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Abstract

We explore a network of electronic quantum valley Hall (QVH) states in the moiré

crystal of minimally twisted bilayer graphene. In our transport measurements we

observe Fabry-Pérot and Aharanov-Bohm oscillations which are robust in magnetic

fields ranging from 0 to 8T , in strong contrast to more conventional 2D systems where

trajectories in the bulk are bent by the Lorentz force. This persistence in magnetic

field and the linear spacing in density indicate that charge carriers in the bulk flow

in topologically protected, one dimensional channels. With this work we demonstrate

coherent electronic transport in a lattice of topologically protected states.
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Figure 1: Schematics of the measured device. A, twisted bilayer graphene (tBLG) is
encapsulated in boron-nitride (hBN). Using the BG, the global density nout can be changed,
while the TGs allow to change nin and D. B, Two hexagonal lattices are twisted by θ = 0.42,
giving rise to a moiré periodicity of λ = 33nm. By depleting AB and BA regions, helical
currents connecting the AA points, arise.

Topological channels1–4 hold promises for quantum computation with reduced decoher-

ence. In order to create topological states in bilayer graphene (BLG), a large displacement

field D has to be applied between the two layers. By this a band-gap opens around the

charge neutrality point. The geometric boundaries at which helical states then emerge are

given by stacking faults,5–12 a smooth transition between AB and BA stacking regions13 or

the local inversion of D.14–16 In a moiré crystal of twisted bilayer graphene (tBLG), alter-

nating regions of AB and BA stacking naturally exist and they form a superlattice.17 The

AB and BA regions can be depleted by applying large D and the emerging states form a

network,17,18 as recently shown by STM measurements.19 This network forms due to different

valley Chern numbers in the AB and BA stacking regimes. The condition for its formation

is that the twist angle is sufficiently small, such that the size of the AB/BA regions is large.

First theories suggested that twist angles θ < 0.3 are required,17 however, elastic deforma-

tions stabilize and enlarge the AB/BA regions and therefore relax this condition.18 This is

in contrast to the emergence of superconductivity,20 which requires a magical twist angle

around 1. Compared to other helical systems, the topological currents flow predominately

in the bulk of the sample. This brings the advantage that the system is less sensitive to
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impurities that originate from processing the sample edge (e.g. in InAs/GaSb systems21).

We probe the topological network using a Fabry-Pérot cavity, formed by a backgate (BG)

and a local topgate (TG), and measure charge carrier transmission in a linear conductance

experiment. Interfaces between bulk and cavity are semi-transparent, leading to standing

waves.22–24 We observe magneto-conductance oscillations that are tuned by density n (Fabry-

Pérot resonances) and magnetic field B (Aharanov-Bohm resonances). The Fabry-Pérot

resonances, at n close to zero, are periodic in n (rather than
√
n) demonstrating the 1D

(rather than 2D) nature of the corresponding channels. Upon application of B, Aharanov-

Bohm oscillations arise with characteristic areas much smaller than the cavity size but also

much larger than the moiré unit cell. We find that the characteristic orbits are in the

cavity bulk, encompassing several unit cells. In other systems, Fabry-Pérot resonances are

typically suppressed once the cyclotron diameter becomes comparable to relevant device

dimensions.25,26 In our experiments they persist up to B = 8T where the magnetic length

(9nm) is much smaller than any device dimension. The fact that oscillations nonetheless

persist indicates that time reversal symmetry cannot be broken or that there is another

protective symmetry at play. This hints at topological protection of corresponding 1D states.

Our claims are substantiated by band structure calculations.

The measured device is schematically drawn in Fig. 1A (details in Fig. S1). tBLG is

encapsulated in hBN and contacted with Cr/Au.27 The bulk carrier density nout can be

adjusted using a BG.28 Three TGs having lithographic lengths L = 200, 300, 400nm, allow

to adjust cavity density nin and displacement field D. nin, is tuned by the voltages on the

topgate and on the graphite backgate, Vtg and Vbg respectively, according to the equation:

nin = (CtgVtg+CbgVbg)/e. The capacitances per unit area are determined from a parallel plate

capacitor model, i.e. Ctg = ǫ0ǫhBN/dtop and Cbg = ǫ0ǫhBN/dbottom, where we use ǫhBN = 3.2

and the hBN thicknesses dtop = 27nm, dbottom = 45nm. To determine the displacement

field, we use the simple approximation D = (Dtop −Dbottom)/2 and Dtop = ǫrVTG/dtop. The

tBLG flake is etched to W = 4.6µm giving cavities with L ≪ W . Therefore, many parallel
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channels follow the same interference condition and standing waves in transport direction

dominate the conductance.

