
Transportation Modeling: An Artificial Life Approach 

             Panta Lu i   and  Dušan Teodorovi

The Charles E. Via Jr. Department of Civil and Environmental Engineering

Virginia Polytechnic Institute and State University

Northern Virginia Center, 7054 Haycock Road

Falls Church, VA 22043-2311, U.S.A. 

E-mail: plucic@vt.edu, duteodor@vt.edu

Abstract

Artificial Life (ALife) uses biological knowledge and

techniques to help solve different engineering,

management, control and computational problems.
Natural systems teach us that very simple individual

organisms can form systems capable of performing highly

complex tasks by dynamically interacting with each other.
The main goal of this paper is to show how we can use 

ALife concepts (inspired by some principles of natural

swarm intelligence) when solving complex problems in
traffic and transportation. The Bee System that represents

the new approach in the field of Swarm Intelligence is
described. It is also shown in the paper that ALife

approach can be successful to “attack” transportation

problems characterized by uncertainty. The Fuzzy Ant
System (FAS) described in the paper represents an

attempt to handle the uncertainty that sometimes exists in

some complex transportation problems. The potential
applications of the Bee System and the Fuzzy Ant System

in the field of Traffic and Transportation Engineering are

discussed.

1. Introduction 

Researchers in many scientific disciplines have started

to develop various Artificial Life (ALife) models during

the last decade. On one hand, ALife uses computational

techniques to help study various biological phenomena.

On the other hand, ALife uses biological knowledge and 

techniques to help solve different engineering,

management, control and computational problems. Within

the ALife scientific arena, researchers are developing 

artificial system that posses some of the basic

characteristics of life. The entities in some artificial 

systems are virtual creatures that breed, learn, think, fight,

collaborate, age, and die. Often, when making different

ALife models, researchers try to explain complex system

behavior that is derived from relatively simple rules.

The first ideas of making the analogy with Darwin’s 

theory of evolution and the basic principle of the

“survival of the fittest” when creating artificial systems

were introduced during the last four decades 

(evolutionary programming, evolution strategies, genetic

algorithms). Scientists in areas like engineering,

management, or control are copying or adapting systems

from biology when facing complex problems. The 

development of Artificial Systems does not entail the

complete imitation of natural systems, but explores them

in the search for ideas and models.

The main goal of the paper is to show how we can use 

ALife concepts (inspired by some principles of natural

swarm intelligence) when solving complex problems in

traffic and transportation. The organization of the rest of

the paper is described below. Solving complex

transportation engineering problems by ALife techniques

is discussed in Section 2. The Bee System as the new

computational paradigm is introduced in Section 3. 

Section 4 is devoted to the Fuzzy Ant System that has 

been proposed to “attack” some transportation problems

characterized by uncertainty. Conclusions and 

recommendations for further research are given in section

5.

2. Solving complex transportation 

engineering problems by artificial life 

techniques

Many practical real-world problems were formulated

and solved using mathematical programming techniques

during the last four decades. It is important to note, 

however, that the majority of real-world problems solved

by some of the optimization techniques were of small

dimensionality. Many traffic and transportation

engineering problems are combinatorial by nature. Most

of the combinatorial optimization problems are difficult to

solve either because of the large dimensionality or

because it is very difficult to decompose them into

smaller sub-problems. These are most commonly found to

be NP-complete problems that cannot be solved exactly in

polynomial time. Typical representatives of this type of

problems are the vehicle fleet planning and static and 

dynamic routing and scheduling of vehicles and crews for

airlines, railroads, truck operations and public

transportation services, designing transportation networks
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and optimizing alignments for highways and public

transportation routes through complex geographic spaces,

different locations problems, etc.

There are few models in the literature based on ALife

concepts that try to solve certain transportation problems.

The ALife models that have been developed for solving

complex transportation problems are inspired by social

insects behavior. Interaction between individual insects in

a colony of social insects has been well documented. The

examples of such interactive behavior are bee dancing

during the food procurement, ants’ pheromone secretion,

and performance of specific acts which signal the other

insects to start performing the same actions. These 

communication systems between individual insects

contribute to the formation of the “collective intelligence” 

of the social insect colonies. Recently, the term “Swarm

Intelligence”, denoting this “collective intelligence” has 

come into use [3, 4, 5, 6].

