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The generalized Enskog-like kinetic equation (GEKE) derived recently for inhomogeneous 
fluids [L. A. Pozhar and K. E. Gubbins, J. Chem. Phys. 94, 1367 ( 1991)] has been solved using 
the thirteen-moments approximation method to obtain linearized Navier-Stokes equations and 
the associated zero-frequency transport coefficients. Simplified transport coefficient expressions 
have been obtained for several special cases (simplified geometries, homogeneous fluid). For 
these cases it is shown that the main contributions to the transport coefficients can be related to 
those for dense homogeneous fluids calculated at “smoothed” number densities and pair 
correlation functions. The smoothing procedure has been derived rigorously and shown to be an 
intrinsic feature of the GEKE approach. These results have been established for an arbitrary 
dense inhomogeneous fluid with intermolecular interactions represented by a sum of hard-core 
repulsive and soft attractive potentials in an arbitrary external potential field and/or near 
structured solid surfaces of arbitrary geometries. 

1. INTRODUCTION 

In recent years it has become clear that the properties 
of fluids at interfaces and in micropores (pore widths less 
than 20 A) differ markedly from those of bulk fluids. Such 
strongly inhomogeneous, dense fluids play a crucial role in 
a number of natural and industrial processes, including 
adsorption and transport in adsorbents and clays, disper- 
sion of environmental pollutants, metabolism of living 
cells, etc. For equilibrium properties of strongly inhomo- 
geneous fluids, considerable progress has been made over 
the last few years. Classical equations such as that due to 
Kelvin are now known to fail badly for highly inhomoge- 
neous fluids (e.g., for confined fluids in pores with widths 
below 80 A); however, statistical mechanical approaches 
such as density functional theory and some forms of inte- 
gral equation theory can describe a wide range of equilib- 
rium phenomena (phase transitions, adsorption, isosteric 
heat, solvation forces, etc.). Much less attention has been 
paid to transport properties of such highly inhomogeneous 
systems. However, from our experience with equilibrium 
properties we can anticipate that approaches based on con- 
tinuum mechanics or on bulk-phase kinetic equations plus 
boundary conditions are likely to break down when the 
scales of spatial inhomogeneity and intermolecular spacing 
are comparable. 

lation function contact values were equated to those of the 
corresponding homogeneous equilibrium fluid calculated at 
the Fischer-Methfesse16 smoothed density for the equilib- 
rium inhomogeneous fluid. 

In our previous work’ we developed a rigorous micro- 
scopic theory describing nonequilibrium behavior of dense, 
strongly inhomogeneous fluid mixtures. Introducing the 
generalized Mori projection operator method’ we have de- 
rived a functional perturbation theory (FPT) to describe 
the evolution of the many-body dynamic system, and have 
shown rigorously that generalized Langevin equations 
(GLE’s) should be regarded as the first order form of 
FPT. Subsequently, we used the GLE’s to obtain 
Enskog-like close-to-equilibrium linearized kinetic equa- 
tions for the singlet distribution functions of dense inho- 
mogeneous fluid mixtures. These equations proved to be a 
generalization of a linearized form of those3 derived for 
mixtures of hard spheres to a case of inhomogeneous fluid 
mixtures in which the intermolecular interaction potentials 
could be represented as a sum of hard-core repulsive and 
soft attractive contributions. The number densities and 
structure factors (pair and direct correlation functions) 
occurring in these equations were those specific to the cor- 
responding equilibrium inhomogeneous fluid mixtures; 
quite accurate theories now exist for these equilibrium cor- 
relation functions.* 

The most successful approach to transport properties In this paper we solve the kinetic equations derived 
of inhomogeneous fluids so far was proposed by Davis,“’ previously’ to obtain linearized Navier-Stokes equations 
and is based on an intuitively reasonable extension of the and the associated transport coefficients. In carrying out 
revised Enskog theory.3-5 Although Davis’ theory ad- this procedure we have defined the continuum variables 
vanced our understanding of the transport behavior of in- (number density, macroscopic velocity, etc.) as corre- 
homogeneous fluids, explicit expressions for the transport sponding velocity moments of the nonequilibrium singlet 
coefficients were found only for the cases of a local equi- distribution function,“” and have used the 13-moments 
librium velocity distribution for weakly inhomogeneous approximation method, as modernized by Sung and 
fluids, with inhomogeneity in one direction. These results Dahler.” The expressions for the transport coefficients are 
included an additional ad hoc assumption, according to obtained without any additional ad hoc assumptions, and 
which the nonequilibrium inhomogeneous fluid pair corre- provide a rigorous generalization of Davis’ smoothed den- 
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sity postulate. The theory does not involve any restrictions 
on the equilibrium inhomogeneous fluid densities or their 
spatial gradients. 

We focus our main attention on the shear and bulk 
viscosities and the thermal conductivity. These transport 
coefficients have a tensorial nature; thus, shear viscosity is 
a fourth rank, while bulk viscosity and thermal conductiv- 
ity are second rank tensors. The scalar quantities can be 
recovered by convoluting the tensorial ones with the cor- 
responding contributions to flux tensors composed of the 
second partial derivatives of macroscopic velocity and tem- 
perature. The final expressions for the transport coefficients 
can be regarded as providing a rigorous density smoothing 
procedure that relates the various terms in the coefficients 
for the inhomogeneous fluid to corresponding quantities 
for a homogeneous fluid. The rigorous smoothing proce- 
dure derived here gives different prescriptions for the var- 
ious transport coefficients, and does not relate them simply 
to the corresponding coefficients for the homogeneous 
fluid, but rather to various spatial integrals over the equi- 
librium inhomogeneous fluid number density and pair cor- 
relation function. 

A particular interest of ours is the transport behavior 
of inhomogeneous fluids near solid walls and in narrow 
pores, and the theory explicitly includes the effects of such 
structured walls. Thus, we expect the theory to be able to 
account for the presence of a neighboring wall, or of con- 
finement in a pore; such effects are known to be large.12-‘6 
In what follows we first consider the general case of arbi- 
trary geometry and degree of inhomogeneity. We then con- 
sider several special cases. In the homogeneous fluid limit 
[n(q) =const, where n(q) is the number density at q, and 
walls are absent] the general expressions for the transport 
coefficients reduce to those of Sung and Dahler.” The sec- 
ond, and more interesting, special case is that of inhomo- 
geneous fluids confined by solid surfaces of some simple 
geometry. Examples are fluids confined to a narrow slit, 
cylindrical or spherical capillary pore, in the absence of 
any spatially directed external potential field other than 
that due to the fluid-wall potential. We consider in detail 
the case of a fluid confined to a slit with structured, parallel 
walls. For such cases it is possible to derive scalar transport 
coefficients explicitly; the various contributions to these 
coefficients can be related to the corresponding terms in the 
coefficients for the homogeneous fluid, through the 
smoothing procedure derived. Finally, the special case of 
Davis’ theory results’ can be recovered by neglecting terms 
of order [bn (q)]‘, where b = 2?rd/3 ((+ is a hard-core di- 
ameter), and introducing his approximate smoothing pro- 
cedure. 

II. THE THIRTEEN-MOMENTS APPROXIMATION 
EQUATIONS 

We consider an inhomogeneous fluid of nonreactive, 
structureless molecules in which the intermolecular inter- 
actions are assumed to be pairwise additive, central and 
decomposable into the sum 

(2.1) 
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where qH(qij) is a hard-core repulsive contribution, 

and q+(qij) represents an attractive soft interaction which 
is assumed to be continuous, and qij=qijaij=qi-qj, 
where Qi, qj denote coordinate vectors assigned to centers 
of masses of interacting molecules i and j (of the same 
species), respectively. The inhomogeneity of the fluid is 
caused, in general, by both an external field of a continuous 
potential and fluid-wall molecule intermolecular interac- 
tions of the same kind as Eq. (2.1), 

wuhw) =q$%hJ +ak%d 

with the hard-core contribution, 

(2.2) 

I 

+oo, 
dshJ= o 

41w<~lw 

, 41w’%u’ 

and a continuous attractive part q$‘(qlw). Here qlw 
n =qlwql,=ql -qw, and ql, qw are coordinate vectors of 

centers of masses of a fluid molecule and a wall molecule, 
respectively. The walls are considered impenetratable for 
fluid molecules and thermostated at temperature T, and 
wall molecules are unmovable from their average positions 
qw (molecules of an infinitely large mass), and belong to 
the same species. Since the model assumes fixed wall at- 
oms, there will be a net momentum production between 
the fluid and the wall, but no kinetic energy production. 
This neglect of kinetic energy flow between the fluid and 
wall should not affect the transport coefficient expressions, 
except very close to the wall. These are the primary goal of 
our work here. We also assume that there is no chemical 
reaction between any of the molecules in the system. 

Neglecting delayed response of the system, and in close 
vicinity of the equilibrium state of the system, one can use 
kinetic equation (4.36) of Ref. 7 to describe the kinetic 
stage of the system evolution. [We note here that the 
multiplier n,(q)gl,(q,q’) is to be inserted into the kernel 
of the last integral in the right hand side of Eq. (4.36) of 
Ref. 7. Also, the last terms in the left hand sides of Eqs. 
(4.41), (4.45) of Ref. 7 should be omitted.] This equa- 
tion can be easily transformed to the form 

(;+v* $)~f%w~ 

= s dq’ dv’lY(q,v;q’,v’)SF(q’,v’;t), (2.3) 

where t is time variable, q, v and q’, v’ are coordinate 
vectors and velocities of fluid molecules, 6F( q,v;t) denotes 
the deviation of the nonequilibrium inhomogeneous fluid 
singlet distribution function F( q,v;t) from its equilibrium 
form, and the dot * denotes the inner product. The quan- 

tity r( q,v;q’,v’) is 
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xS(v-v,)]S(q-q’)S(v’-VI)+2 
s ’ 4 

dv dv d+D(ul)(v2,*&)~(vZ1*8)[n(q’--a&)g(q’-u&q’) 

xS(q-q’+aWS(v-v:) -n(q’+aag(q’+a&,q’)6(q-q’--o&‘)S(v-v~)]6(v’-v2) 

+do dv, s s W -vl*k)W -VI l G) [n,(s+al~)gl,(q,q+ul~~~(v-vr) -n,(q-aI>) 

%%A%q--lum~(v-vl) NV’-v*)G(q-q’) +n(q)*(v)v 

~fHbl’) 
-g(wl’) aq (2.4) 

In expression (2.4), Q(U) = (f?m/2n)3’2 exp( -pmu2/2) is 

the Maxwell-Boltzmann velocity distribution function, 

where p= l/kBT, and kg, T, and m denote the Boltzmann 

constant, temperature, and mass of a fluid molecule, re- 

spectively; v1 ,v2 ,v’,v are molecular velocities, q,q’,q” are 

coordinate vectors of molecules, B=u,i+o,j +a& is the 

unit vector of direction cosines (i,j,k are the unit vectors of 

corresponding directions), I&I =l; 6(q-q’), 6(v’-vI), 
S(q-q’+a&), S(v-vl), S(q-q’-&), S(v’-v2), etc., 

are Dirac S functions, v;” is the post-collisional velocity 

corresponding to the precollisional velocities v1 and v2, 

71 
*= Vl - (v~1*ii21)(i21, VZI=VZ-~1, and B(vzI*B), 

0( -vl * &) are the step functions. Quantities n(q), g(q,q 
+a&), C( q,q’) are the equilibrium inhomogeneous fluid 

number density, pair correlation function contact value 

and the direct correlation function, respectively. Similarly, 

n,(q), gl,(q,q--a,$) are the equilibrium wall molecule 

number density and the pair correlation function contact 

value specific to fluid-wall molecule interactions. Finally, 

fH(q,q’)=exp[-~~H(q,q’)l-11=8( Iq-d/ -d-l is 

the Mayer function specific to the fluid-fluid molecule 

hard-core interaction and the dots * mean inner products 

of tensors A and B, 8~i ,..., ,B, ,..., j. Integration sd& ev- 

erywhere in this work means an integration over the sur- 

face of the sphere of radius I B I = 1. 

