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Transportation Safety of Lithium 
Iron Phosphate Batteries - A 
Feasibility Study of Storing at Very 
Low States of Charge
Anup Barai1, Kotub Uddin1, Julie Chevalier2, Gael H. Chouchelamane2, Andrew McGordon1, 

John Low1 & Paul Jennings1

In freight classification, lithium-ion batteries are classed as dangerous goods and are therefore subject 
to stringent regulations and guidelines for certification for safe transport. One such guideline is the 
requirement for batteries to be at a state of charge of 30%. Under such conditions, a significant amount 
of the battery’s energy is stored; in the event of mismanagement, or indeed an airside incident, 

this energy can lead to ignition and a fire. In this work, we investigate the effect on the battery of 
removing 99.1% of the total stored energy. The performance of 8Ah C6/LiFePO4 pouch cells were 

measured following periods of calendar ageing at low voltages, at and well below the manufacturer’s 

recommended value. Battery degradation was monitored using impedance spectroscopy and capacity 

tests; the results show that the cells stored at 2.3 V exhibited no change in cell capacity after 90 days; 
resistance rise was negligible. Energy-dispersive X-ray spectroscopy results indicate that there was 

no significant copper dissolution. To test the safety of the batteries at low voltages, external short-
circuit tests were performed on the cells. While the cells discharged to 2.3 V only exhibited a surface 
temperature rise of 6 °C, cells at higher voltages exhibited sparks, fumes and fire.

Lithium ion (Li-ion) batteries have become the electrochemical energy storage technology of choice in many 
applications due to their high speci�c energy density, high e�ciency and long life. In tandem with rising demand 
for portable electronic devices as well as rapidly falling battery costs1, the global uptake of Li-ion batteries is 
increasing2. Carbon emissions legislation, in addition, is driving further signi�cant demand for Li-ion batteries, 
which have gained prominence in renewable energy plants3, as well as energy storage systems for sustainable vehi-
cles, such as hybrid and electric vehicles4. As the applicability of Li-ion batteries widens, market uptake increases. 
�e demand for Li-ion batteries grew from circa. 49 GWh in 2013 to circa. 70 GWh in 2016 and is expected to 
rise to more than 96 GWh by 20205.

�e earliest, commercially available, rechargeable Li-ion batteries were based on cobalt cathodes i.e., LiCoO2 
(LCO)6, Lithium Cobalt based batteries therefore dominated the rechargeable battery market in the last decade. 
Cycle life and safety concerns with this technology7 however, paved the way for batteries with Lithium Nickel 
Manganese Cobalt Oxide (NMC, LiNixMnyCozO2) cathodes to dominate the market today. With safety concerns 
still associated with Cobalt8, 9 and the demand for even safer batteries, batteries based on lithium iron phosphate 
(LFP, LiFePO4) cathodes have gained signi�cant prominence in the last few years. Lithium-ion Phosphate batter-
ies (LiFePO4) are now employed in EVs such as the Fisker Karma range-extended electric vehicle, the GM spark 
EV and the BYD e6/s6DM.

Given that the production of lithium-ion batteries is heavily concentrated in South East Asia10, transportation 
of these devices to the majority of end users is a necessity. An industry-wide common practice is to adjust the 
battery’s state of charge (SoC) to a value of 30% to 70% for safe transportation11, 12, which recently has recom-
mended to limit to maximum 30% SoC by International Civil Aviation Organization (ICAO)12. Li-ion batteries 
are classi�ed as dangerous goods and as such are required to pass section 38.3 of the UN Manual of Tests and 
Criteria (UN Transportation Testing) in order to be certi�ed for transport13. �e list of tests in UN 38.3 is shown 

1WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom. 2Hybrids and Electrification, Jaguar and Land 
Rover, Banbury Road, Warwick, CV35 0XJ, United Kingdom. Correspondence and requests for materials should be 
addressed to A.B. (email: a.barai@warwick.ac.uk)

Received: 11 January 2017

Accepted: 30 May 2017

Published: xx xx xxxx

OPEN

mailto:a.barai@warwick.ac.uk


www.nature.com/scientificreports/

2Scientific RepoRts | 7: 5128  | DOI:10.1038/s41598-017-05438-2

in Table 1. Speci�c packaging instructions apply for road and sea transport, which are mainly categorised by the 
energy rating in Wh of the battery13. For a 100 Wh or smaller battery, SP188 applies. Under SP188, UN approved 
packaging is not a requirement for package sizes weighing less than 10 kg, provided a strong impact resistant case 
is used. For larger packages of up to 30 kg, the packaging must be made out of steel, aluminium, a metal other than 
steel or aluminium, rigid plastics, natural wood, plywood, reconstructed wood or rigid �breboard, and withstand 
a 1.2 m drop test. For batteries larger than 100 Wh capacity, P903 applies and short circuit protection and UN 
approved packaging are among the necessary requirements for shipping. �e battery needs to also be completely 
enclosed and there is a weight limit of 30 kg per package and 333 kg per vehicle13.