The self-organization of the ants is based on relatively

simple rules of individual insect’s behavior [13, 20, 2, 28,

36]. The ants successful at finding food leave behind

them a pheromone trail that other ants follow in order to

reach the food. The appearance of the new ants at the 

pheromone trail reinforces the pheromone signal. This

comprises typical autocatalytic behavior, i.e., the process

that reinforces itself and thus converges fast. The

“explosion” in such processes is regulated by a certain

limitation mechanism. In the ant case, the pheromone trail

evaporates with time. In this behavioral pattern, the

decision of an ant to follow a certain path to the food

depends on the behavior of his nestmates. At the same

time, the ant in question will also increase the chance that

the nestmates leaving the nest after him follow the same

path. In other words, one ant’s movement is highly

determined by the movement of previous ants.

An important result of the Artificial System

development that was based on the Swarm Intelligence is

the creation of the Ant System and the Ant Colony

System. Ant Colony System [15, 16] is a relatively new 

metaheuristic for hard combinatorial optimization

problems. Dorigo et al. [17] applied Ant System to the

classical Traveling Salesman Problem. They also tested 

the approach proposed on asymmetric Traveling

Salesman Problem, the quadratic assignment and the job-

shop scheduling problem. Bullnheimer et al [7, 8] used 

the Ant System to solve the Vehicle Routing Problem in

its basic form (homogenous fleet, capacity restriction,

distance restriction, one central depot) and obtained very

good results.

3. Computing with artificial bees: case study 

of traveling salesman problems 

Self-organization of bees is based on a few relatively

simple rules of individual insect’s behavior [21, 22, 1, 18,

23, 29, 30, 19, 24, 10, 11, 12, 37, 38]. In spite of the

existence of a large number of different social insect 

species, and variation in their behavioral patterns, it is

possible to describe individual insects’ behavior as

follows [9]. Each bee decides to reach the nectar source

by following a nestmate who has already discovered a 

patch of flowers. Each hive has a so-called dance floor

area in which the bees that have discovered nectar sources

dance, in that way trying to convince their nestmates to

follow them. If a bee decides to leave the hive to get

nectar, she follows one of the bee dancers to one of the 

nectar areas. Upon arrival, the foraging bee takes a load

of nectar and returns to the hive relinquishing the nectar

to a food storer bee. After she relinquishes the food, the

bee can (a) abandon the food source and become again an

uncommitted follower, (b) continue to forage at the food

source without recruiting nestmates, or (c) dance and thus 

recruit nestmates before returning to the food source. The

bee opts for one of the above alternatives with a certain

probability. Within the dance area the bee dancers

“advertise” different food areas. The mechanisms by

which the bee decides to follow a specific dancer are not 

well understood, but it is considered that the recruitment

among bees is always a function of the quality of the food

source. It is also noted that not all bees start foraging

simultaneously. The experiments confirmed that new bees

begin foraging at a rate proportional to the difference

between the eventual total and the number presently

foraging.

Lu i  and Teodorovi  [26, 27], and Lu i  [25]

recently developed an initial version of the ALife model

inspired by bees’ behavior in nature. They use bees’

behavior in nature as a source of ideas for development of 

an artificial system called the Bee System. The Bee 

System is composed of agents, or virtual creatures called 

artificial bees. The basic assumption is that artificial bees

are capable of discovering “good” solutions for difficult

combinatorial optimization problems.

The primary goal of this paper is to show the possible

applications of the artificial systems inspired by collective

social insects intelligence in solving complex traffic and

transportation engineering problems. The development of 

the new heuristic algorithm for the Traveling Salesman

Problem using the Bee System will serve as an illustrative

example for such applications and will show the

characteristics of the proposed concept. It is important to

say that the Traveling Salesman Problem is closely

related to the broad class of transportation problems

whose typical representatives are the vehicle fleet

planning, and static and dynamic routing and scheduling

of vehicles and crews for airlines, railroads, truck

operations and public transportation services.
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3.1 solving the traveling salesman problem by the

bee system

Let us denote by G = (N, A) the network in which the

bees are collecting nectar (the graph in which the

traveling salesman route should be discovered). By N =

{v1, v2, … vn} we denote the set of nodes to be visited,

and by A= {(vi, vj): i  j } the set of links connecting

these nodes. Let us also randomly locate the hive in one

of the nodes. When foraging, the artificial bees are trying 

to collect as much nectar as possible. Let us also assume

that the nectar quantity that is possible to collect flying

along a certain link is inversely proportional to the link

length. In other words, the shorter the link, the higher the

nectar quantity collected along that link. This means that 

the greatest possible nectar quantity could be collected

when flying along the shortest traveling salesman route.