We note that the third term in the right-hand side of 

Eq. (2.4) explicitly contains the effects of any walls present 

in the system. All other terms in the right-hand side of Eq. 

(2.4) include the effects implicitly, through n(q’ f a&), 

g(q’*&q’), C(q,q’), and f(w’). 

The next logical step is to replace the kinetic equation 

(2.3) for SF(q,v;t) with an equivalent set of equations for 

its velocity moments. For this purpose we will use the 

generalized Hermite polynomials” defined as 

I 

l++(v) =Y,(g) =w’(g>(1,!12!13!)- 
l/2 

a 4 

( 1 -zT 

x (--&)“( -&)bW, (2.5) 

where g= (mp) “‘v denotes the dimensionless velocity and 
Q(5) = (2p)-3’2exp( -c2/2), ~=~Ii+~~+~3k, and 
li,I2,Is=O,l,2 ,... G 

These polynomials form a basis vector set satisfying 
the orthogonality and completeness conditions, 

r d@‘(SWAS)‘J’k(E) =61/c, 
J 

(2.6) 

The polynomials from Eq. (2.5)) can be considered as 
the c representatives of some abstract bra (11 and ket 11) 
vectors, 

VI(g) = (II@ = (I+,& 1 g>, (2.7) 

*(c)y,(g) = (SI I> = (gl z11213>, (2.8) 

and the conditions (2.6) take the form (I I k) =slk and 
EiIi)(il =l. 

Then Eq. (2.3) can be “spanned” by the vectors of (II 
basis set above, 

&(IISF)+(Ilv*~SF)=Sdq’~(llrli)(ilSF), 

(2.9) 

where “projections” (II SF) of SF(q,v;t) on this basis set 
are velocity moments of SF(q,v;t), 
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h I SF) = s dv$,(v)SF(q,v;t), (2.10) 

and 

(11~ $-F) = j-dv$,(v)v* $SF(q,v;t), (2.11) 

dvdv’@(V’)$/(v)I’(q,v;q’,v’)+i(v’)* 

(2.12) 

The (11 basis set consists of infinitely many vectors gener- 
ating infinitely many moments of the singlet distribution 
function. Since we cannot solve the entire set of equations 
(2.9) for the singlet distribution function velocity mo- 
ments, we should restrict ourselves to some reasonable 
number of the moments which could provide a macroscop- 
ically complete description of the hydrodynamic and ther- 
mal processes involved. The simplest approximation of this 
kind would be the 13-moments representation, for which 
the basis set of (II vectors is limited to elements { (iI v); 

(2.13) 
The associated moment equations can be recovered from 
Eq. (2.9) after calculations of integrals Eqs. (2.10)- 

(2.14) (2.12)) in which Eq. (2.23) should be used to approximate 
6F( q,v;t) . These integrodifferential equations are given in 
Appendix A. 

To be solved Eqs. (Al)-(A5) should be simplified, 
namely, the continuum variables there should be expanded 

(2.15) 
in a Taylor series, 

a 
(2.16) A(q--a&,t)=A(q,t)--a&* -&A(q,t) 

+1(&.&.S+... . 
2 * aqaq 

(2.17) 

labeled with the continuum variables corresponding to 
their ensemble averages, Sn(q,t), u(q,t), 6T(q,t), P’(q,t), 
and Q( q,l) standing for particle density, velocity, and tem- 
perature deviations from their equilibrium values, and for 
“kinetic” contributions to the pressure tensor and energy 
flux, respectively, and I means the unit matrix. We define 
the continuum (macroscopic) variables above as corre- 
sponding velocity moments of the distribution function 
SF(q,v;t), similar to those defined for homogeneous flu- 
ids 9-” t 

Mq,d = s dvtlt,(v)6F(q,v;t) =rn-‘bp(q,t), (2.18) 

p(q)u(W) =m 
s 

dv$,(v)SF(q,v;t), (2.19) 

$ n(q)kBST(q,t) = s dh4vPF(q,v;O, (2.20) 

F’%A = 
s 

dvrClp(vWYq,v;t), (2.21) 

Q(u) = 
s 

dv$,(v)SF(q,v;t). (2.22) 

In the definition, Eq. (2.19)) p(q) = mn (q) corresponds to 
equilibrium mass density. According to Eq. (2.8) the ad- 
joint basis set {(v I i), ie G) can be formed of the right- 
hand sides of Eqs. (2.13)-(2.17) multiplied by Q(v). 

In the 13-moments approximation the deviation 
GF(q,v;t) of the nonequilibrium inhomogeneous fluid sin- 
glet distribution function from its equilibrium form is 

@Tq,v;Q = ,sG (v I i> (il SF) 
‘Q(V) [$,(v)Sn(q,t) +$Jv) l &(q)u(q,t) 

+$‘p(V):;p2p0(q,t) +$Q(V) l $ mD3Q(s,01. 
(2.23) 

We note that the continuum variables A( q,t), which 
are defined in Eqs. (2.18)-(2.22), are the differences be- 
tween the dynamic variables in the nonequilibrium inho- 
mogeneous system and the corresponding equilibrium in- 
homogeneous one. For example, the variables A( q,t) 
considered do not include the number density n(q,t) or the 
temperature T( q,t), nor the differences in these quantities 
between the real system and a homogeneous one; instead, 
they include the differences Sn (q,t) and ST( q,t) in these 
quantities between the nonequilibrium and equilibrium sys- 
tems, both of which are inhomogeneous. We do not expect 
the differences due to nonequilibrium to be large even near 
walls, because the departure from equilibrium is assumed 
to be small. This assumption is supported by molecular 
simulation results (see, for example, Ref. 14). Since our 
main objective is to obtain expressions for the linear trans- 
port coefficients for inhomogeneous systems, it is only nec- 
essary to consider small departures. 

Moreover, the direct correlation function in Eq. (A2) 
can be expressed in terms of the pressure tensor P(q) spe- 
cific to an equilibrium inhomogeneous fluid by using the 
corresponding compressibility equation,i8 
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Nq-4) 
C( WI’ I= 

n(q) 
-&$/-$+iTr p(q,q’). 

(2.24) 

where Sp(q)/Sn(q’) is the functional derivative of the 
equilibrium pressure p(q) =f Tr P(q) with respect to the 
equilibrium number density n( q’) taken at p=const, and 

Tr p (q,q’) denotes the trace of the tensor p(q,q’). Thus, 

inserting the expression (2.24) for C(q,q’) into Eq. (A2), 

and taking time Fourier transforms of Eqs. (Al )-( A5), 

one can find expressions, correct to the second order in 

spatial gradients of the continuum variables (2.18)- 

(2.221, 

au(w) CT4 -iioh(q,w) +$ . [n(q)u(q,w)] =--oh(q) JdSn(q-g&)g(q,q-&)(&&--i I): T+y n(q) 

s 
d&n(q-&)g(q,q-&) (&&-g)& i aWq,d X aqaq +dfl(q) 

X 
s d~n,(q-al~)gl,(q,q-u~~)~*u(q,w), (2.25) 

a 
-iap(q)u(qJ) +& l 

6p(q) 
dq’ Sn(q’) Sn(q’,w) -n(q) 

s 

SP(fl”) 1 
dq’dq” 8n(q’)hz(q’,o) -3s n(q) dq’ Tr p(q,q’)&z(q’,w) 

1 
+gj n(q) 

s dq’&“n(q”)Tr p(q”,q’)6n(q’,w))I+kBn(q)Wq,w)I+P”(q,w)l 

s d~n(q--~)g(q,q--~)(~~-~ I)&?: 
a2u(q,w) 72 b2 

aclag X77n(q) s 
d&n(q-m?)g(q,q--o&) 

x (&&$ I)& 
auk4 
-- (48flBr) ( ~)2bmp(q) I 

aq d~n,(cl-al~)gl,(cl,q-u,~) (@-a I) -u(w) 

kBo4 
+4 n(s) 

s 
d&n ( q - &>g ( q,q - CF.) &&& 

~STh,d 3k& 

ah 
-4a 4s) 

s 
dan(q--3g(q,q 

-a&)&&* 
amcw) 

as 

a4 
+T da) 

s 
d&g ( q,q - cr.) &&&&&: : 

a2p0(q,W) 3b 

aqaq 
-G n(s) 

s 
d&g(q,q-a&)&&&&i 

ap%d 

aq 

4 2 

+z II 
d&n(q)g(q,q-&)&&&+ ? 

( 1s 
d~n,(s-ol~)sl,(a,a-u~~)~~ :P”(q,w) 1 

+$$pb’w(d s d&g(q,q--a&) (&&-; I)&&; ~Q(s,d 36 B 
aqaq -3; b2v(q) 

s 
dWq,q--&I 

2 
x (is-$ I)&: 

ach,d 24 

aq +gPbv 
[s 

d&[n(q)-n(q-&)]g(q,q-o&)(&f?--$I)-2V2 

X 
s d~,(q-al~)g,,(q,q-u~~)(~~--P 1) l Q(q,w), 1 
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-io $ kgz(qW(q,wl+-& -Q(q,ol +kBT $ - [n(s)u(s,w)l 
3ba 

=G kBTn(q) d&n(q-&)g(q,q-m?)&&&i 
a2u(q,0) 3b auhd 

aqaq 
-;?;; kBTn(q) d&n(q-cG)g(q,q-&)&c%: ~ 

aq 

+&$JXq) s d^ un,(s-al~)gl,(ss-u,~~~*u(q,w) +$ b2An(q) s d&n(q-a&)g(q,q--o&) 

XC% 
a*ST(q,w) 32bd? 

ha9 
--An(q) sd~n(q-~~)g(q,q-~~)~* 

25lr 
asTjrti)+ [u4/(2 ml In(q) s dc?g(q,q-c+) 

xfF&&&: 
aWqd 

aqaq 
- (d/ J?rpm)n(q) 

s 
d&g(q,q-a&)&&i? apo~~“)+(c?/&) Jd&[n(q)-n(q-G)] 

Xg(q,q-&)&& :PO(q,o) -gT n(q) 
I 

a*Q(q,w) 9b 
d&(q,q-cG)&&&i aqaq -zg n(s) 

I 
d&g(q,q-o&)&% 

aQ(q,@) 
84 

302 
+10 dG[n(q) +f n(a-03 lg(s,s-We+, d~n,(cl-al~)gl,(s,q-u,~)~ 1 l Q(q,wh 

(2.27) 

--i13wP”(s,w) +2S,,(q,w) +4 SQ(q,w) 

a4 
=y n(q) 

s 
d&n(q-a&)g(q,q-a&)(&&--f I)%+ 

a2uh44 

ha4 
-o%(q) sd&n(q- a&)g(q,q-o&) (cc-f I)&& 

Wq,w) 
x~+2&P(s) s 

d~n,(q-al~)g,,(q,q-~~~) (&k-f I)B.u(q,o) +k B(&)lndn(q) sd&n(q-m?) 