For air transportation of new batteries, which passed the UN 38.3 test, packaging guideline PI965 applies. 
For a 100 Wh or smaller battery, a weight limit of 10 kg per package applies and packaging needs to pass a 1.2 m 
drop test. For higher capacity batteries, the maximum net weight per package for cargo aircra� is 35 kg (PI965, 
SEC IA). However, there is a provision for large Li-ion batteries that have a net weight exceeding 35 kg; these need 
to be consigned on a cargo aircra� in accordance with air special provision A99. �e consignment needs to be 
accompanied by documentation of approval by the appropriate authority in the state of origin.

Despite the regulations and provisions, there is a long history of air cargo transport incidents involving Li-ion 
batteries and devices employing Li-ion batteries. In Table 2, a comprehensive list of air cargo accidents attributed 
to Li-ion batteries is provided. �is list comprises of incidents involving all Li-ion battery chemistries, including 
the most volatile LCO and relatively benign LFP batteries. �is list excludes battery related air transport incidents 
associated with personal devices e.g. Samsung Galaxy Note 7 and batteries integrated into an aircra� e.g. the 
Boeing 787 Dreamliner battery �re issue.

Malaysia Airlines Flight 370 in 2014 was, later, con�rmed to be carrying lithium-ion batteries in its cargo hold, 
sparking speculation that they may have caused a �re that brought the plane down. Similar suspicion, while not 
proven, arose for the EgyptAir Flight 804 that crashed in 2016. �is points to ongoing concerns regarding the 
safety of transporting Li-ion batteries by air, therefore is still an open research question.

One way to make the transport of lithium-ion batteries safer is to remove the stored energy prior to transport. 
In this work, we investigate the viability of transporting Li-ion batteries, more speci�cally lithium iron phosphate 
(LFP) batteries, at voltages corresponding to 0% SoC and lower, i.e., a�er removing almost all of the energy stored 
in the electrochemical system. Irrespective of the lithium-ion cell chemistry, at extremely low cell voltages the 
potential of the graphite negative electrode (LiC6) increases signi�cantly versus Li/Li+ 14, 15 and can lead to copper 
current collector dissolution16–19. Consequently, the dissolved copper ion can travel through the separator and 
be deposited, which leads to a growth of copper dendrite when cycled19. �e copper dendrite can potentially 
create an internal short-circuit and compromise safety. Also, the corrosion of copper current collector creates a 
loss of mechanical and electrical contact between the current collector and the negative electrode components, 
leading to an increase in cell impedance20. �e corrosion products, which have poor electronic conductivity, cause 
overpotentials; coupled with the loss of mechanical contact, this encourages inhomogeneous current (thus very 
high localized current) and potential distributions resulting in lithium dendrite growth21. �e morphology of 
the cathode materials can also be changed at very low potentials, below 1 V. �e side reactions that occur during 
extreme overdischarge result in the solid-state amorphization of the transition metal compounds17. �e changes 
in electrode morphology leads to capacity degradation19. Under extremely low voltages, these electrochemical 
processes are present in LFP based cells as well as other lithium-ion battery chemistries alike.

In this paper, a�er studying the e�ects of long term, low voltage storage on the performance of LFP cells, the 
safety of LFP cells at such low voltages when exposed to external short-circuit conditions (the most common 
cause of the incidents in Table 2) is studied. It is shown that a voltage stability window exists where the degrada-
tion associated with storing the battery at low voltages is negligible; concurrently the battery is e�ectively “inert” 

Test Number Test Name Short Description

UN 38.3.4.1
Test T.1 Cells and batteries stored at a pressure of 11.6 kPa or less for at 

least six hours at ambient temperatureAltitude Simulation

UN 38.3.4.2
Test T.2 Rapid thermal cycling between high (75 °C) and low (−40 °C) 

storage temperatures�ermal Cycling

UN 38.3.4.3
Test T.3 Sinusoidal vibration pattern of 7 Hz with 1 g pack acceleration 

to 200 Hz with 8 g pack acceleration and back to 7 Hz; 12 cycles 
in three perpendicular mounting positions are appliedVibration