Our artificial bees will collect the nectar during the

certain prescribed time interval. After that, we will 

randomly change the hive position. The artificial bees will 

start to collect the nectar from the new location. We will 

then again randomly change the hive location, etc. The

iteration in this searching process represents one change 

of the hive position. Our artificial bees live in an

environment characterized by discrete time. Each iteration

is composed of a certain number of stages. The stage is an 

elementary time unit in the bees’ environment. During

one stage the artificial bee will visit s nodes, create partial

traveling salesman tour, and after that return to the hive

(the number of nodes s to be visited within one stage is

prescribed by the analyst at the beginning of the search 

process). In the hive the bee will participate in a decision

making process. The artificial bee will decide whether to

abandon the food source and become again an

uncommitted follower, continue to forage at the food

source without recruiting nestmates, or dance and thus 

recruit nestmates before returning to the food source. 

During any stage, bees are choosing nodes to be

visited in a random manner. The Logit model is one of the

most successful and widely accepted discrete choice 

models. Inspired by the Logit model, we have assumed

that the probability of choosing node j by the k-th bee, 

located in node i (during stage u +1 and iteration z)

equals:

otherwise
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where:

i, j – node indexes (i, j = 1, 2, …, |N|),

dij – length of link (i, j),

k – bee index (k = 1,2,…, B),

B – the total number of bees in the hive,

z – iteration index (z = 1, 2,…, M),

M – maximum number of iteration,

u – stage index sNu /1,...,2,1 ,

s – number of nodes visited by every artificial bee during

one stage, 

nil(r) – total number of bees that visited link (i, l) in r-th

iteration,

b – “memory length”*,

gk(u, z) – last node that bee k visits at the end of stage u in

iteration z,

Nk(u, z) – set of unvisited nodes for bee k at stage u in

iteration z (in one stage bee will visits s nodes; we have 

|Nk(u, z) | = |N| - us),

a – input parameter given by analyst.

Let us discuss relation (1) in more details. The greater

the distance between node i and node j, the lower the

probability that the k-th bee located in the node i will 

choose node j during stage u and iteration z. The greater 

the number of iterations z, the higher the influence of the

distance. In other words, at the beginning of the search 

process, artificial bees have “more freedom of flight”.

They have more freedom to search the solution space. 

The more iterations we make, the bees have less freedom

to explore the solution space. The more we are 

approaching the end of the search process, the more

focused the bees are on the flowers (nodes) in the

neighborhood. Our artificial bees have memory and they

can remember how many bees visited a certain link 

during the last b iterations. The greater the total number

of bees that visited a certain link in the past, the higher the

probability of choosing that link in the future. This 

represents the interaction between individual bees in the

colony.

For every bee we now know the nectar quantity 

collected by the bee (the length of the partial traveling

salesman tour). After returning to the hive bees relinquish

the nectar to a food storer bee. After relinquishing the

food, the bee is making a decision about abandoning the

food source or continuing the foraging at the food source.

We assume that every bee can obtain the information

about nectar quantity collected by every other bee. The

probability that, at the beginning of stage u + 1, bee k will 

use the same partial tour that is defined in stage u in

iteration z equals:

zu

zuLzuL
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k
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),(
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where Lk(u,z) is the length of partial route that is 

discovered by bee k in stage u in iteration z. 

* While foraging in stage u, every artificial bee has the ability to notice

the total number of bees in every link. The maximum number of stages 

that bee can recall represents memory length. 
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We can see from relation (2) that if a bee has

discovered the shortest partial traveling salesman tour in

stage u in iteration z, the bee will fly along the same

partial tour with the probability equal to one. The longer 

the tour that the bee has discovered, the smaller is the

probability that the bee will fly again along the same tour. 

When a bee decides not to abandon the food source she 

can: (a) continue foraging at the food source without

recruiting nestmates; (b) fly to the dance floor area and

start dancing, thus recruiting nestmates before returning

to the food source. The bee opts for one of the above

alternatives with a certain probability. Within the dance

area the bee dancers “advertise” different food areas.

Because the real bees are, above all, social insects (the 

interaction between individual bees in the colony has 

been well documented), it is assumed in this paper that

the probability p* of the event that the artificial bee will 

continue foraging at the food source without recruiting 

nestmates is very low:

p* << 1 (3)

After relinquishing the food, and after making the

decision to continue foraging at the food source, the bee 

flies to the dance floor and starts dancing with probability

equal to (1 - p*). Bee dancing represents the interaction

between individual bees in the colony.