Xg(q,q-CT&) (is%-5 I)&& 
a2mwd 

aqaq -Zk,(&)lndn(q) s d&n(q-o&)g(q,q-h) (&h-f I)&* asTiTa) 

+ ( &)“204n(d J di%g(q,q-o&) (&&-) I)&&&&: : 
aQ-%hd 

aqaq -2(&)“idn(q) Jd&g(q,q-c&)(&i+--fI) 

X&&&i 
ap%,d 

aq +2d(L)1'2[ J d&[n(q) -4n(q-m?)]g(q,q-&)(&h--f I)&&-3fl y 
( ) 

2 

CT4 a2Qh,d 
X 

s 
d~n,(q-a,~)gl,(q,q-~,~)(~~--f I)&& :P’(q,o) +y @z(q) 1 s 

d&g(q,q-&) (&h-j I)&&&; aqaq 

-i d&(q) s d&g(q,q-&) (&F-f I)&&: 
aQ(q,o) 1 

aq +5 ci$ d&[2n(q) -n(q-a&)]g(q,q-c&) (M-j I>& 

d~n,(cl-al~)g,,(eq-u~~) (&e-i I)* .Q(a,w>, 1 (2.28) 
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5 kB a I a 
--iwQ(q,m) +- -- [n(q)ST(q,o)] +- - l P’(q,w> 

Wmaq Pm aq 

ad%@) 
xg(q,q-~&)(a-~ I)& aq -- [V%J(B&%)ln(q) s d~,(q--ol~)gl,(q,q--al~) (&& 

-3 1) l u(q,w) 

3 kg4 

+8 pm 
-n(q) d&z(q-o&)g(q,q-a&)&&& 

s 

a2ST(q,w) 3 k& 

ah 
---n(q) dCn(q-o&)g(q,q-o&)&G 

4 Bm s 

asT(q,w) 3 CT4 
+gpm 4s) 

s 
d&g(q,q--ui+)&&&&&: : 

azPO(q,w) 3 a3 . 
as aqaq 

----n(q) 
4Pm s 

d&g(q,q-&)&&X+~ap~~) 

102 

+qFn s 
d~[3n(q)--2n(q--a~)lg(q,q-a~)~~~:P”(q,o) +g(Q4,\Ilr8m)n(q) Jd&(q,q-&)(&S--j I)&&; 

~Q(w> 27 

’ acla<l 
-20 (d/ m)n(q) s di%g(q,q--h) (C&-i I)& 

2 

X dh[n(q) -n(q-c+)]g(q,q-&)(&&-$ I) -(52v2/27) 

X d~n,(q-al~)g,,(q,q-~,~) (e-3 1) -$ 
s 

d~(q--~)g(q,q--~)(~+I) *Q(w). 1 (2.29) 

In convolutions denoted by * , :, i, and : : on the right-hand sides of Eqs. (2.25)-(2.29) the right index of I in tensors I, 
I&, I&&, etc., are to be convoluted with the left index of the corresponding continuum variables, and indices &,&I%, etc., 
are to be convoluted with indices of a/aq, a2/aqiJq. In addition, quantities q= (5/162) (m/~-/3) 1’2 and A=75kJ 
[64&?rDm) 1’2] correspond to viscosity and thermal conductivity of a dilute gas. All other notations adopted in Eqs. 
(2.25)-(2.29) correspond to those introduced in Appendix A. Notations Sn(q,w), u(q,w), ST(q,w), P’(q,w), and 
Q(q,w) denote time Fourier transforms of corresponding continuum variables. 

III. THE LINEARIZED NAVIER-STOKES EQUATIONS 

To obtain the linearized Navier-Stokes equation one should solve Eqs. (2.28) and (2.29), and insert the resulting 
expressions for P’(q,w) and Q(q,w> into Eqs. (2.26) and (2.27). For this purpose Eqs. (2.28), (2.29) should be 
simplified. First, there are coupling terms of two kinds in Eqs. (2.28) and (2.29). The terms of the first kind are 
proportional to spatial derivatives sQ(q,a), aQ(q,w)/aq, and (#/aqaq)Q(q,w) in Eq. (2.28) and (a/as) l P’(q,o), 
aP’(q,o)/aq, and (a’/aqcYq>P’(q,w) in Eq. (2.29). If the temperature and velocity of the fluid do not vary appreciably 
in a mean free path ( -a) [which is valid in the case considered here, because continuum variables P’(q,o) and Q(q,w) 
are averaged quantities specific to a close-to-equilibrium fluid] the third order terms with the second derivatives of 
P’(q,w), Q(q,w>, and terms with sQ(q,a), and (Nag) l P’(q,w) in Eqs. (2.28) and (2.29) should be neglected.‘*” 
Moreover, since I o, I, I uv I, and / a, I < 1, the following conditions hold: 

d&f (q-m?)-=; s d&[ f ( q-a&)-f (q+ch)v< J d&f (q-c+)- m= 1,3,..., i,j,k=x,y,z 

(3.1) 

d&f (q-o&)+ 
s 

d&f(q-c+)44>...> i,j,I=x,y,z, m=3,4 ,.., 

for any integrable, positively defined function f(q), and m signifies that there are m a-components ai,...,Oj. Taking these 
relations into account one can prove that all terms with second derivatives of continuum variables in Eqs. (2.28) and 
(2.29) can be neglected. Finally, the derivatives (a/aq)P’(q,w) in Eq. (2.28) and (a/aq)Q(q,w) in Eq. (2.29), being 
small themselves, come with multipliers which are proportional to the integrals of odd sets of 2s over &. Then the 
correlation Eq. (3.1) and the simplest approximation 

I 
d&f (q-*&)&..6z& 

s 
d&f (q--c&) 

I 
d&e.. .& 

for the multipliers corresponding to these terms suggest neglect of these terms. 

(3.3) 
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The coupling terms of the second kind are proportional to Q(q,o) [in Eq. (2.28)] and P’(q,w) [Eq. (2.29)], and 
cannot be neglected. To evaluate such terms the approximation, Eq. (3.3), has been used. 

This consideration leads to Eqs. (2.28) and (2.29) taking the forms of Eqs. (Bl ) and (B2) of Appendix B. Expressing 
Q( q,w ) in terms of Pc( q,w ) from Eq. (Bl ), inserting the expression obtained into Eq. (B2), and using the approximation, 
Eq. (3.3), for those terms on the right-hand side of Eq. (B2) which are proportional to P’(q,w) and (cVaq)u(q,w), one 
can find the time Fourier transform P”( q,w), 

~h,4 = --2rl~*bl,w): 

NW) 

~+grrrl~,r~(q,w)n(q>ij,(q,w) *u(w) -8~r/r,*(q,wBuv,(q,w) aq 

-Ir~~r~((/W)r~(q,w)~~(q)ST(q,w), 

where the following notations have been introduced, 

#)(q,d =4~<(q,dn(q) 1 ~214+IB-~ 111 +g 
s 

d&n(q-oi%)g(q,q-&)(&&-$I)&& 

d&n(q-&)g(q,q--8) +; 
s 

2 

d&[n(q--a&) -n(q)]g(q,q-cS)+fl 

X dan,(q-al~)gl,(q,q-~,~), 
I 

,. n II 

~q(q) = (5 J;rB;;;/4d?hqW, 

$(q,o) =rq,(q)/[ 1 -io7Jq) 1, 
T:‘(q) = d&n(q-&)g(q,q-a%) +g diXn(q) -n(s--a&) lgtw--&I -7 

x d~,(cl-al~)gl,(cr,q-~,~), s 
C(q) = (15 Jsn/8&r~(q>, 

<Ccl,~) =q(q)/[ 1 -iwFA(q)], 

Fu(q@) = s d~n,(q-~l&gl,(q,q-cs&) (&&-3 I)&- (32/2/i6)+f(q,ti)cQ(q) 

- Id~~(q--,a)gl,(q,n-ol8) W-f I), 

suVm(q@)=~ [ (U(P,O) &) + (u(q,w) $)‘ -i I(U(q,W) l $-In(q), 

d&n(q-G)g(q,q-o&)(&i%-; I)&+ l28;:(q) cQ(d l $2’h @) , , 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

A:*‘(q,o) =4rAfl(q,w)n(q) (I+; I d~(q-~~)g(q,q-~~)~~), (3.15) 

an(q) 
h-(s) =cQ(d l 7 9 

(3.16) 

J I 
2 

CQ(q) = d& [2n(q) -n(q-a&)]g(q,q-m?) +4 y n,(q-o,&)g,,(q,q-a,,@) (&&-$I)&. 
( 1 1 (3.17) 

The fourth rank Cartesian tensor I4 above consists of three nonzero components ( 14) /[,[= 1, I= i, j,k, and Is= II + e, where 
II is the tensorial product of the unit matrices and 1: is the fourth rank Cartesian tensor composed of components 

(J.3h,=b&or 4$,, , I m,p,s=i,j,k. Inserting Eq. (3.4) for P”( q,o) into Eq. (Bl ) and using the approximation, Eq. 
(3.3), for those terms on the right-hand side of Eq. (B 1) which are proportional to Q( q,w), one can find the time Fourier transform Q (q,w ) , 
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awq,w) l/2 

Q(w) = -$2’ (q,o> l aq -4rr;lTn*(cl,w)~T(q,O)ST(q,O) -3 

aubd 

rl~~t*(s,w)~!v,b&w):- 

aq 

l/2 

71T~(cr,w)T~(cl,W)Cp(Q):Suvn(q,W), (3.18) 

where 

an(q) 15 
ch+-w) =- aq += ?r7.~(q,w)T~(q,w)cP(q):~~(q), (3.19) 

d&n(q-c&)g(q,q-o&) (H-i I)B+-5-- Cp(q):vj2)(q,w), 
167 

(3.20) 

k(w) = j-d ~nn,(q-al~)gl,(q,q--ol~) W-3 I) - (5v%r/16)r;(q,w)C,(q):~,(q,o), (3.21) 

Wq) = s d&{3[n(q) -n(q-c&)1 +n(q--k)}g(q,q---k)c%?. (3.22) 

Inserting the time Fourier transforms P’(q,o) and Q(q,w) given by Eqs. (3.4) and (3.18) into Eqs. (2.26) and 
(2.27), one can obtain the linearized Navier-Stokes equations, 

--iq(q)u(q,w) +$ l Wq,w) =RJw), (3.23) 

-i kd~n(qRWq,w) +i *J(w) =RT(q,co), (3.24) 

where 

n(q,O)= ii1 ni(q,a) 
8 and J(q,w)= c JAw) 

k=l 

can be identified with the time Fourier transforms of the momentum and energy fluxes, respectively, and R,(q,w) and 
R r( q,o) are “thermodynamic sources.” The explicit expressions for the second rank Cartesian tensors l$(q,w), i= 1,...,6, 
vectors Jk(q,o), k= 1 ,...,6, the vector R,(q,w) and the scalar R.(q,w) are given in Appendix C. The tensors &(q,w), 
i= 7, 8, 9, and vectors Ji(q,O), k=7, 8 give rise to viscosities and thermal conductivity, which are our main concern here: 

=II;(q,co, i 
aUq,d 

a4aq f 
(3.25) 

: a aq:2+q,w) 
:q:2bw) +; b2@,,(q) -; Fo5(q)@,, aq 

77T~(cl,w)n(s)Fos(q)~~“(q,~) l i4+gr bvTf(s,w)E(q) l &Jq,w) 

-gT b~~o(q)O f [~mMvy(q9w) I- (27fl/2/20$) 

2 
b277~~(q,w)n(q)~o(q)~~!u(q,o)‘i :dq= 1 h(q,o) h(q,w) 

-rI;(q,w):- 
aq 9 

Edqm) =3bov;(qd Fos(q) +A +(q,m)EO(q)&4q):i6 [S”VdW) 17 1J” 

(3.26) 

(3.27) 
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JdQ@) = - 
I( 

‘+;TF2(9) #‘(q,w) +~h&(q) -gr F&q)6 
aA12’( q 0) 

aq ’ 

-; bgAFw(q)h a [7,*(q,w)n(q)fivT(q,w>l-; b~~~~(q,o)~(q,o)F,(q)~~=(q) .I . -+ a4 1 amq,w) 
dq 

=-J;GwP amq,o) aq , (3.28) 

f Fodd&:2’(w4 l i4+8~~(q,w)n(q)F~(q)~~~~(q,~) . i, 
a2wwd a2~wl,~) 

aqaq = -J;(q,w): 
aqaq * 

(3.29) 

All new notations in Eqs. (3.25)-( 3.29) have been defined in Appendixes C and D. The continuity equation is considered 
in Appendix E. 