The small twist angle is obtained by tearing a large graphene flake in the middle and

picking up one half. The remaining part is twisted by θ = 0.5 and also picked up, following

the procedure described in references.29,30 It is this careful fabrication that guarantees a

well controlled and homogeneous moiré periodicity (a detailed description is given in the

supplementary information Fig. S2).

Conductance measurements are performed using a standard low-frequency lock-in tech-

nique at 1.5K. From the Hofstadter butterfly pattern (Fig. S3) we extract a density

|n2| ≈ 0.8e12cm−2 at which the first band is completely filled,31 corresponding to θ = 0.42.

In Fig. 1B, two hexagonal lattices, twisted by 0.42 are shown, exhibiting a large period moiré

superlattice.
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Figure 2: Fabry-Pérot (FP) oscillations measured at 1.5K. A, Differential conduc-
tance dG/dnin(nin, nout). Red dashed lines denote the density n2. In regime I, FP oscillations
appear for nin ≪ 0 and nout ≫ 0, as can be seen in the high-resolution scan in the marked
window. The corresponding FFT (averaged over nout) is shown in the inset. B, FP res-
onances are due to standing waves in a cavity formed by the topgate. In regime II, the
presence of topological channels is expected. C, A zoom into regime II (marked with a red
solid square in A) is shown (above: G, below: dG/dnin).

In the measurement dG/dnin(nin, nout) (Fig. 2A), |n2| is marked with red dashed lines.

We first focus on the bipolar n-p-n regime I, where the densities nin, nout are large but

have opposite signs (a negative sign is used for charge carriers occurring at energies smaller
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zero). The displacement field can, but does not have to be large in this regime. For a

semi-transparent interface, standing waves form as sketched in Fig. 2B, following the 2D-

Fabry-Pérot interference condition 2L = j · 2π/kF where j = 1, 2, ... and kF ≈ √
nπ. The

observed pattern is very similar to measurements in mono-24,32,33 and bilayer graphene.34

The extracted cavity length L = 550nm (see inset), is larger than the designed L = 400nm.

This discrepancy is due to the smooth transition between cavity and bulk and is analyzed in

detail in the supplementary material of reference.33 The observation of standard Fabry-Pérot

oscillations in regime I shows that ballistic cavities with standing waves form.

We now focus on oscillations at small nin < n2 and large D (regime II, Fig. 2C). These

resonances occur in a regime where we expect that the AB/BA regions are depleted and the

super-lattice symmetries affect the behavior in B.
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Figure 3: Magneto-conductance oscillations. A, A crossed resonance pattern emerges
from oscillations at low nin and large D. B, Two lines dG/dnin(B) for fixed nin with an
extended B-field range. Maxima and minima alternate up to B = 8T . C, G(nin) traces
reveal that the background-conductance is nearly independent of nin.

In a perpendicular magnetic field, trajectories of charge carriers, bouncing between two

semi-transparent mirrors, bend due to the Lorentz force. Standard Fabry-Pérot oscillations
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require a cyclotron diameter 2Rc:
25

2Rc = 2
~kF
eB

> L (1)

In our system, this condition holds true in regime I (see Fig. S4), where oscillations have

vanished for B > 0.5T , but not in regime II. There, the corresponding magnetoconductance

map (Fig. 3A) reveals a periodic pattern of crossed resonances, evolving continuously from 0

to ±3T . The crossed pattern is formed by diagonal lines of opposite slope in the n−B-plane.

For the given density range, 2Rc ≥ L for B . 0.4T , the resonance pattern apparently neither

disappears nor changes at 0.4T , but persists up to at least 8T as seen in Fig. 3B where we

depict two traces dG/dnin(B) for slightly different values of nin (for clarity, a smoothened

background has been removed). Up to a magnetic field of 8T (and presumably beyond,

8T was the maximum available field in our cryostat) the maxima and minima alternate

periodically.