UN 38.3.4.4
Test T.4 150 g shock for a duration of 6ms is applied in three di�erent 

perpendicular positionsShock

UN 38.3.4.5
Test T.5 Short circuit of less than 0.1 Ω at 55 °C for 1 hour is applied to 

the cellExternal Short-Circuit

UN 38.3.4.6
Test T.6 15.8 mm diameter bar placed across cell center and a 9.1 kg 

mass is dropped onto the bar from 61 cm heightImpact

UN 38.3.4.7
Test T.7 More than double the recommended current and double the 

maximum voltage is used to charge the cellOvercharge

UN 38.3.4.8
Test T.8

Over-discharge of the cell for a single instance
Forced Discharge

Table 1. UN 38.3 tests for transport certi�cation of lithium-ion battery.
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because the energy stored in the electrochemical system is almost entirely extracted. Transporting batteries under 
such conditions would be relatively safer than the adopted industry practice today, with little cost in terms of 
degrading long-term battery functionality. �e relatively benign LFP cells were chosen for this pilot study because 
even this benign chemistry may have the potential to create a �re during an external short circuit. Since the ageing 
mechanisms at low SoC are common between all Li-ion battery chemistries and the potential for a �re hazard is 
related to the stored energy, the high level conclusions derived from studying LFP cells may extrapolate to other 
Li-ion cell chemistries. A detailed investigation of other Li-ion cell chemistries in this regard will be addressed in 
future studies. �e experimental procedure adopted for this study is presented in the ‘experimental details’ sec-
tion. �e ‘Low voltage calendar ageing results’ section presents the long-term low voltage storage ageing results. 
�e conclusions from this section were used to identify the optimum ageing condition to take forward to the 
external short-circuit test described in ‘short circuit abuse experiment’ section. An overall discussion on ageing 
test results and short-circuit test results are presented before summarizing the key contributions.

Experimental details
Commercially available Li-ion pouch cells with a LiFePO4 (LFP) cathode and LiC6 (graphite) anode were used for 
this study. �e rated capacity and maximum discharge current limits of the cells were 8 Ah and 40 A, respectively 
and weight 0.157 kg. �e maximum cell voltage during charging is speci�ed by the manufacturer to be 3.65 V, 
while it is 3.4 V under the constant-current—constant-voltage (CC-CV) charging protocol; similarly, the mini-
mum discharge cut-o� voltage is 2.3 V. To isolate the e�ect of temperature, all the tests were carried out at 25 °C 
within a temperature controlled environmental chamber.

To capture the electrical performance of the cell, a set of characterisation tests (snapshot tests) were performed 
on the cells at the beginning of the test. �e snapshot test comprised of 1 C capacity charge and discharge tests 
and electrical impedance spectroscopy (EIS) tests. At the beginning of the discharge capacity test, the cells were 
discharged at a 1 C rate to 2.3 V using a Bitrode MCV 16-100-5 Li-ion cell cycler. �e cells were then allowed to 
rest for 2 hours before being fully recharged via the CC-CV protocol using a C/3 current for the CC part, to 3.4 V 
and a C/20 cut-o� rate for the CV part. Following a further 2 hours of rest, the cells were discharged using the 1 C 
current rate. EIS tests were performed at 50% SoC using a Solartron Modulab system (model 2100 A) �tted with 
a 2 A booster card. Impedance measurements between 10 mHz and 10 kHz with 10 frequency points per decade 
were taken. �e applied amplitude (RMS value) of the signal was 800 mA. A minimum of 4 hr rest was allowed 
a�er SoC adjustment before performing EIS measurements22.

Following an initial snapshot test, the cells were discharged to 2.3, 2.0, 1.0 and 0.5 V and then held at that volt-
age for 15 days. A�er 15 days of storage at constant voltage, another snapshot test was performed and the constant 
voltage storage continued. �ese four di�erent storage voltages were chosen to identify the optimal voltage, which 
minimises battery degradation. �ree cells per storage condition were used to ensure statistical signi�cance and 
to reduce the impact of cell-to-cell variations, thus a total of 12 cells were used for this experiment.

Low voltage calendar ageing results. Figure 1 shows cell voltage as the cells were discharged to 2.3, 
2.0, 1.0 and 0.5 V using 1 C current following each snapshot test. �e energy extracted by discharging to a lower 

Time Incident Root Cause

Oct-2011
Asiana airlines Cargo �ight, a Boeing 747-400F, registration 
HL7604, crashed due to an in-�ight �re in cargo bay.