A. Transport coefficients 

We now introduce the vorticity tensor W( q,w), 

Then 

auk4 
-=S(s,o) +W(q,o) +; I $ .u(q,o) 

aq 

(3.30) 

(3.31) 

and 

$1 am 1 [S,v,(%@) I=; S(S@) - ( aa) T 1 
aq +Tj S(w) - 

VN a4 ) am 1 
-Jj w(q,w) as ( am T 

--Yj W(q,o) q- 
) 

am 1 an(q) 
- - aq +T aq 

where the transpose [AIT of the kth rank tensor A is defined as {A}~,.,m~Am,,,ji. Using expressions (3.30)-( 3.32) and 

(3.25)-(3.27) one can represent contributions II”(q,o) of the terms which are proportional to ($/aqaq)u(q,o) into 
(a/aq) l II (q,w) in the form, 

a a 
n"(w) = -@j(w) '& s(q@) -+ml,d i& W(q,w) -hw) . $ (; .ukI,w)), (3.33) 

where the fourth rank shear viscosity tensor fi (q,w) is 

1 : II a : A 4(w) =z Kgs, d?l,--aq ’ n $ (%a) -%-W)?% , 
1 

the fourth rank turbulent viscosity tensor \jt(q,w) has the form 

(3.34) 

\iy(q,o) =n;(q& -’ l I$(q,@)+G2(q,&&, 
1 6 as 1 

(3.35) 

and the second rank bulk viscosity tensor is defined as 

i&w) =f (l$(q,w):I)@I- 
I 1 

(3.36) 

In expressions (3.34)-( 3.36), a1 denotes a convolution over the first left index of a tensor to the left of a1 and the index 

of d/aq from the expression (3.33), which should be performed after inserting expressions (3.34)-(3.36) into Eq. (3.33), 
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and dots over the symbol @i mean inner products. Moreover, convolutions in the large parentheses brackets in Eq. (3.36) 
and everywhere below should be performed first, and tensors Gi (q,w), G2 (q,w), and G3 (q,w) are defined as 

Gdq,d=3bw;(q,w) I( 
an(q) 

Fos(q). - 
aq 

-; GA4 +; $(q,o) Gdq) -; Gc(q) 

an(q) 9 - FfE fl(q,w) an(q) 1 =o(s)ocP(cl):~ I-3 I 
GA(q) =Fodd$~ l i,), 

an(q) ag ‘L 
Wq) =E,(s)~G(s):Il ry l i,), (3.42) 

(3.37) 

(3.38) 

(3.41) 

where the symbols Or and @i, denote convolutions over an index of the tensor to the left of a1 or ai, with an index of 

I or &, respectively. Although the turbulent viscosity tensor fi(q,w) from Eq. (3.35) is nonzero itself, the convolution 
\i(r (q,m) i (iVdq) W (q,w) is of the third order and should be neglected. Similarly, from expressions (3.28) and (3.29) one 
can obtain contributions J”(q,w) to (LVaq) . J(q,o) from the terms which are proportional to (c?/aqdq)6T(q,w), 

J”(q,w) = -&q,o): 
a2mwd 

ata ’ 
(3.43) 

where the second rank thermal conductivity tensor fi(q,w) has the form 

;z(q,w) =J;(q,m)&t$ l J;(q,o). 
1 

(3.44) 

Although expressions (3.34)-( 3.36) and (3.44) for viscosity tensors and tensorial thermal conductivity, respectively, 
have a complicated structure, they can be reduced to reasonably simple forms which can be proved to generalize those for 
the corresponding homogeneous fluid transport coefficients. This is further discussed in Sec. IV. 

IV. ANALYSIS OF RESULTS 

With some additional and not very strong restrictions the linearized Navier-Stokes equations (3.23) and (3.24) and 
expressions for the transport coefficients (3.34), (3.36), and (3.44) obtained can be dramatically simplified. 

We assume now that the fluid inhomogeneity is due to the fluid-wall potential, and that no other external fields are 
present. This case would include simple fluids confined in capillary pores whose walls are composed of simple atoms (for 
instance, carbon, silicon, zeolites, etc.). Then from correlations (3.1) and (3.2)) it follows that in each set of terms in Eqs. 
(3.23) and (3.24) proportional to constants, h(q), and b2n2(q), one can restrict consideration to terms of tensoriality 
&%& in Eq. (3.23) and &% in Eq. (3.24), and among those terms for any integrable, positively defined function f(q) 
there would hold hierarchies of 

j-d&f (q--3+$ f d&f (s-cW+w, s#I, 

and 

I 
d&f (q-c&)cf, 

s 
d&f (q-&)apl, s#I, p,s,l=i,j,k. 

Thus, for small u(q,o) and ST(q,w), Eqs. (3.23) and (3.24) take the forms 

d~,(cl-a,~)gl,(cl,q-~,~)(~ I-66) l u(q,o), (4.1) 
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-$ iwkBn(q)ST(q,w) +a .P(q,o) =o, 
84 

where 

n(q)I+$(q) 
an(q) 

-~@&~(q,w)~;(q,o)Cn(9). ag 

(4.2) 

-; (Wh&)br/f+w)E(q) 
an(q) 72 

l ,,+&b2Wo(s): 

+~T8b~[B(q) l ~12’(q,~)lT ST(qw)-- ~k~~,,(q)+~b~~~(q,o)n(q) sd&n(q 1 ’ 1 

+&Jb2h~(q,o)Z,(q)~ - 
an(q) I amw 

48db 

I aq aq 
7 *(cl) +8rd, T;(q,w)n(q) 

s 
d+Uq 

--al~)gl,(q,q--o,~)(~~-~ 1)6+4mh,*(q,w)n(q) A(q):; (214+IG---; II) 
I 

1 
1 I OI -u(q,o) 

-8v<(wd i,+; F,(q) :f%v,(q,o) -%j”(q,o):s(q,o) -k”(q,o) $ l u(q,o), 
( ) 

(4.3) 

and 

Jo(q,w) =f n(dI+E Q2(q) - ) d~n,(q-o,~)sl,(s,s-u~~) (ix%-; I) 1 l u(q,w) 

+ gr bdA’%(q) -4rA?j:(w) I+gT F,(q) 1 ( 
am 63-r 

l F+r ~~f!Ya,~)n(q)Wq) ST(q,w) 1 
-LO( q,w ) l 

am344 
aq ’ 

(4.4) 

and where the transport coefficients are given by 

4o(q,w) =-w(q) [ 4r$(q,w) (it+: J d&z(q--&)g(q,q--&)(&%%%) ):(&+g J- d&‘n(q-&‘)g(q,q-&‘) 

~((&‘&+?‘&‘~)+;b”I d~~(q--~)g(q,q--~)(~~~~) , 1 (4.5) 

]iio(q,o) =v(d (2b$(w) s d Bn(q-&)g(q,q-c+)((&&)--jI)+;b2 

x 
s 

d&n(q-r+)g(q,q--a%) [ (&+)-~(#*I,)] 
) 
, 

L0~q,w)=ln(q)[4~~(q,a)(I+~ Idn(q~~)g(q,q-~~~(~~)):(~+~ sdk’ntq-c@) 

xg(q,q-o&‘)(cW))+$b2~d&n(q-&)g(q,q-&)(&)]. 

J. Chem. Phys., Vol. 99, No. 11, 1 December 1993 

(4.6) 

(4.7) 

Downloaded 02 Oct 2005 to 141.217.4.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



A. Transport coefficients in immediate vicinity of 
structured solid walls 

8982 L. A. Pozhar and K. E. Gubbins: Transport theory of inhomogeneous fluids 

In expressions (4.5)-(4.7) tensors (&&I%) and (&?) are 
those iX%&& and &&, respectively, in which components 

qmvm and WL with odd powers of indices p,s,l,m 
=i, j,k (e.g., ~Uj, ajO~, etc.) have been neglected, be- 
cause of hierarchies established at the beginning of this 
section. 

As can be ea:ily seen from Eqs. (4.5)-(4.7), the ratios 

4°(s,w)/n(a), ~(w>/n(s>, and L’(q,w)/n(s) do not 
depend on local values of the number density n(q). Simi- 
larly to the transport coefficients for the general case de- 
fined by Eqs. (3.34), (3.36), and (3.44), those from Eqs. 
(4.5)-(4.7) depend on position q and frequency w. The 
zero-frequency (or long time) limits of expressions (3.34), 
(3.36), and (3.44), or Eqs. (4.5)-(4.7) provide tensorial 
transport coefficients for the general case of inhomoge- 
neous fluids in time-independent external fields and/or in 
the presence of structured solid walls. 

The general form of the relation between the number 
density and transport coefficients (or so called “smoothing 
procedure”“2) is Jd&n(q-u&)g(q,q-uC)&&&&. More- 
over, as can be seen from Eqs. (3.34), (3.36), (3.44), or 
(4.5)-(4.7), there are two of its reductions involved: 

s 
d&n(q-u&)g(q,q-u&)6-& 

= 
s 

d&n(q-u&)g(q,q-a&)&&(&.&), 

s 
d&n(q-u&)g(q,q-u&) 

= 
s 

d~n(q-u~)g(q,q-u~)(6.8)(8*B). 

Additional smoothing procedures appear in the general 
case of Eqs. (3.34)-(3.36) and (3.44), and are 

s 
d&n(q-&)g(q,q-&)e 

k 
and 

Although, in general, there exists a variety of contri- 
butions to the transport coefficients, Eqs. (3.34), (3.36), 

and (3.44), caused by the presence of walls, the main con- 
tributions caused by hard-core fluid-wall intermolecular in- 

teractions are those which contribute to $(q,w) and 

fl(q,o) [Eqs. (3.8) and (3.11), respectively; at the zero 
frequency limit the 7*‘s are reduced to TV(q) and TA(q) 
defined by Eqs. (3.6) and (3.9)]. This fact becomes even 

more obvious after natural reduction of the transport co- 

efficients to those of Fqs. (4.5 )-(4.7), which assume no 
external field other than that of the fluid-wall interactions 

(see the beginning of this section). Quantities TV(q) and 

TA(q) are multipliers in the expressions for the main con- 

tributions to the shear viscosity and thermal conductivity 

tensors for all cases, including those for homogeneous flu- 
ids. As follows from expressions (3.6) and (3.9), the con- 

tributions to TV(q) and Tn(q) caused by hard-core fluid- 
wall intermolecular interactions are proportional to 

Sd~,(q-ul~)g,,(q,q-u~~), and are nonzero only 
for distances I from the walls which are about uu,,. 

However, for separations Iz=(T,~ the values of r9(q) 

and Tn(q) can differ significantly from those for I> ulW 
Since both functions n,(q--a,$) and gi,(q,q--a,>) are 
positively defined, Jd&n,(q-ual$)gl,(q,q-u&)>O, 
and values of TV(q) at I~ui,,, could be smaller than those 
at I> ulW This could lead to a decrease of shear (and bulk) 
viscosities at distances Izu,~ from the walls. Moreover, 
from Eq. (3.6) it can be seen that the larger the ratio 

(at Ju) 2 is, the larger is such a decrease. Macroscopically, 
for walls of simple geometries this could result in sliding of 
the fluid monolayer nearest to a wall along the wall. This 
phenomenon (known as a slip in velocity) has been dis- 

covered theoretically” and confirmed by different experi- 
mental investigations in fluid mechanics (for example, in 
the case of a flow of hard spherical colloid particles in 
cylindrical channels16), and by computer simulations of 
low density gas flo~s~‘~~t and flows of simple liquids.22 
Here we have provided a possible microscopic justification 
for these observations. 

d&g(q,q-u&)&>, k= l,..., 5. 

k 
In the case of shear viscosity, bulk viscosity, and thermal 
conductivity defined by J2q.s. (4.5)-(4.7), the reductions of 
the main smoothing procedure are 

s 
d&n(q-u&)g(q,q-u&)ofd 

and 

s 
d&n(q-u&)g(q,q-u&)o$, I,s,p=i,j,k, 

respectively. In the following subsections we consider 
several special cases of the further simplification of expres- 
sions (4.5)-(4.7) for the transport coefficients. 