In the case when at the beginning of stage u + 1, the

bee does not use the same partial traveling salesman tour,

the bee will go to the dancing area and will follow another

bee(s). Every partial traveling salesman tour that is 

being advertised in the dance area has two main

attributes: (a) the total length, and (b) the number of bees 

that are advertising the partial route. We introduce the

normalized value of the total length of the partial

traveling salesman tour and the normalized value of the

number of bees advertising the partial tour. Both

normalized values are defined in the following way: (a)

Both normalized values can take any value between 0 and 

1; (b) The smaller the total length normalized value, the

better the partial tour; (c) The bigger the number of bees 

normalized value, the better the partial tour.

We have assumed in this paper that the probability

that the partial route  will be chosen by any bee that

decided to choose the new route equals:
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where:

,  – parameters given by the analyst,

),( zu  – the normalized value of the partial route

length,

),( zu  – the normalized value of the number of bees 

advertising the partial tour,

Y(u, z) – the set of partial tours that were visited by at 

least one bee. 

The proposed Bee System was tested on a large

number of numerical examples. Before relocating the hive

to the next location we tried to improve the solution

obtained by the bees in current iteration by applying the

well-known 2-opt or 3-opt heuristic algorithms. The

benchmark problems were taken from the following

Internet address: http://www.iwr.uni-

heidelberg.de/iwr/comopt/software/TSPLIB95/tsp/.

The following 8 problem instances were considered: 

Eil51.tsp, Berlin52.tsp, St70.tsp, Pr76.tsp, Kroa100.tsp,

Eil101.tsp, Tsp225.tsp and A280.tsp. All tests were run 

on an IBM compatible PC with PIII processor (533MHz).

Table 1 presents the results obtained by the Bee System

when the search is limited to 100 cycles.

Table 1. The results obtained by the Bee System enriched with 

3-opt heuristic 
Problem Optimal

Value

(O)

The best

value

obtained

by the 

Bee

System

(B)

O

OB )(

(%)

Time

required

to find 

the best 

solution

(seconds)

Average

value

obtained by

the Bee 

System

over 20 

runs (A) 

St.

Dev.

(SD) O

OA )(

(%)

Eil51 428.87 428.87 0 37 428.87 0 0

Berlin52 7544.37 7544.37 0 1 7544.37 0 0

St70 677.11 677.11 0 22 677.11 0 0

Pr76 108159 108159 0 11 108159 0 0

Kroa100 21285.4 21285.4 0 10 21285.4 0 0

Eil101 640.21 640.21 0 1741 643.05 1.7 0.44

Tsp225 3859 3876.05 0.44 5153 3905.32 18.9 1.2

A280 2586.77 2600.34 0.53 13465 2627.45 12.31 1.57

In all instances with less than 100 nodes, the Bee

System produced the optimal solution. The times required

to find the best solutions by the Bee System are very low.

In other words, it was able to produce “very good” 

solutions in a “reasonable amount” of computer time. The

best solution of one studied benchmark problem

(A280.tsp) discovered by the Bee System is presented in

the Figure 1. 
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Figure 1. Bee System solution to the TSP problem instance

A280.tsp (limited to 100 cycles)

4. Transportation problems characterized by 

uncertainty: artificial life approach 

A wide range of traffic and transportation engineering

parameters are characterized by uncertainty, subjectivity,
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imprecision, and ambiguity [31, 32, 35]. Human

operators, dispatchers, drivers, and passengers use

subjective knowledge or linguistic information on a daily

basis when making decisions. Drivers, passengers, or 

dispatchers make decisions about route choice, mode of 

transportation, most suitable departure time. In each case 

the decision maker is a human. The environment in which

a human expert (human controller) makes decisions is

often complex, making it difficult to formulate a suitable

mathematical model. Thus, the development of fuzzy

logic systems seems justified in such situations. 

Developing models for solving difficult combinatorial

optimization problems characterized by uncertainty is a 

very important and challenging research task.

ALife approach can be successfully used to “attack”

transportation engineering problems characterized by 

uncertainty. One can assume that virtual creatures 

(artificial ants, or artificial bees) use approximate

reasoning in decision-making process. The control

strategies of agents can be easily formulated in terms of 

numerous descriptive rules. The Fuzzy Ant System (FAS) 

described in this paper represents an attempt to handle the

uncertainty that sometimes exists in some complex

transportation problems. Before explaining FAS, let us

briefly describe “classical” Ant algorithms.