In other two-dimensional systems, resonances that depend on B and n at high magnetic

fields (i.e. in the quantum Hall regime) were attributed to either single-electron charging

of Landau levels in confined geometries or to Aharanov-Bohm interferences.35,36 These two

effects are distinguished by the sign of slope in the n−B-plane.35 In our measurements, oscil-

lations display both, positive and negative slopes simultaneously (Fig. 3A) and are therefore

inconsistent with electron charging as a possible origin. For the case of Aharanov-Bohm os-

cillations however, a crossed pattern can be explained if the corresponding area is encircled

both clock- and counterclockwise. In contrast to the above mentioned measurements,35,36 the

resonances persist from the Quantum Hall regime down to low magnetic fields (Fig. 3A,B),

and are thus not linked to the existence of Quantum Hall edge channels. This is a strong

indication that the charge carriers already flow in one-dimensional channels for all magnetic

field considered such that their trajectories remain unaffected by the magnetic field. An-

other, yet weaker, indication for one-dimensional transport is seen from the conductance
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traces (Fig. 3C) which are rather flat in the regime where the AB/BA regions are gapped

(marked with dashed borders). This indicates that the number of conducting channels does

not change with nin which is again consistent with a fixed number of one-dimensional chan-

nels.

More quantitative information can be obtained from the resonance periods in magnetic

field and density. These are linked to the encircled area A and the total length Ltot of the

coherent trajectories by the Bohr-Sommerfeld resonance condition:

j = Ltot
kF
2π

± A
B

φ0

(2)

where j is an integer and φ0 = h/e. The spacing between two maxima is then given by

j − (j − 1) = Ltot
∆kF
2π

± A∆B
φ0

. From ∆B = 0.37T (extracted from Fig. 3B) we obtain

A = φ0/∆B = 11200nm2. This area is much larger than the area of a moiré unit cell, i.e.

≈ 950nm2. On the other hand, the entire area of the top-gated cavity is L ·W ≈ 2e6nm2

which is two orders of magnitude too large. Consequently, the interfering paths must be

located in the cavity bulk.

By analyzing the spacing in density, ∆nin, we can extract information about the length

Ltot = 2π/∆kF of the interference path. Importantly, kF ∼ nin (not kF ∼ √
nin) since charge

carriers flow in one-dimensional (not two-dimensional) channels. This leads to resonances

following diagonal lines in the nin-B-plane (kF ∼ √
nin would lead to parabolic lines in

the magnetoconductance map, which is not observed). To convert nin, which is the (two-

dimensional) density in the twisted bilayer graphene flake tuned by the gate voltages, into a

one-dimensional density n1D we divide by the number of channels per unit area, Nch = 2
√
3/λ

(for details see supporting information, Eq. 4). To do so we use the moiré periodicity

λ = 33nm obtained from the Hofstadter butterfly, Fig. S3. For ∆nin = 4.7e10cm−2 and

using Ltot = 2π/∆kF = 8
√
3/(λ∆nin) we obtain Ltot ≈ 870nm.

The extracted area and circumference correspond to trajectories that encircle a long and
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narrow object. For a rectangle, it is straightforward to calculate the corresponding length

L̃ = 408 and width w̃ = 27nm. We note here that these values are close to the designed

cavity length L = 400nm and the height of the moiré unit cell λ
√
3/2 = 29nm which also

corresponds to the shortest distance between two topological channels. This suggests that

one row of AB/BA regions is encircled. However, also other trajectories are possible. In the

topological network there are three valley-preserving scattering possibilities (red arrows in

Fig. 1B) at every ’node’ (AA stacking region). This allows for large and complex paths in

the network. Especially, paths that do not require intervalley scattering (see discussion in

Fig. S7B) are possible. However, closed trajectories consistent with the extracted area and

length are long and narrow and if they do connect the two cavity interfaces then the cavity

length L is an important parameter. Since A/L ≈ λ
√
3/2 and Ltot − 2L ≈ 2λ this is the

only kind of trajectory that is consistent with our experimental results.
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Figure 4: Dependence on L and D. A, 2D FFT of magneto-conductance maps for D =
−1V/nm and L = 200, 300, 400nm. The solid line shows the Bohr-Sommerfeld quantization
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lines depict the expected ∆B and ∆n for the designed L. B, dG/dnin for decreasing D and
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pattern as a function of D and nin. Red dots mark the theoretically expected boundary for
the resonances.

8



By measuring the crossed resonance pattern with different topgates, it is possible to see

how (and if) the resonance pattern depends on the designed cavity length L. In Fig. 4A we

show the results of a 2D fast Fourier transform (FFT) of magneto-conductance oscillations for

cavities with L = 400, 300, 200nm. Apparently, the oscillations have a strong dependence on

L and become slower in both ∆B and ∆nin for decreasing L, meaning that both the encircled

area A and circumference decrease in size. As a guide to the eye we depict the value of ∆B

and ∆nin, that we would expect for a given L by assuming that one row of AB/BA regions

is encircled, with dashed lines. The solid line is for arbitrary L (details are given in the

supplementary material). The measurements for ∆B and ∆nin for different cavities appear

to be consistent with straight parallel trajectories encircling one row of AB/BA regions.