For the thermal conductivity the situation is quite dif- 
ferent. The hard-core, fluid-wall intermolecular interaction 
contribution to 7;3( q) is negative [see Eq. (3.9)], which can 
lead to an increase in the thermal conductivity of a fluid at 

distances IzulU from the walls. Once again, the value of 
this increase is defined by the ratio ( u,Ju)~, as well as by 

Sd~,(q-u,~)g,,(q,q-a,~). Quantities TV(q) and 
rL( q) are related to characteristic times TV(q) and Tn( q) of 
the momentum and energy redistribution responses of a 
fluid by relations (3.7) and (3.10), respectively. Thus, the 
results obtained show that in the immediate vicinity of 
walls the hard-core, fluid-wall intermolecular interactions 
accelerate the momentum redistribution into a direction 
normal to the walls, and do not effect significantly the 
tangential momentum redistributions. In addition, these 
interactions slow down the energy redistribution. 
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B. Dense homogeneous fluids 

For homogeneous fluids the equilibrium number den- 
sities do not depend on molecular positions, n(q) =n, and 
g(q,q-&) =g(a). Subsequently, in the absence of solid 
walls, n,(q) =0, and the corresponding Navier-Stokes 
equations, which can be obtained from Eas. (3.23) and 
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and the fourth rank symmetrical Cartesian tensor T, has 
nonzero components as follows 

4 
(T,h=j T, I=i,j,k, 

(4.17) 

4 4A 
(T,),,=~J p %dqr p,w,s=j,j,k. 

1 $q4s 

(4.8) Scalar shear viscosity &Jw) and thermal conductivity 
/z&(w) coefficients can be obtained by calculating the con- 

(j.24) or (4.1) and (4.2), take the forms * 

-hpu(q,o) _l_a l rI,(q,w) =o, 
as 

(4.9) 
volutions &(w):S(q,w) and i!&(w). (a/aq)ST(q,o), in 
Eqs. (4.10) and (4.11), respectively, 

ii~(~):ww) =&&m(q,4, (4.18) 

i;(w) l d ST(q,w) =/z;Jw) d GT(q,w), 
aq as 

(4.19) 

where 

-t ik@ntX’(q,w) +& l J&q,a) =0, 

where 

&f(w) =I 
I( ) 

dp Q(w) 
aP s 

+nkd 1 +nbg(a) I~~(%~) 1 
^O a 

--2&b):Sh,d -K"g -u(q,o), 

and 

Jdq,w) =nkA 1 +nbg(o) lu(q,w) 

& [1+3n&W12 

(4.10) 
(4.20) 

and 

and where tensorial viscosities +jL( w ), sH( w ) and thermal 
conductivity fig(o) do not depend on position q in the 
fluid, and are reductions of those of Eqs. (3.34), (3.36), 
and (3.44), or those defined by Eqs. (4.5)-(4.7): 

AoH, =A (1 --io?,)-’ 

(4.11) 
( 

$) [l+wxw12 

+gr n2b2g(a) . 
1 

(4.21) 

The scalar bulk viscosity p,,,( w ) follows directly from Eq. 

(4.13), 

@H,,(w) =gv n2b2g(dq. (4.22) 

Expressions (4.20)-(4.22) are identical to those obtained 
for dense homogeneous fluids in Ref. 11, and at the zero 
frequency limit lead to the familiar transport coefficients of 

I 
1 

$&cd) =7j (1 -iGV)-’ - 
g(u) 

i‘$+&nbg(u)Tq 
11 

: i, 

+; &?(a) (T,--b n-11) +$ n2b2g(a)T, , 1 I 

g!J(w, =& n2b2g(a)$, (4.13) 

;iO,(cd)=A (l-jfiFA)-’ 
i 

$j [l+Wgb)12 

(4.12) 
dense homogeneous fluids. Similarly, substituting Eqs. 
(4.18) and (4.19) into Eqs. (4.10) and (4.11), one can 
recover Eqs. (3.14a) and (3.14b) of Ref. 11 for the Fourier 
time transforms of the momentum and energy fluxes, re- 
spectively, and the Navier-Stokes equations (3.13a) and 
(3.13b) of Ref. 11. 

+& n2b2g( a) 
1 
I. (4.14) 

C. Fluids inhomogeneous in only one direction 

In Eqs. (4.12)-( 4.14) the quantities ;i,, 7x are reduc- 
tions of those defined by Eqs. (3.7) and (3.10), respec- 
tively, 

_ 5 rnfl ‘I2 
5’16 q- 

( 1 
b&b) 1 -I, 

l5 mp “2[nc2g(o)] -I, “yz 7 ( i 

We assume that the fluid is inhomogeneous only in the 
z direction. Assigning the origin of a spherical coordinate 
system (r&4> to position q=q$+q,j+q$=xi+yj +zk, 
so that 6 is an angle between the z direction and spherical 
radius r, and, thus o,=sin 6’ cos 4, a,,=sin 8 sin 4, and a, 

(4.15) 
=cos 8, we can calculate the transport coefficient tensors 
(4.5)-(4.7) and derive explicit expressions for the terms 

-21i0bwasI,~), -K%,d wad ~uhd, and 

(4.16) fi’(q,w) . (a/aq)ST(q,w) on the right-hand sides of Eqs. 

(4.3) and (4.4), respectively, 
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=2w(z) [.C,(w)S(w) +wwmd(q,~> +C3(z,~)~,(<l,~)I+C4(Z,O)S,(q,O)~kkl, 

a&d $ •u(s,~)=~(w) $ l u(q,o)=~n(z)[K,(z,w)I+K2(z,w)~kkl; l u(q,w), 

(4.23) 

(4.24) 

a 
~“ bl,w) l & fiT(w) =~“ (z,o) l a GT(q,w) =AZn(z){i,(z,41+~2(z,co)ikk)* $ ST(q,w), aq 

(4.25) 

where S,( q,w ) is the zz (or kk) component of the shear rate tensor S( q,w ), the second rank.tensor i,, has all components 
equal to zero but for the kk component which is equal to 1, and the second rank tensor &(q,W) is equal to the shear rate 

tensor S(q,w) in which components Sik(q,w), Ski(q,O), Sjk(qtO), and Skj(q,W) [or S,(q,o), S,(q,o), S,,(q,o), and 
S,(q,o), respectively] are set equal to zero. All other new notations in expressions (4.23)-(4.25) correspond to scalar 
quantities and are defined as 

(4.26) 

(4.27) 

2+yx(z) +; a(z) -f g(z) 
[ 1+ (W4)x(z) 1 ww -t a(z) I 

[y(z) -$(z> -4 a(z) 1 

W(z) -t a(z) 1 (4.28) 

G(w) =6b[y(z) -p(z) -; a(z)] [r$z,o)(2+;a(z)+;y(z)-;@(z))+;b], (4.29) 

Kl(z,w) =2b rr;(z,w) [x(z) -$ v(z) I+; &y(z) , 
I I 

Kz(z,w) =2&-(z) 

(4.30) 

(4.31) 

hw) =4m-f(z,w) 1 _t2 x(z) ( 20 )1 24 +25r b2x(z), 

i2kd =F &, 

(4.32) 

(4.33) 

where the quantities $(z,w) = r&)/[l - iwFV(z,o)] and fl(z,w) = rn(z)/[l - ~o?~(z,o)] [see ENS. (3.8) and (3.11), 
respectively] are reduced to T;(Z) = 7,&z) and e(z) = ~~(2) at the zero-frequency limit, 

7$(z) =271- Y(Z) +f q(z) +v2 
I 

(4.34) 

27 
Y(Z) -5 q(z) - y ( 32v2tz)], (4.35) 

s 
rr Yl (z) = &sin e[n(2-~c0se)-n(z)]g(z,z-~c0se), (4.36) 
0 

J- 

7T 
%3(z) = de sin enw(z--(Tlw cos e)glw(z,z-qw cos e), (4.37) 

0 
and 

s 

P 
a(z) = de sin’ eN(z,z--o c0s 13), (4.38) 

0 
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de sin3 8 ~0s~ eN(z,z- u cos e), 

y(z) s Joffde sin 8 ~0s~ ehyz,z--a cos e), 

!Az)= l ( dtl 2 sin 8 cos2 e-sin3 @N(z,z-ucos e), 

I 

lr 
x(z) = de sin3 eiv(z,z---a cos e), 

0 

s 

a 
Y(Z) = de sin ejv(z,z-O cos e), 

0 

and where 

N(~,z-~ cos e) 52(~--~ cos e)g(z,z--a cos e). 

In coordinate representation the Navier-Stokes equations (4.1) and (4.2) take the forms 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

(4.44) 

271f3b4 $&(q,w) -jq+)q(q,w) + ( a *no(w) aq 1 
- 

=2#)(2,0) a S(qw) +2~j2)(z,w) 5s (q,o) 
I tap ’ 9 ), aq, a 

- 

+&ho) & (; .u(q,o)) +y $o( $j2W L$ vz(z) -x&z> 

-Lur(z)&ddq,~), I=f,j,k, ( corresponding to x,y,z, respectively), 

(4.45) 

-i jakBn(zMT(q,w) + i 

- 

-J”(q,w) 
a2 

=~Zn(z)L1(z,o)V2ST(q,w)+iln(z)2,(z,o) zGT(q,w), (4.46) 

where 

i l Il’?q,o))- and ($ l J’?q,w))- 
are divergences of the fluxes Eqs. (4.3) and (4.4), from 
which terms 

: a 

-2ii0(s,d@ a(l W%@), 

-P(q,u)?;iag ($ l u(wJ)), 
and 

---;i”(q,d: & Wq,w), 

respectively, have been extracted; ul(q,w) is the I compo- 
nent of the velocity, 6,k is Kronecker’s delta, S,,( q,w) is the 
zi (or kl) component of the shear rate tensor, and L&(z) 
and xW(z) are defined by Eqs. (4.41) and (4.42), respec- 
tively, where N(z,z--a cos 0) has been changed to n,(z 
--(Tag cos e)g,,(z,z--o,, cos e). 

In Eq. (4.45) the scalar shear viscosities, ~[s, and bulk 
viscosities K~(z,w)‘s are 

rl11)(z,o)=77n(z)[C*(z,o)+(1--S~k)C2(Z,0)l, (4.47) 

I 

rlj2’(w) =vwCC3(w) + [C,(w) +c,cw)16~k), 
(4.48) 

rlf3)(z,d =7p(z)C2(w) (alk- 11, (4.49) 

KI(.w) =qn(z) [K,(w) +S~&(z,w)l, I=i,j,k. (4.50) 

The thermal conductivities in Eq. (4.46) are 

A~(z,W)=An(z)2,(z,W) (4.51) 

and 

j12(Z,O)=iln(z)Zz(z,w). (4.52) 

The transport coefficients (4.47)-(4.52) can be calculated 
immediately provided the equilibrium number density n (z) 
and pair correlation function contact values g(z,z 
--(T cos 0) are known for the composite potential pl. 

Once again the transport coefficients for homogeneous 
fluids can be easily recovered from Eqs. (4.47)-(4.52). 
Indeed, for such fluids 

$(z> -$ a(z) =o, C(z) =o, y(z) -PO(z) -: a(z) =o, 

x(z) -$ Y(Z) =o, q(z) =o, 

and v2(z) =xJz) =&Jz) =0 

[since n,(z) =0], and one can derive 

7jj2’(o) =?)j3’(w) =&(a) =L2(co) =o, 

??j’b> =&&-J), A,(@) =$&4, 

J. Chem. Phys., Vol. 99, No. 11, 1 December 1993 
Downloaded 02 Oct 2005 to 141.217.4.72. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



8986 

and 

L. A. Pozhar and K. E. Gubbins: Transport theory of inhomogeneous fluids 

&b) =KoH,,w, 

where &Jo>, n&(o), and pHsC( w) are defined by Eqs. 
(4.20)-(4.22), respectively, for all l=i, j, k. 

In the particular case of a fluid in a narrow slit pore the 
results Eqs. (4.47)-(4.52), can be simplified further. We 
choose the z direction to be orthogonal to the pore walls, 
which are parallel to each other. Then the shear rate tensor 
will have just four nonzero components S,=S,, SyZ=Sry, 
because in a narrow pore of several molecular diameters 
width, u,( q,o) =O. As a result, Sd( q,w) =O. Subsequently, 
the right-hand side of the momentum conservation equa- 
tion (4.45) takes the form 

sequently their dependence on q is not dramatic, it can still 
be significant. From a practical point of view it would be 
helpful to know for which specific inhomogeneous fluid 
systems, if any, the spatial dependence of the transport 
coefficients is negligibly small. 

