netic field applied perpendicular to the heterostructure.

We have observed periodic modulations of the trans-

port properties as function of the external field, obtaining

metal-semiconductor transitions as function of the mag-

netic flux.

Methods

All considered systems have been described using a

single π-band tight binding Hamiltonian, taking into

account only the nearest neighbour interactions with a

hopping γ0 = 2.75 eV [24]. We have described the

Figure 1 Schematic view of the conductor. Two finite armchair

graphene ribbons (red lines). The length L of the conductor is

measured in unitary cell units.

heterostructures using surface Green’s function formalism

within a renormalization scheme [16,17,25]. In the linear

response approach, the conductance is calculated using

the Landauer formula. In terms of the conductor Green’s

function, it can be written as [26]:

G =
2e2

h
T̄ (E) =

2e2

h
Tr

[

ŴLG
R
CŴRG

A
C

]

, (1)

where T̄ (E), is the transmission function of an electron

crossing the conductor region, ŴL/R = i[�L/R − �
†

L/R]

is the coupling between the conductor and the respec-

tive lead, given in terms of the self-energy of each lead:

�L/R = VC,L/R gL/R VL/R,C . Here, VC,L/R are the coupling

matrix elements and gL/R is the surface Green’s function

of the corresponding lead [16]. The retarded (advanced)

conductor Green’s function is determined by [26]: GR,A
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R ]−1, where HC is the hamiltonian

of the conductor. Finally, the magnetic field is included by

the Peierls phase approximation [27-31]. In this scheme,

the magnetic field changes the unperturbed hopping inte-
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(3)

where yn is the carbon atom position in the transverse

direction of the ribbons. In what follows, the Fermi energy

is taken as the zero energy level, and all energies are

written in units of γ0.

Results and discussion

Unperturbed systems

Let us begin the analysis by considering the effects of the

geometrical confinement. In Figure 2, we present results

of (a) Local density of sates (LDOS) and (b) conduc-

tance for a conductor composed of two A-GNRs of widths

Nd = Nu = 5 connected to two leads of width N= 17 for

different conductor lengths (L = 5,10 and 20 unit cells).

The most evident result is reflected in the LDOS curves
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Figure 2 LDOS and conductance for different geometries. (a)

LDOS (black line) and (b) conductance of two A-GRNs (red line) of

widths Nd = Nu = 5, connected to two leads of widths N = 17 for

different conductor lengths: L = 5, 10, 20 u.c. (c) Conductance of a

system composed of two parallel Nd = 5 and Nu = 7 A-GNRs of

lengths L = 15. As a comparison, we have included the pristine cases

(black and blue curves, respectively).

at energies near the Fermi level. There are several sharp

states at defined energies, which increase in number and

intensity as the conductor length L is increased. These

states that appear in the energy range corresponding to

the gap of a pristine N = 5 A-GNRs [24,32] correspond

to a constructive interference of the electron wavefunc-

tions inside the heterostructure, which can travel forth

and back generating stationary (well-like) states. In this

sense, the finite length of the central ribbons imposes an

extra spatial confinement to electrons, as analogy of what

happens in open quantum dot systems [16,17,19,33,34].

Independently of their sharp line shape, these discrete

levels behave as resonances in the system allowing the

conduction of electrons at these energies, as it is shown in

the corresponding conductance curves of Figure 2b. It is

clear that as the conductor length is increased, the num-

ber of conductance peaks around the Fermi level is also

increased, tending to form a plateau of one quantum of

conductance (G0 = 2e2/h) at this energy range. These

conductance peaks could be modulated by the external

perturbations, as we will show further in this work.

At higher energies, the conductance plateaus appear

each as 2G0, which is explained by the definition of

the transmission probability T(E) of an electron passing

through the conductor. In these types of heterostruc-

tures, if the conductor is symmetric (Nu = Nd), the

number of allowed transverse channels are duplicated;

therefore, electrons can be conduced with the same prob-

ability through both finite ribbons. On the other hand, in

Figure 2c, we present results of conductance for a con-

ductor of length L = 15 and composed of two A-GNRs

of widths Nd = 5 and Nu = 7, connected to two leads

of widths N = 17. As a comparison, we have included

the corresponding pristine cases. As it is expected, the

conductance for an asymmetric configuration (red curve)

reflects the exact addition of the transverse channels of the

constituent ribbons, with the consequent enhancement of

the conductance of the systems. Nevertheless, there is still

only one quantum of conductance near the Fermi energy

due to the resonant states of the finite system, whether

the constituent ribbons are semiconductor or semimetal.

We have obtained these behaviours for different configu-

rations of conductor, considering variations in length and

widths of the finite ribbons and leads.

Magnetic field effects

In what follows, we will include the interaction of a uni-

form external magnetic field applied perpendicularly to

the conductor region. We have considered in our calcula-

tions that the magnetic field could affect the ends of the

leads, forming an effective ring of conductor. The results

of LDOS and conductance as a function of the Fermi

energy and the normalized magnetic flux (φ/φ0) for three

different conductor configurations are displayed in the

contour plots of Figure 3. The left panels correspond to

a symmetric system composed of two metallic A-GNRs

of widths Nu = Nd = 5. The central panels correspond

to an asymmetric conductor composed of two A-GNRs

of widths Nd = 5 (metallic) and Nu = 7 (semiconduc-

tor). The right panels correspond to a symmetric system

composed of two semiconductor A-GNRs of widthsNu =
Nd = 7. All configurations have been considered of the

same length L = 10 and connected to the same leads
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Figure 3Magnetic field effects on LDOS and conductance. Contour plots of LDOS (lower panels) and conductance (upper panels) as a function

of the Fermi energy and the magnetic flux crossing the hexagonal lattice for three different configurations of conductor. As a comparison, we have

included the LDOS curves of the corresponding system without the magnetic field (bottom plots).

of widths N = 17. Finally, we have included as a refer-

ence, the plots of LDOS versus Fermi energy for the three

configurations.