4.1 Basic characteristics of the Ant algorithms 

It is known that real ants in nature are capable of

discovering the shortest path from a food source to the

nest. It is also well known that real ants deposit

pheromone on the ground while walking. At the same

time, real ants follow pheromone that was deposited

previously by other ants. Going form the nest towards a

food source, real ants choose a particular path with a 

certain probability. The probability that a certain path will 

be chosen significantly depends on the amount of 

pheromone that has been deposit on that path. The higher

the amount of pheromone, the higher is the probability 

that a path is chosen. Dorigo et al. [17] solved the

Traveling Salesman Problem using the Ant System.

Dorigo et al. [17] proposed that artificial ants search the

solution space. In this way, artificial ants simulate real 

ants that search their environment looking for a shortest

path between food source and nest. The searching process

is characterized by the existence of adaptive memory. The 

adaptive memory corresponds to the pheromone trails. In 

the environment of the artificial ants the time is discrete.

At the beginning of the search process (time t = 0), the 

ants are located in different towns. Dorigo et al denoted

by ij(t) the intensity of trail on edge (i, j) at time t. At 

time point t = 0 the value of ij(0) is equal to a small

positive constant c. At time t each ant is moving from the

current town to the next town. Reaching the next town at

time (t+1), each ant is making the next move towards

next, yet unvisited town. Being located in town i, ant k is 

choosing next town j to be visited at time t with the

transition probability pij
k(t) defined by the following

relation:

otherwise,0

)(if,
)(

)(

)(
)(

tj
t

t

tp

k

i

th
ihih

ijij

k

ij k
i

(5)

where:

i
k(t) – set of feasible nodes to be visited by ant k (the set 

of feasible nodes is updated for each ant after every 

move),

ij = 1/dij – “visibility”,

dij – Euclidean distance between node i and node j,

,  – parameters representing relative importance of the

trail intensity and the visibility.

The greater the importance the analyst gives to the

visibility, the greater the probability that the closest towns

will be selected. The greater the importance given to the

trail intensity on the link means that that link is highly

desirable because many ants already passed through that 

link.

Dorigo et al. [17] assumed m moves performed by m

ants in the time interval (t, t+1). Every ant will complete a 

traveling salesman tour after n iterations. Dorigo et al [17]

named n iterations of the algorithm the cycle. They

proposed to update the trail intensity after each cycle in

the following way: 

),()()( ntttnt
ijijij

(6)

where:

 is the coefficient (  < 1) such that (1- ) represents 

evaporation of the trail between time t and t + n.

The total increase in trail intensity along link (i, j) 

after one completed cycle is equal to:
m

k

k

ijij
nttntt

1

),(),( (7)

where ij
k(t, t+n) is the quantity of pheromone laid on link

(i, j) by the k-th ant during time interval (t, t + n).

The quantity ij
k(t, t+n) is given by:

otherwise

n)t(t,interval timeduring tour itsin
j)(i,ink thealongant walksth-k theif

0,

,
),(),( nttL

Q

ntt k

k

ij
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where:

Q – the constant,

Lk(t, t+n) – the tour length of the k-th ant within cycle (t,
t+n).

As we can see, in order to discover a good solution,

artificial ants cooperate through the deposition of the 
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pheromone on graph edges. In other words, pheromone

deposition represents exchange of information between

ants. In order to increase the efficiency of the Ant System,

Dorigo and Gambardella [15, 16], and Dorigo et al. [14]

developed the Ant Colony System.

4.2 FAS: Fuzzy Ant System

We propose a Fuzzy Ant System (FAS) that

represents a combination of the Ant Colony System and 

Fuzzy Logic. In this way, the Ant System is combined

with a non-quantitative approach. The basic modification

is in the way in which transition probabilities are 

calculated. Fuzzy logic could be used to calculate an ant’s

utility to visit the next node.

When deciding about the next node to be visited (in

the case of the Traveling Salesman problem), the ant 

takes into account “visibility”, as well as pheromone trail 

intensity. We assume that the ant can perceive the

particular distance between nodes as “small”, “medium”

or “large”, and the trail intensity as “weak”, “moderate”

or “strong”, etc. Possible membership functions of these

fuzzy sets are shown in Figure 2. 