For this reason, we first consider the transport coeffi- 
cients in the case of external fields generated by fluid-wall 
intermolecular interactions only, Eqs. (4.5)-( 4.7). It’s 
clear that the ratios (transport coefficient)/n (q) would be 
independent of q if the quantities 

ql,~), Tn*(%@>, 

s 
d~(q--~)g(q,q--~)~~~, 

xn(z> r: Y(Z) -x,(z) l~l(W), and 

where 1=&j, and one finds a unique scalar shear viscosity 
coefficient 

s 
d~~(q--~)g(q,q--~)~~, 

s 
d&n(q-cG)g(q,q--& 

~~lit~z~~~~~~~z~Cl~z~~~~ (4.53) 

At the zero frequency limit it follows from Eqs. (4.53) and 
(4.26) that 

are independent of q. In this case, since the spatial gradient 
of the number density of the equilibrium, inhomogeneous 
fluid is large, and, also, oi,oj,ak<l, one can expect that 

a 
as s 

d~(q-~~)g(q,q-~~)o,~~~~9$ n(q), 
mtW=vW am- (z) I+%‘( > 2+; b2$Czl LLz) I- 

(4.54) m,l,p,s=i,j,k 
Similarly, the right-hand side of the energy conservation 
equation (4.46) is reduced to 

and, consequently, 

Mz>[&,d +~2hdl &WwL (4.55) 

so that the scalar thermal conductivity ~-slit(z) in the zero 
frequency limit is 

asn(z)=iln(z)[Ll(z)+L2(z)l, (4.56) 

where z,(z) and L,(z) are defined by Eqs. (4.32) and 
(4.33) and calculated at e(z,w) = TA(Z). 

a 

asl s 
d~(q-u~)g(q,q-u~)u~,o,($ n(s), 

a 

acl s 
d6-n(q--Wg(q,q-W -e$ n(s). 

Moreover, from the definitions of the quantities rz( q,w) 
and e( q,w), Eqs. (3.8) and (3.11)) respectively, it follows 
from the condition 

Other examples of fluid inhomogeneous in only one 
direction include fluids confined in narrow capillary pores 
of spherical and cylindrical geometries. The corresponding 
linearized Navier-Stokes equations and transport coeffi- 
cients can be found for these cases after rewriting Eqs. 
(4.45) and (4.46) in proper coordinate system representa- 
tions. We postpone investigation of such systems to our 
future work. 

I d&n ( q - a&)g( q,q - a&) a,ap,o, z const, 

that for distances larger than olw from the walls one can 
derive 

$ [+pl,4 1 -I=$ [~n*h-l,d 1 -k$ 4s). 

D. Inhomogeneity and the ratios (transport 
coefficient)/n(q) 

As follows from the results obtained earlier, the trans- 
port coefficients, both in the general case [Eqs. (3.34), 
(3.36), and (3.44)] and in the case of external fields caused 
by the fluid-wall interactions only [Eqs. (4.5>-(4.7)], are 
functionally dependent on the position q in the fluid. Al- 
though the ratios (transport coefficient)/n(q) have been 
proved to be independent of local values of n(q), and con- 

Indeed, these quantities depend on q through T,,(q) and 
72(q), respectively. Then from Eqs. (3.6) and (3.9) one 
can show that for separations 1 q/ > on,, from walls the 
dependence of $ and r$ on q is defined by Jd&n(q 
- o&)g( q,q - oe), because of the inequality 

I di+[n(q--a3 -n(q)lg(q,q--c+) 
4 d&n(q-a&)g(q,q-a?). 

I 
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Consequently, we conclude that for inhomogeneous fluids 
for which sd&n (q - a&)g( q,q- a&> is almost independent 
of q, i.e., 

a 

s 

an(q) 

as 
dh(q-&)g(q,q--h) Q- 

aq 3 

the ratios (transport coefficient)/n(q) will be almost inde- 
pendent of q as well. It can also be shown that this ine- 
quality is the necessary condition to have such ratios inde- 
pendent of q for the general case, Eqs. (3.34), (3.36), and 
(3.44). Noticing that 

d&n(q-o&)g(q,q-o&) 

= d~(q+Mg(q,q+&, 
s 

and recollecting that even for inhomogeneous fluids con- 
fined in narrow capillary pores of several molecular diam- 
eters width, the condition 

I Gs 4s) ( -4: I-$ n(q) 1, w,p=i,j,k 
holds, one can expand n( q+a&) in the kernel of the inte- 
gral sd& n(q+o&)g(q,q+o&) in a Taylor series in o in 
the neighborhood of q. Restricting the series to the first 
three terms gives 

w(q)+o c aj’) 
I=i,j,k 

where 

(4.57) 

az= 
s 

d~g(q,q+ak), (4.58) 

8(1), d~Ms,cr+a&, (4.59) 

a(‘) = 
s 

d&(Wg(q,q+&+), (4.60) 

bo= d&n(q+o&)g(q,q+o&). 
s 

(4.61) 

In expression (4.57) we have neglected the contributions 
of op,, terms with Z#n into u(O), and assumed a2, a(‘), a(‘) 
to be independent of q. Although this additional restriction 
is not obvious in the particular case of external potentials 
generated by the fluid-wall interactions only, more detailed 
analysis shows that this condition is required to assure that 
the ratios (transport coefficient)/n(q) are independent of 
q in the general case [see Eqs. (3.34), (3.36), and (3&l)]. 

For a fluid inhomogeneous in only one direction (e.g., 

the z direction), Eq. (4.57) is reduced to 

agz(z) +mp y+$g) qgLbo, (4.62) 

where explicit expressions for u2, a:‘), and a:‘, 

77 
a2=2r 

I 
de sin 6Jg(z,z+a cos f3), 

0 

a(‘)=297 
s 

IT 

z de sin 8 cos Bg(z,z+a cos f3), 
0 
57 

p’=2~ .zz 
s 

de sin 8 608~ eg(2,2+ o cos e), 
0 

(4.63) 

(4.64) 

(4.65) 

can be derived from Eqs. (4.58)-(4.61) using a consider- 
ation similar to that in Sec. IV C, bo=v(z) [see Eq. 
(4.43)], and all notation correspond to those introduced in 
Sec. IV C. 

If we choose the origin of the Cartesian coordinate 
system to lie somewhere inside a wall, than Eq. (4.62), as 
noted earlier, would hold for z-z,&r,J2 (the positive 
direction of the z axis corresponds to the direction from the 
wall into the fluid). Equation (4.62) is an inhomogeneous, 
linear, second-order differential equation, and at z>atJ2 
+zW has the solution 

where n(z) is a general solution of the corresponding ho- 
mogeneous equation, which, since quantities a2, al’), a$, 
and bo#O are real and positive, describes the damped har- 
monic space oscillator;23 for (a~‘))2-2u~)a2#0 it takes 
the form 

RI(z) = I 
0, z<z,+a1J2 CI exp[S~(z--z,--d2)1 +C2 exp[S2(z---Zw-qJ2)l, zZzw+alJ2 

where C,, C2 denote constants, S,,, are 

s*,2= -pi (p2--w;)“2, 

and where the damping constant p and the undamped natural circular frequency w. are 

p--$& 
a 

2a2 
a;=-(. 

hz 

(4.67) 

(4.68) 

(4.69) 

(4.70) 
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At (a:'))* -2a~)a,=O the critically damped solution is 

ii(z) = 
I 

[Ct+C2(z-zZ,-oIw/2)]exp[ -p(z-z,-a&2)], z>z,+atw/2 
(4.71) 

0, z<z,+a*J2. 

Since the relation (3.1) still holds, it is likely that for inhomogeneous fluids (u~~))*--~u~)u~ < 0 [see Eqs. (3.1) and 
(4.58)-(4.60)], and the solution (4.67) can be written as 

I 

0, z<zw+o~uJ2 
ii(z) = 

C3 exp[ -pL(z-z,--ad21 Isin[odz--z,--ad21 +a], z>z,+adJZ (4.72) 

where the characteristic circular frequency UN iS 

tij,,= (,;-p2)1’2. (4.73) 

The constants Cl, C,, or C3 and cy in Eqs. (4.67), (4.71), 
and (4.72) should be chosen so that the solution K(z) 
defined by Eqs. (4.67), (4.71)) or (4.72) would satisfy the 
boundary conditions for the particular inhomogeneous 
fluid-wall system of interest. 

The main conclusion of the discussion above is that for 
inhomogeneous fluids in which the equilibrium number 
densities n(q) behave qualitatively like damped spatial os- 
cillators one should expect the ratios (transport 
coefficient)/n( q) to be only weakly dependent on q. Sim- 
ulation data (for instance, Ref. 24) for the equilibrium 
number densities of fluids confined in narrow slit pores of 
width greater than 30 exhibit such damped oscillatory be- 
havior for n(q) . 

The qualitative consideration above can be extended to 
inhomogeneous fluids in narrow capillary pores of cylin- 
drical and spherical geometries, which we will consider in 
the near future and, hopefully, to other systems of rela- 
tively simple geometries. Thus, we conclude that for inho- 
mogeneous fluids confined in pores of some simple geom- 
etries the ratios (transport coefficient)/n(q) should be 
only weakly dependent on q at separations from the walls 
] qI > ald2. This conclusion is in a good agreement with 
that obtained by Davis and co-workers12’13724 from simula- 
tion data for velocity profiles of Couette flow in narrow slit 
pores of several molecular diameters in width. Though 
such fluids are strongly inhomogeneous, for strictly geo- 
metrical reasons the ratios (transport coefficient)/n (q) be- 
have as if the fluids are weakly inhomogeneous, and the 
corresponding Navier-Stokes equations are rather simple 
generalizations of those for homogeneous fluids. 

V. CLOSING REMARKS 

The transport theory derived above is a rigorous gen- 
eralization to inhomogeneous fluids of the Enskog-like ap- 
proach suggested by Sung and Dahler” for homogeneous 
fluids. Although rigorous this theory remains tractable, an 
advantage that derives from dividing the potential into 
hard-core and soft contributions. The transport coefficients 
thus derived have a simple and tractable structure, and can 
be easily investigated and evaluated. The theory incorpo- 
rates some approximations. The two basic ones are trun- 
cation of the set of moments equations and neglect of dy- 
namic memory. 

I 

The shortcomings of the 13-moments approximation 
can be alleviated, in principle, by expanding the basis set 
beyond the first 13 velocity moments of the singlet dy- 
namic distribution function. Although we do not have 
enough information on nonequilibrium inhomogeneous 
fluids to estimate the omission properly, it’s well known 
that for homogeneous fluids more accurate estimates of the 
transport coefficients at zero frequency in the conventional 
Chapman-Enskog procedure lead to slight modifications 
of the numerical values of the contributions proportional 
to n2b2g( a); these correction factors are ( 1.016) -’ 
for shear viscosity and ( 1.025) -’ for thermal 
conductivity.‘*” Thus, one does not expect the use of the 
13-moments basis set truncation to lead to large errors. To 
correct this omission, one can use the Gross-Jackson ki- 
netic modeling procedure,25 which should be extended to 
inhomogeneous fluids. 

The main contribution to dynamic memory effects is 
likely to come from repeated core collisions (not included 
in the theory presented here); there will also be smaller 
contributions due to the soft part of the potential. The 
neglect of these dynamic memory effects can be corrected 
for through analytic models, or by using molecular simu- 
lation data. Thus, one can make an approximate correction 
for these effects by adjusting the theoretical results to 
match simulation data for a fluid of hard spheres of the 
same hard sphere diameter, as has been done by Sung and 
Dahler, l1 who used Alder?6 and Dymond27 correction fac- 
tors. For inhomogeneous fluids the application of such 
ideas will be somewhat more complicated, since the density 
(and hence, the effective hard-core diameter, in the Weeks, 
Chandler, and Anderson (WCA) approximation discussed 
later) varies with position. 