From the observation of these plots, it is clear that the

magnetic field strongly affects the electronic and transport

properties of the considered heterostructures, defining

and modelling the electrical response of the conductor.

In this sense, we have observed that in all considered

systems, periodic metal-semiconductor electronic tran-

sitions for different values of magnetic flux ratio φ/φ0,

which are qualitatively in agreement with the experimen-

tal reports of similar heterosructures [21-23]. Although

the periodic electronic transitions are more evident in

symmetric heterostructures (left and right panels), it is

possible to obtain a similar effect in the asymmetric con-

figurations. These behaviours are direct consequences of

the quantum interference of the electronic wave function

inside this kind of annular conductors, which in general

present an Aharonov-Bohm period as a function of the

magnetic flux.

The evolution of the electronic levels of the system,

depending of their energy, exhibits a rich variety of

behaviours as a function of the external field. In all con-

sidered cases, the LDOS curves exhibit electronic states

pinned at the Fermi Level, at certain magnetic flux values.

This state corresponds to a non-dispersive band, equiva-

lent with the supersymmetric Landau level of the infinite

two-dimensional graphene crystal [30,35]. At low energy

region and for low magnetic field, it is possible to observe

the typical square-root evolution of the relativistic Landau

levels [36]. The electronic levels at highest energies of the

system evolve linearly with the magnetic flux, like regular

Landau levels. This kind of evolution is originated by the

massive bands in graphene, which is expected for these

kinds of states in graphene-based systems [37,38].

By comparing the LDOS curves and the correspond-

ing conductance curves, it is possible to understand and

define which states contribute to the transport of the sys-

tems (resonant tunneling peaks), and which ones only

evolve with the magnetic flux but remain as localized

states (quasi-bond states) of the conductor. These kind

of behaviour has been reported before in similar sys-

tems [19,20]. This fact is more evident in the symmetric

cases, where there are several states in the ranges φ/φ0 ∈
[ 0.1, 0.9] and E(γ0) ∈[−1.0, 1.0] of the LDOS curves

which evolve linearly with the magnetic flux, but are

not reflected in the conductance curves. In fact, at these

ranges, the conductance curves exhibit marked gaps with

linear evolution as a function of the magnetic flux. For the

asymmetric case, it is more difficult to define which states
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behave similarly; however, there are still some regions at

which the conductance exhibits gaps with linear evolu-

tion as a function of the magnetic flux. All these electronic

modulations could be useful to generate on/off switches

in electronic devices, by changing in a controlled way the

magnetic field intensity applied to the heterostructures.

We have obtained these behaviours for different configu-

rations of conductor, considering variations in length and

widths of the finite ribbons and leads.

Conclusions

In this work, we have analysed the electronic and trans-

port properties of a conductor composed of two parallel

and finite A-GNRs, connected to two semi-infinite lead, in

the presence of an external perturbation.We have thought

these systems as two parallel wires of an hypothetical cir-

cuit made of graphene, and we have studied the transport

properties as a function of the separation and the geom-

etry of these ‘wires’, considering the isolated case and the

presence of an external magnetic field applied to the sys-

tem. We have observed resonant tunneling behaviour as a

function of the geometrical confinement and a complete

Aharonov-Bohm type of modulation as a function of the

magnetic flux. These two behaviours are observed even

when the two A-GNRs have different widths, and conse-

quently, different transverse electronic states. Besides, the

magnetic field generates a periodic metal-semiconductor

transition of the conductor, which can be used in elec-

tronics applications. We want to note that our results are

valid only in low temperature limits and in the absence

of strong disorder into the systems. In the case of non-

zero temperature, it is expected that the resonances in the

conductance curves will become broad and will gradually

vanish at room temperature [20].
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gaps in graphene ribbons designed by molecular aggregations.

Nanotechnology 2009, 20:095705.

18. Schurtenberger E, Molitor F, Gttinger J, Ihn T, Ensslin K: Tunable

graphene single electron transistor. Nano Lett 2378, 8:2008.

19. Zhang ZZ, Wu ZH, Chang K, Peteers F M: Resonant tunneling through

S- and U-shaped graphene nanoribbons. Nanotechnology 2009,

20:415203.

20. Wu ZH, Zhang ZZ, Chang K, Peteers FM: Quantum tunneling through

graphene nanorings. Nanotechnology 2010, 21:185201.

21. Smirnov D, Schmidt H, Haug RJ: Aharonov-Bohm effect in an

electron-hole graphene ring system. Appl Phys Lett 2012, 100:203114.

22. Russo S, Oostinga JB, Wehenkel D, Heersche HB, Sobhani SS, Vandersypen

LMK, Morpurgo AF: Observation of Aharonov-Bohm conductance

oscillations in a graphene ring. Phys Rev B 2008, 72:085413.

23. Huefner M, Molitor F, Jacobsen A, Pioda A, Stampfer C, Ensslin K, Ihn T:

The Aharonov-Bohm effect in a side-gated graphene ring. New J Phys

2010, 12:043054.

24. Son YW, Cohen ML, Louie SG: Energy gaps in graphene nanoribbons.

Phys Rev Lett 2006, 97:216803.

25. Nardelli M: Electronic transport in extended systems: application to

carbon nanotubes. Phys Rev B 1999, 60:7828.

26. Datta S: Electronic Transport Properties of Mersoscopic Systems. Cambridge:

Cambridge University Press; 1995.
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