Depending on the distance to the next node, as well as

the trail intensity, the ant will have a stronger or weaker 

utility to choose the considered link. These utilities can be 

described by appropriate fuzzy sets. Approximate

reasoning algorithm for calculating the utility of choosing 

the next link (in the case of Traveling Salesman Problem)

could be composed, for example, of the rules of the

following type:

If distance is SHORT and trail intensity is 

STRONG

Then utility is VERY HIGH 

The approximate reasoning algorithm could replace 

relation (5) for calculating transition probabilities. In this

way, it is possible to calculate an ant’s utilities even in the

cases where some of the input data are only

approximately known. 

Teodorovi  and Lu i  [33] developed the model for

schedule synchronization in public transit based on Fuzzy

Ant System. Trips between nodes in public transit

networks may be made with or without making transfers.

Transfers usually represent inconvenience to the

passengers.  Because badly coordinated transfers can 

significantly increase waiting times, it is especially

important to carefully synchronize schedules in the cases 

of larger headways. At the same time, badly coordinated

transfers can decrease the total number of passengers in

public transit and their switching to competitive modes.

While making schedule synchronization, it is necessary to

try to minimize the total waiting times of all passengers at 

transfer nodes in transit network. Very often only

approximate numbers of transfer passengers are known.

The model proposed by Teodorovi  and Lu i  [33] for 

schedule synchronization when the number of transfer

passengers is only approximately known, is based on 

Fuzzy Ant System.

Small
distance

Weak
pheromone
trail

Medium
pheromone
trail

Strong
pheromone
trail

Medium
distance

Long
distance

)(tij

ijd

Figure 2. Membership functions of the fuzzy sets describing

distance to the next node and trail intensity

Let us note the network shown in Figure 3. The 

network is composed of a few layers. The total number of

layers in the network, m, is equal to the total number of

transit lines. The number of nodes in every layer equals

the number of possible transit line departure times. There 

is a full connectivity between the two neighboring layers.

Let us assume that all ants are located in origin O and that

all of them travel to destination D. Every node in the

network is described by the appropriate coordinates. For 

example, the coordinates (i, j) describe j-th node located

in the i-th layer. This node represents j-th possible

departure moment of the i-th transit line.

Ants located in origin O go towards destination D.

The ants have few options when choosing the first node in

the first layer (departure time of the first transit line). The

number of choices is equal to the number of possible

departure times. Pheromone will be deposited at every

node that was visited by at least one ant. At the beginning

of the search process we will assume that the pheromone

trail is very low in every node and that it is equal to some

small positive constant. An ant starts his trip from the

origin, chooses one node in the first layer, then moves to

the second layer, chooses one node from the second layer,

etc. An ant's utility for choosing the next node is 

calculated using the approximate reasoning algorithm.
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The typical rule in this approximate reasoning algorithm

reads:

If       waiting time is SHORT and trail intensity is WEAK

Then  utility is HIGH 

 Line 1
(layer 1)

 O

 D

 Line 2
(layer 2)

 Line 3
(layer 3)

 Line
(layer )

m
m

Figure 3. Transit lines and possible departure times 

The nodes with better utility values are more likely to 

be selected by an ant. The performed numerical tests

showed that the Fuzzy Ant System could produce very

good results when solving schedule synchronization

problem in public transit.

Recently, Lu i  and Teodorovi  [34] also successfully 

combined the Bee System with Fuzzy logic in order to

solve vehicle routing problem with uncertain demands at

nodes (the real value of demand at a node is only known

when the vehicle reaches the node). The obtained results

are very promising.

5. Conclusion 

The Bee System has been successfully applied to the

classical Traveling Salesman Problem. The results 

obtained are considered to be very good. A Fuzzy Ant 

System (FAS) representing a combination of the Ant

Colony System and Fuzzy Logic is sussesfully applied for

solving schedule synchronization in public transit. The

Fuzzy Ant System shows that it is possible to successfully

combine quantitative and a non-quantitative approach 

when developing ALife models.

It seems that there are a lot of potential applications

for the ALife techniques in the field of Traffic and 

Transportation Engineering. Some typical ones, for

example, are designing an airline or utility network

(designing the best hub and spoke architecture), selecting

the “best” path to connect two points on a map (alignment

problem for public transportation routes), vehicle and 

crew routing and scheduling problems, or the Gate

Assignment Problem (assignment of arriving aircraft to

available gates). Natural systems teach us that very simple

individual organisms can form systems capable of 

performing highly complex tasks by dynamically

interacting with each other. Preliminary results with 

ALife based models are very promising. These results

show that the development of new models based on ALife

principles could significantly contribute to the solution of 

complex transportation engineering problems.
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