Calculations based on Eqs. (3.34), (3.36), (3.44), or 
(4.5)-( 4.7) require determination of the local equilibrium 
number density n(q), the hard-core diameter a, and eval- 
uation of contact values of the pair correlation function 
g( q,q- a&) for the intermolecular interaction potential pr 
of Eq. (2.1). The latter should be chosen so that it mimics 
some more realistic intermolecular potential, e.g., the 
Lennard-Jones model, pLT. To do this, one can use the 
Weeks, Chandler, and Anderson28 or Barker and Hender- 
son29 (BH) methods. Both methods have their pros and 
cons from the transport theory point of view. The WCA 
method supplies a hard-core diameter, u,,,, which de- 
pends on the equilibrium number density and temperature 
of the fluid, whereas the BH procedure yields a anu that 
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depends only on temperature. From a dynamical point of 
view there is scarcely any difference between collisional 
encounters described by potentials qI and Q)~, and it’s 
reasonable to take into account the averaged effects of such 
small differences in the potentials by choosing the hard- 
core diameter u to be a functional of density and temper- 
ature.“” 

In using the WCA choice of hard-core diameter, we 
note that the theory incorporates an assumption that the 
hard-core diameter (T corresponding to local densities n(q) 
and n (q + 0 is the same, provided ( { 1 <a. We believe this 
may be a good approximation for many situations, since 
the density dependence of 0 is weak.28 Nevertheless, the 
theory should be regarded as a zero-order theory with re- 
spect to the density dependence of a, provided the WCA 
choice of hard-core diameter has been used. In order to 
avoid having to calculate o for every local value of n(q) it 
should be possible to introduce an averaged density n*, and 
then calculate owCA( n*). 

The BH choice of hard-core diameter looks much 
more attractive for inhomogeneous fluids, because osH 
does not depend on the density of the fluid. In this case the 
theory developed above should be regarded as an exact 
theory with respect to the density dependence of o. How- 
ever, alleviation for the neglect of the dynamic memory 
may become more complicated, because it is no longer 
clear that the main contribution to the memory can be 
equated to those caused by the repeated hard-core colli- 
sions only. 

The contact values of the pair correlation function 
g( q,q-&) can be obtained by direct computer simula- 
tions for a fluid with the intermolecular interaction poten- 
tial p’r of Eq. (2.1). Moreover, for homogeneous fluids 
Sung and Dahler” found that for the WCA choice of hard- 
core diameter the following correlation holds, 

d”WCA) g(%J) 

8dcWCH) “gH( ’ 
(5.1) 

where gH( oLT) and g& owo.& are the contact values of the 
pair correlation functions specific to the hard sphere fluids 
with hard sphere diameters equated to o, (where o, is 
the Lennard-Jones parameter) and owoA, respectively, 
and g(a,) and g(owCA) are the contact values of the 
pair-correlation functions for the Lennard-Jones fluid. 
Similar correlation may hold for the corresponding local 
contact values of the pair correlation functions in the case 
of inhomogeneous fluids, and this could lead to a reason- 
able approximation of g(q,q-o&) specific to the compos- 
ite potential rpr. 

Finally, we note that at the simplest level one can es- 
timate the quantities 

s 
d~n(q--~)g(q,q--~)(~~~~) 

and 

s 
d& n(q-&)g(q,q-m?) (6% 

in Eqs. (4.5)-(4.7) heuristically, as was done in Ref. 1 for 
a fluid inhomogeneous in only one direction. While such an 
approach may give immediate results, it will be of uncer- 
tain validity and likely to break down in unforseen 
ways. We plan to test the theoretical expressions for the 
transport coefficients presented here via molecular simula- 
tions for fluids near walls and confined within pores, and 
these results will be presented in future papers. 
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APPENDIX A: INTEGRODIFFERENTIAL FORM OF THE MOMENT EQUATIONS 

The integrodifferential equations obtained by using the 13-moments approximation are 

i 6n(q,f) +$ - [n(qh(eO 1 =&t-d 
s 
dih(q--c?)g(q,q--oC)6* [u(q-o+,t) -u(q,t)] +ofs(q) 

X 
I d~n,(cl-a,~>g,,(cl,q-u*~)~*u(q,f), 

& [p(du(q,t)l+$ l p(s,t)+kB$ l [n(q)sr(q,r)lI+~$sn(r,r) 

=f Idq’[n(q)(dC(aqdq”-g(q,q’) afHiy’))+y (l+C(q,q’)- ~dp”n(q”)C(s”,4’))]Sn(q’,t) 

den(q--i+)g(q,q--3 (CC-3 I) l [u(q-a&t> -u(q,t)] -2v%f, n(s) 

(Al) 
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o% 
x d~,(q-al~)gl,(q,q-~,~) (E-3 I) l u(q,t) +T n(q) 

s 
dWq-&g(q,q--3 

XB[ST(q-u&,t) --GT(q,r) ] +; 
s 

d&g(q,q-a&)&&&[n(q)P”(q--a&J)--n(q--o&)P?q,t)] 

2 s 40 +z d&n(q-o&)g(q,q-o&)&&&P”(q,t) +y 
s 

d~,(q--(Tl~)glw(q,q-~l~)~~~PO(q,t) 

diig(q,q-cG) (&&--$ I) l [n(q)Q(q-a&J) -n(q--o8Q(W>l 
d~,(cl-a,~)s,,(<r,q-u,~) W-f I) l Q(q,t), (A21 

2 k,n(q) & tWq,t) +$ l Q(q,d +kBT i l [n(aMs,d 1 

a2 
s 

4ul 
=2p n(q) d&n(q-a&Mq,q--acTW [u(q-a&,[) -u(q,t) I +p n(q) d~,(q-al~)gl,(q,q-al~)B 

l u(q,t) + (kB/~)$n(q) s dh(q- o&)g(q,q-ff&) [ST(q-a&t) --ST(qA I+ (4/&&a 
302 

x d&g(q,q-&) (&9-f I):[n(q)P’(q--a&J) -n(q--C)P’(q,t)] +F dbg(q,q-o&)8 

l [n(q)Q(q-a~,t)-n(q--a~)Q(q,t)l +y 
s 

d&n(q--&)g(q,q-oc%)B*Q(q,t) 

+aTUJ s 
d~n,(q-al~)gl,(q,q-~,~)~.Q(q,t), (A3) 

p & P”(q,t> +=,,(q,t) +; sQ(%t) 

=&z(q) Sd~n(q-~~)g(q,q-~~)(~~-~I)~* [u(q-a&J)-u(q,t)]+2&n(q) ~d&n,(q-rrl$) 

x&,(q,q--alu$)(&&-; I)cSu(q,t)+2k& !- ( Tm)1’2dd J d&n(q-o&)g(q,q-m%)(&&--fI) 

x[ST(q-u~,r)-BT(q,f)l+2(~)1'2~ld~g(q,q- I( a& S-f I)&&:[n(q)P”(q-o&J) -n(q-a&)P”(q,t)] 

-6(h)‘” j- c? d&n(q-h)g(q,q-m&)(&i%-$I)&&P’(q,t)-6fl B (~m)1’2~,~d~n,(q-rrlZ) 

Xgl,(q,q--a,@)(&&--f I)&&P”(q,t) + ipc? s d&g(q,q-r.S) (i%&-~ I)&* [n(q>Q(q-a&J) 

-n(q--a&)Q(q,t)] +ifldJd&n(q-m%)g(q,q-o&)(&C-iI)&*Q(q,t) 

dk n,(q-a,~)g,,(q,q-a,~) W-f W*Q(W>, (A4) 
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&Q(P.f)+g$-$ [n(q)GT(q,r)]+&$ .PO(q,t) 

=(d/28m)n(q) Jd&n(q- af?)g(q,q-m?) (is&-$ I) l [u(q-a&,t) -u(q,t)] 

-(fi&/P&&>n(q) JdA 
32 kB 

u n,(s-al~)sl,(scl-al~) t&4 I> *u(w) +- - n(s) 
4 Pm 

x 
I 

d&n(q-c&)g(q,q-&)6[6T(q-u&,t) -GT(q,t) ] +-& 
I 

d~n(q--~)g(q,q--~)~~~:P’(q,t) 

+g Jd&g(q,q-&)&&&[n(q)P”(q-&,f) -n(q-&)P’(q,f)] -(2$/S J?rpm) Jd&n(q--a%) 

xg(q,q-03 (bti+I) *Q(w) + (27&20,/&d j- d&g(q,q--ok) (&F-$ I) l [n(q)Q(q--a&,f) 

-ds-ui+)Q(s,t) I- (13fl&,/5 ,/$%I s dh n,(s-al~>gl,(sq-ol~) (kc-3 1) *Q(w). (A51 

In Eqs. (Al )-( A5) I denotes the unit matrix, and quantities 

A n 
a...u, 

n 
n=2,3,... 

are the nth rank Cartesian tensorial products of the direction cosines vector B with itself; thus, for instance, &&&& is the 
fourth rank Cartesian tensor composed of 81 components (oiop,a,>, i,Z,m,s=x,y,z. Similarly, [cc--- ( l/3)1]&, 
[&&- ( 1/3)I’@&, etc. are tensorial products of the tensors [&&- (l/3)1] and B or &&. The second rank Cartesian tensors 
S,,(q,t) and S,(q,t) are defined as 

Sm(q3f)=i $ [u(q,f)n(q) I+ $ b(q,f)n(q)] 
I ( 

T2 a 

) ( 
-3 I ;r; l [u(q,f)n(q)] 

)I 
, 

S,CW)=; [ (~Q(,,r,)+($a(,,t))T-~I($ *Q(s,r))l, 
(A61 

(A7) 

where C(a/aq)[u(s,f)n(q)l}T 
(a/aq)[Q(q,f)], respectively. 

and {(a/aq)[Q(q,f)]}T denote the transposes of the tensors (d/aq)[u(q,f)n(q)] and 

APPENDIX B: REDUCED EQUATIONS FOR P’(q,o) AND Q(q,w) 

Reduced equations for the time Fourier transforms of the “kinetic” contributions to the energy flux and the pressure 
tensor are 

-iwQ(q,w) + [82/15 ml [ s dti(q---CMq,q--h) +z s d&[n(q) -n(q-&)]g(q,q-oh) - (13vW8) 

d~n,(cl-ol~)gl,(s,s-al~) Q(q,m) 1 
= -2 -& [n(q)ST(q,w)] +F ~d&z(q-c&)g(q,q-&)&&*a’T~~‘m) - bwsV2P Jn;pml 

X s h(<l,@) ~&m-4) 
d&n(q-o&)g(q,q-&)(&&-$I)&:----- 

aq -3GEd 
d~n,(q-o,~)g,,(q,q-o,~) W-; I) 

2 
x l u(q,o) +- 

Wm s 
d&[3n(q) -2n(q-&)]g(q,q-&)&6tkP”(q,w), (Bl) 
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d 
-ioPO(q,o)+~S,.(ao)=-,n(s) 

s 

MwJ) 2do 
d~n(q--~)g(q,q--~)(~~--;I)~~- - 

aq 
+ p n(s) 

x I d~n,(q--,~)g1,(q,q--,~) w-f IW*u(q,o) - cw6-J-v J;rBmMq) 

s 
asmw 

X d~n(q--~)g(q,q--~)(~~--51)6* 
aq 

- (402/5 J;ram> 

(I 

2 

X d&n(q-a&)g(q,q-a&) +; J- d&g(q,q-CT&) [n(q-a&) -n(q)] +v2 ? 
( ) 

s 1 l3 
X de n,(s-al~)gl,(s,cl-al~) e-l44 +-J- 

IJ 
d&[2n(q) -n(q-o&) ] 

xg(q,q--o&) (&&-+ I)&+4 ? 
2 

( )J 
dC n,(s-a1~)g,,(s,cl-a1~) 

x (&i?-f I>& l Q(q,o). 1 (B2) 

If one assumes n(q) =const. n,(q) =0, and g(q,q-o&) =g(a), then from Eqs. (2.25)-(2.27) and Eqs. (Bl) and (B2), 
one can recover the 13-moments approximation equations for dense homogeneous (bulk) fluids.” 