Physical evidence did not permit identi�cation of the exact 
cause of �re. However, the �re started near the pallets where 
lithium-ion batteries were being stored.

Sep-2010
UPS Airlines Flight 6, a Boeing 747-400F, registration N571UP, 
crashed due to an in-�ight �re in cargo bay.

�e �re was caused by the auto-ignition of the contents of 
a cargo pallet, which contained “a signi�cant number” of 
lithium-ion batteries and other combustible materials

Aug-2009

FedEx discovered a burning and smoking package at one of their 
facilities, which contained GPS tracking devices with lithium-
ion batteries, two of the devices had heated causing surrounding 
packaging and cushioning to ignite.

Mechanical shock/vibration, external short circuit improper 
packaging

Aug-2009
UPS found a smouldering package at its Taiwan Hub. Inspection 
of other packages in the same consignment indicated that similar 
batteries were shipped without terminal protection.

External short circuit, mechanical shock/vibration and 
improper packaging

July-2009
At the UPS hub in the Dominican Republic, a box started to emit 
smoke. �e package had lithium-ion batteries for mobile phones.

External short-circuit of the lithium-ion batteries due to 
improper packaging

Aug-2008
UPS discovered a smoking package containing lithium-ion 
battery powered LED lamps at a ground sort facility.

External short circuit brought about by a combination of 
transport and handling shock and vibration with improper 
packaging

Dec-2007
Package containing a toy helicopter kit with lithium-ion polymer 
batteries was discovered emitting smoke at a FedEx sort facility.

External short circuit brought about by a combination of 
transport and handling shock and vibration with improper 
packaging

Sept-2007
At the Fedex facility package of lithium-ion battery was emitting 
smoke but the �re was contained within the box.

Mechanical damage

Jun-2007
A cargo hold �re alarm was activated during taxiing. �e source 
was a package of lithium-ion battery.

External short-circuit

Aug-2004
A box containing lithium-ion battery module for prototype EV 
start to emit smoke on FedEx cargo plane loading ramp.

External short-circuit

Table 2. List of air-cargo/air-side transport incidents attributed to lithium-ion batteries and devices containing 
lithium-ion batteries32, 41–45.
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voltage compared to the manufacturer recommended 2.3 V, is shown in Table 3. �e extra energy extracted by dis-
charging from 2.3 V to 2 V amounted to only 0.3% of the total energy extracted, while discharging to 0.5 V yielded 
an extra 0.9% of the total energy. Note that while SoE varied by 0.9%, the corresponding SoC variation was 1.9%, 
which is due to the fact that SoC is calculated from coulomb counting, whereas SoE is additionally governed by 
the cells voltage. �us, due to the falling voltage with discharge, the cell delivers progressively lower amounts of 
energy (SoE) for every unit of charge (SoC), further details can be found in the work of Barai et al.23.

In Fig. 1(b) the voltage is seen to momentarily relax to a higher value just a�er the cells were discharged to 
0.5 V and 1.0 V. �is anomaly was due to the experimental setup and as was corrected within 7 minutes. �is 
period of elevated voltage exposure has negligible e�ect since a few minutes at marginally elevated voltages, rela-
tive to the storage duration of 15 days, constitutes less than 0.01% testing time.

�e capacity of the cells from each snapshot test is shown in Fig. 2. Due to signi�cant degradation observed 
for the 0.5 V scenario at the 3rd snapshot test (a�er 30 days of storage), this test was discontinued. A�er 15 days of 
storage there was a sharp capacity drop, which was higher for lower storage voltages. Capacity dropped by more 
than 35% a�er 30 days of storage at 0.5 V, which posed a safety risk (explained later in this section) and therefore 
the test was not continued. A�er 15 days, capacity drop was 30.1%, 15.8%, 12.6% and 4.6% for 0.5 V, 1.0 V, 2.0 V 
and 2.3 V test conditions respectively. Capacity continued to drop for cells stored at 1.0 V and 2.0 V up to 30 days 
of storage. A�er this point, capacity fade stabilised for cells stored at 1.0 V. In contrast, the 2.0 V storage results 
exhibited a marginal increase in storage capacity post 30 days, rising to a capacity fade of 7.1%. A�er 90 days of 
storage at 2.0 V the �nal capacity fade was 11.1%. Cells stored at 2.3 V exhibited capacity increase a�er 15 days, 
although within the error bar (due to cell to cell variation). However, there was a con�rmed overall rise of 2.6% in 
cell capacity a�er 90 days for all three cells stored at 2.3 V. �is is consistent with previous studies such as that that 
of Kassem et al.24 and Li et al.25. In the latter study, the authors stored C6/LiFePO4 batteries at room temperature; 
for cells stored at ≤20% SoC, they reported an increase in cell capacity. In summary, drawing on calendar life 
studies reported in refs 24–27, storing at 2.3 V for 90 days leads to less capacity fade than storing at ~30% SoC, 
which is the current aviation standard.