Even though the states below the 300nm-sized topgate seem to resonate in an effectively

shorter cavity, their trajectories also seem to encircle one row of AB/BA regions as can be

seen from the agreement with the solid line.

Finally we discuss the dependence on D. The measurements in Fig. 4B,C show that the

resonance-pattern boundaries move closer when decreasing D. Such behavior is expected

within the topological model. By lowering D, the induced gap size ∆ (values in Fig. S9) in

the AB/BA regions shrinks and these regions start to become populated already at lower

nin. At the boundary of the resonance pattern, the Fermi-surface looses its one-dimensional

character, as indicated by smearing of Fermi velocities projected onto the direction of 1D

channel (supporting information Fig. S10B). This leads to dephasing and smearing of the

interference pattern (see Fig. S10C). In Fig. 4C the densities, where the calculated Fermi

velocity smears strongly, are marked with red dots, providing good agreement with the

experimental data.

Conclusion We have fabricated tBLG with a twist angle of θ ≈ 0.4. We measured a

crossed interference pattern which we explained by Aharanov-Bohm and Fabry-Pérot os-

cillations of trajectories that encircle an area clock- and anti-clockwise. The interference
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pattern persists from zero to large magnetic fields, which indicates that the charge carriers

flow in one-dimensional channels. From the oscillation period in density and field we calcu-

lated area and circumference of the (dominant) resonant paths and found that their length

is comparable to the cavity length and the width to the moiré periodicity. Similar loops are

found for different gate lengths. The range (in density) within which the oscillations can be

observed exhibits a dependence on displacement field that is consistent with the opening of

a gap in AB and BA regions of the twisted bilayer graphene. Our observations are good

indications that electrons form coherent paths within a network of topological channels that

originates from the moiré superlattice.

Networks of helical channels offer several advantages for topologically protected quantum

states: The two-dimensional nature of the network allows to perform complex valleytronic

operations and, as demonstrated in this work, stabilizes coherent bulk transport phenom-

ena such as Fabry-Pérot oscillations in magnetic field and against disorder. Furthermore,

avoiding the physical edge leads to a better defined environment which improves topological

protection. Our carbon based system is flexible, making it an important building block for

scalable and protected valleytronic devices.
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(25) Rickhaus, P.; Makk, P.; Liu, M.-H.; Tóvári, E.; Weiss, M.; Maurand, R.; Richter, K.;

Schönenberger, C. Snake trajectories in ultraclean graphene p-n junctions. Nat. Com-

mun. 2015, 6, 6470.

(26) Lee, M.; Wallbank, J. R.; Gallagher, P.; Watanabe, K.; Taniguchi, T.; Falko, V. I.;

Goldhaber-Gordon, D. Ballistic miniband conduction in a graphene superlattice. Sci-

ence (80-. ). 2016, 353, 1526–1529.

(27) Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watan-

abe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.;

Dean, C. R. One-dimensional electrical contact to a two-dimensional material. Science

2013, 342, 614–7.

(28) Overweg, H.; Eggimann, H.; Chen, X.; Slizovskiy, S.; Eich, M.; Pisoni, R.; Lee, Y.;

Rickhaus, P.; Watanabe, K.; Taniguchi, T.; Fal’ko, V.; Ihn, T.; Ensslin, K. Electro-

14



statically Induced Quantum Point Contacts in Bilayer Graphene. Nano Lett. 2017, 18,

553–559.

(29) Kim, K.; Yankowitz, M.; Fallahazad, B.; Kang, S.; Movva, H. C. P.; Huang, S.; Lar-

entis, S.; Corbet, C. M.; Taniguchi, T.; Watanabe, K.; Banerjee, S. K.; LeRoy, B. J.;

Tutuc, E. van der Waals Heterostructures with High Accuracy Rotational Alignment.

Nano Lett. 2016, 16, 1989–1995.

(30) Cao, Y.; Luo, J.; Fatemi, V.; Fang, S.; Sanchez-Yamagishi, J.; Watanabe, K.;

Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Superlattice-Induced Insulating States

and Valley-Protected Orbits in Twisted Bilayer Graphene. Phys. Rev. Lett. 2016, 117,

116804.

(31) Kim, K.; DaSilva, A.; Huang, S.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watan-

abe, K.; Leroy, B. J.; Macdonald, A. H.; Tutuc, E.; Kim, P.; Novoselov, K. S. Tunable
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