APPENDIX c: THE FIRST SIX CONTRIBUTIONS TO THE MOMENTUM AND ENERGY FLUXES, AND RJq,w), 

&&4 

The explicit expressions for the first six contributions to the momentum flux lI(q,o) are 

&(q,w) = 
SP(cl) 

dq Sn(q’) ’ - Sn(cr’,o) -n(s) 
II- 

Sp(q”) 1 
WW in Wq’,o) --a n(a) 

s 
dq’ Tr ~(q,q’)Wq’,~) 

1 
+3p n(q) 

ss 
dq’dq”n(q”)Tr p(q”,q’Mn(q’,o) I, (Cl) 

n(q)I+$%h) -~&=7;t(q,o)$(q,m) :&(q) +T ,/&&Fo5(q)b $ 

2 

x lAYq,w)~sl(s,w)~,(q~ 1 -~w~~~hoEw l arbLw> +g A~~o~4~~ $[~h&O)~T(q.“) 1 

16 
+ij ~~Wd+-w) M(q):b(q,d I ‘+gT bo&[B(q) 4j2’(q,w)]’ ST(q,o), 1 (C2) 

g k,*,,(q) +; &&A~(q,o)n(q) i,+g &(q):i, :hdw) -$ &?=m~Fc,dq)~; 

x [~(q,w)n(9)~sr(cLo)l+~~PbblllBo ‘L:2’(q,o)-~Bb2?TBo(9)~ ap(q w) aq ’ 
awq,@) 

+f ~~ff~?:(q,w)~(q,w)F,,(q)~Br(q)I+~~Bb2~~~(q,w)~,(q):~=(q,o)I l aq , 1 (C3) 
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I&(w) = ~~ff~~(q,o)n(q)F,,(q)~B,,(q,o) l i4+~gb2?a,(P)~)2)(q,o) l i, : a2aza;0) , 

) 

(C4) 
-e 

I 

482 
Wcl,@) = 5 WJ’(d +8~~,77~(s,o)n(q)~“(q,~) +6~917~~(s,o)n(s)Fh(q):B,(q,w) -3&,ob~Fo& $ 

x b-qs,wMs>P,(sw) I- (9~/5P)~9rl~(q,o)n(q)&(q) l a,cc& + (9vm0T)c7Qmjao(q)~ $ 

X [~(wMq)tbw) 1 +&W:~j2b-w) 1 ‘oI+; dr/~:(s,o) [B(q) &(q,4 101 1 *UC%@1, (C5) 

&(w) = 
1 
-8rrr/<(q,d i,+; F Cd +3~q$+w)Fos(db ;I 

( 4, II 
il+3~ollFor(dO; [$(q,d 1 

-f b-pci,~)G(a,~>~~~~ *C,(q) +; ba77~‘oWQ $ bpl,4~@w,01 

9 
+E ~~~~s,o,bcq,~~~.cq~~~~~~:~ i4 :S.vn(q,W). 

1 I ” 
CC61 

In expressions (Cl)-(C6) [D]r 

CPIT~ 
means the transpose of the pth rank Cartesian tensor D defined by the expression 

I,,,.,.~= Ds...,,,l, and an open dot (0) denotes a convolution over the second left index of a tensor to the left of 0 and 
a regular index of the tensor to the right; notations @ and a+ denote convolutions over a $ index of a tensor to the left 
of the corresponding convolution sign and a (a/aq) index of a tensor to the right; in the case of a4 the (a/aq) index of 
a tensor to the right should be taken after executing convolutions of tensors i $. lj, or I with the corresponding continuum 
variable or its ;patial gradient. The sixth- and fourth-rank Cartesian tensors lg, l4 are composed of components ( 1,) lmnsPq 

=~1~mpL (14)Imm=Wmn9 respectively (S-S here are Kronecker symbols), and are considered in Appendix D. Gradi- 
ents (a/as) IU in Eq. (C6) and (mq) IVn in Eq. (3.27) are to be calculated at u(a,w) and Vn (a) fixed, resnectively, and 
V 3 (a/aq). All other new notations in l&s. (Cl )-( C6) are as follows: -. 

-. a 

@,(q)=n(q) d&n(q-&)g(q,q-cr&)u+gi . 
s I 

d&n(q)n(q-&)g(q,q-&) 
m m+l 

Fm(q)=n(q) 
I 

d&g(q,q-m.?)$...&+;; l 

m I 

d&n(q)g(q,q--a& 
m+l 

=(q) =n(q) J d&(q,q-&)6(&i%-; I) +?a l 

2 aq s 

d~(q)g(q,q--aci)~~(~~-~ I), 

y(q) =n(q) 
I 

d&n(q-&)g(q,q-a&)&(&&-~ I) +za l 

2 as 

d~(q)n(q-a~)g(q,q-a~)~~(~~-~I), 

Fo,(q)=n(q) 
I 

d&g(q,q-cG)y M= 1,2,... 

Qom(q)=n(q) 
s 

d&n(q-o&)g(q,q-pi+)-, m=1,2,... 
m 

(C7) 

(C8) 

(C9) 

(ClO) 

(Cl11 

(Cl21 

(C13) 

(Cl4) 

s(q) =n(q) 
s 

d&(q,q-ui+) (&St%-3 &I&), 

Wd =&cl) I dh n(s- a&)g(q,q-ff&) (f%?&&-$ &I&), 

d~n,(q--l~)gl,(q,q-ul~)~~~+ s 
d&in(q) -n(q-h)]g(q,q-mC+)&&&, 

(Cl5) 
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a 
B(q) =uag l 

d& n(q)g(q,q--a&) (&k-i I)&+:$ 9 d&n(q)g(q,q-&)&(&S-f I)& 

d&[n(q)-n(q-h)]g(q,q-a?)(&&-$I)-W2 d~,(s-ol~)gl,(q,cl-ul~) W-5 I). 

(Cl61 

The first six contributions to the energy flux J(q,w) are 

Jl(q,w) =f n(q)I+g Q2(q) - (15vW8) (Tlw Tf(q,w)n(q) I+g F,(q) ) ( u )’ ( ) -Q,(d+W2/2/64~) 

2boFo3(q)6 $ [ff(q,w)n(q)~!,(q,o)] +g 
2 

b~~(q,w)n(q)F3(q):~‘u(Q,w) 

2 baFo4(q)b $ [~(so)n(q)f,(s,o) I+& [Uq):d2)(q,w) 1 T+A fl(q,w) 
x [M(q) l &ubw) I= l u(cl,w), 1 (C17) 

Jz(s,w) =; ; $hdWcl> +; o%dqEI; ~h,d -2 $ T;(q,w)G(q,w) I+gT F2(q) -C,(q) 

+z ?ro2Fo& $ [~(s,d%w>C,(s) 1 :%n(w), 1 ((38) 

J3(q,m) = (3ba/ J;rpm)rl 2+w)Fo&) +g ~.r;(q,+-f(q,4F03(q)6Cp(q):i, ii [S,vn(w) It (Cl91 
Ja(q,w) = - (I/&%) $ v%(q) +; F3(q):v:2’(q,w) -g F&q)6 $ v:2’(q,4 

2 

-; b+ob $ bl%wdv,(q,w) 1 -z 1 
au(q,d b2rl~(s,w)n(s)Fo3(q)~~~(q,~) -& :T, 

cc201 

Js(q,o) = (3bu/2 @6) iFo4(q)~ll:2’(q,o):ia+% 77~(q,o)Fo3(q)~~v”(q,~):i6 
aWq44 

aqaq 9 
cc211 

$ bgA@,(ci) -; bh$Yq,w)$(q,w)F3(q):&(q) -4de(q,w) I+;),(q) .&(q,o) 

+; bdFdq)6$ [d(%~)~T(%a)l +E $il~(q,o)n(q)L(q):~VT(q,O) +i dM(d l $2%&d 

+a bu-od& $ [+w)~(s,d&h-d 1 ) ST(w). ((32) 

Here 

L(cl)=o; e%(q)+ 
s 

d&[n(q) -n(q-a&)]g(q,q--a&)&& (CT31 

and 

M(q) =u$ *b(q) + f dNn(q) -n(q--3 lg(q,q-o&b+: J- d&n(q-a&)g(q,q-c+)B 

(C24) 
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The right-hand side of Eq. (3.23) takes the form 

2 

~o??=n*(wMci)B(d *ada@) +g o%($ l [Tf(q,wD(q) l &,(q,w) IT) ‘1 l u(q,w> 

-‘% 4’-@dA(d +; ++-u4~~q,w>Wqr) .Cp(q) :SuVn(q,m) + ,/i&h 
I 1 gT h? $ . a2(q) 

+g 2 i l [T~(q,o)n(q)A(q):iiivT(cr,o> 1 ‘--E 02~(cr,w>7~(q,w)A(q):~=(q) 

a2a 4 
+m g l [B(q) •~:2’(s,dl =-F c+fhdBW .&(q,d ST(q,w). 1 

For the right-hand side of Fq. (3.24) one can derive 

(C25) 

R,(w)=; (;b; l Wq)+&dq) j-dA on,(q-al~)gl,(q,q-ul~)~+~ a - [L(qhp(q,w)] =+z a 
83~ aq 32 aq 

l [<(q,@)M(q) ‘%(q,@) ] T+G ~,~(q,o)n(q)L(q):~,(q,w) - (9~~16)&,~(q,w)n(q)M(q) 

4swd 
225~ 
256 $hwMf(q,w)M(q) *G(q) 

( 

32b$ a 
+A -- 

25~ aq *@l(q) -~~~(cl,W)Tn*(S,w)L(q):fjT(q) -f %-dfl(q,dM(q) l &-(q,d 

+gd $ - [7~(ew)n(s>L(q>:Pv,(a,w)l +j$$ l [M(q) .nj2)(q,w>l 
) 

ST(q,o). CC261 

If n(q,w) and ST(q,ti) are sufficiently small (i.e., the system is close to an equilibfium state, as assumed) R,( q,w) and 
RT(q,w) are negligibly small, although an(q)/dq may be large, even of the order n(q)/o. In the immediate vicinity of 
walls the main contribution to R,( q,w ) would be that from the second term on the right-hand side of Eq. (~25); thus, for 
R,(q,w) and R,(q,w) one will have 

48~7 
R,(q,w) = -F bqn(q) (C27) 

and 

RT(%@) =o. (C28) 

Thus, although due to the assumed immobility of the wall molecules there is momentum production in the system, this 
production is only noticeable in the immediate neighborhood of walls. 

APPENDIX D: TENSORS i, 

We define the 2mth rank tensors i,, so that 

Ci2m),spl ,...,~2s212=sl,l~sS*S26p,4”” m= 1929”’ 

v- m 

(Dl) 

where the Sk’s are Kronecker symbols and II,sI,p1,...,p2,s2,12= 1 2 3 , , ,..., n. Then for any mth rank tensor A one can prove 

i,,@A=A, (D2) 

A@i2,=A, (D3) 
n 
12m@i2m= i2m 9 (D4) 
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where @ denotes m-multiple convolution, 

.,,izl Bi...ka...BAB...crl...p. (D5) 

Thus, with respect to the mth rank tensprs A the tensor i,, plays the ;ame role as the unit matrix I with respect to vectors 
(i.e., first rank tensors), and at m= 1, 12=I. Although the tensors l,, have some other interesting algebraic properties, 
for our purposes here we use just Eqs. (Dl )-( D4), where m =2,3 for convenient tensorial representation of the formulas 
derived. 

APPENDIX E: THE CONTINUITY EQUATION 

From Eq. (2.25) one can obtain the time Fourier transformed form of the continuity equation, 

a 4 

-L&n(q,o) +- l 

aq [( 
n(q)I+dn(q) 

s 

d&n(q-m?)g(q,q-&)(&&-$I)+~~ l 

xg(q,q-U&)&(&&--f I) 
Mq,w) 

1) l u(q,w) -G n(q) s d&n(q-a&)g(q,q-o&)&(&&-i I): T] 

=a[u$ l J 

a28 

d&n(q)n(q-o&)g(q,q-&?)(&&-$I)+--* 
2 aqaq* s 

d&n(q)n(q-a&)g(q,q-o&)&(&C$ I) 

d~n,(q-al~)gl,(q,q-ul~)~ .u(q,o). 
1 

At small u(q,w) the right-hand side of Eq. (El) tends to zero. 
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