�e EIS test results at 50% SoC in the form of Nyquist plots are shown in Fig. 3. �e x-axis has the real part of 
the complex impedance and y-axis has the imaginary part of the complex impedance, both has unit of Ω. In 
agreement with the capacity results, the pure Ohmic resistance, R

o
, �rst increases and then stabilises with a slight 

decrease. A�er 30 days of storage there is an increase in Ohmic resistance for every storage condition; the 0.5 V 
storage condition exhibited the highest increase (3 mΩ); the lowest increase (1 mΩ) was found for the cell stored 
at 2.3 V. A�er 45 days of storage there was a clear rise in total resistance R

t
, as shown in Fig. 3(b),(c) and (d). A�er 

60 days the R
t
 value for storage at 2.3 V dropped close to its initial value.

�e Ohmic resistance (R
o
) includes both ionic resistance of the electrolyte and electronic resistance of the 

electrode and current collectors28–31. Under low voltage storage, it is reported that the copper current collector 
reacts with electrolyte components resulting in corrosion16–18, leading to higher R

o
. More speci�cally, when cells 

are stored at low voltages over an extended period, the copper current collector attached to the carbon electrode 
is oxidised to Cu2+ and dissolves into the electrolyte14, 19, 32. �e subsequent reduction in contact between the 
current collector and active electrode material manifests as an increase in Ohmic resistance. Although previous 
studies such as that of Jeevarajan et al.33 reported slight increases of cell resistance under over-discharge condi-
tions, the onset and rate of copper dissolution is cell speci�c.

To assess and quantify copper dissolution under low voltage storage for the cells studied in this work, 
energy-dispersive X-ray spectroscopy (EDX) was used. Samples of negative electrode material from aged cells 
were extracted in a glove-box, within an argon environment. For robustness, two samples were taken from each 
cell. �e elemental composition of the electrode samples was analysed; the EDX spectrum showed very small 
traces (~1%) of copper in all cases. Given that the EDX technique has a widely accepted tolerance of ~5%, no 
conclusive observation can be made from these results.

Under over-discharge conditions, over-deintercalation of lithium at the negative electrode can cause decom-
position of the solid electrolyte interphase (SEI). When the cell is re-charged, new SEI �lm forms on the graphite 
anode. �e growth of the SEI �lm leads to degradation of the electrochemical charge-transfer processes at the 
electrode-electrolyte interface15, 34, 35. Furthermore, the decomposition of SEI leads to gas generation at the neg-
ative electrode. �e generation of gases, typically CO2 and CO, cause swelling within the cell14 and consequently 
a resistance rise due to electrical contact loss thorough delamination. Cell delamination varies with the volume 
of gas generated and post experimental cell relaxation time. In order to perform the EIS tests presented in Fig. 3, 
cell SoC was adjusted to 50% SoC. �e magnitude of cell resistance reduction due to the decrease in cell volume 
expansion depends on how long the cell spent at 50% SoC. �is explains the falling resistance observed in Fig. 3.

At the cathode, when the cell is discharged to below the voltage limit, irreversible breakdown of LiFePO4 active 
material also occurs, which also releases gas24. �is breakdown of active material leads to capacity fade. Kassem et 
al.24 reported a reversible capacity loss due to side reactions at the positive electrode, which was further explained 
by Li et al.25. �e reversible and irreversible capacity fade found at di�erent storage voltages and durations may be 
associated with these two mechanisms, SEI formation and gas evolution.

Results of the long term ageing results presented here, namely that copper dissolution is negligible and the 
principal mode of degradation is electrolyte decomposition and subsequent SEI growth, is consistent with the 
results reported by Guo et al.19. Guo et al. found that the dissolution of SEI occurs within 0 to −10% SoC, severe 
copper dissolution then occurs below −12% SoC, with severe internal short circuiting occurring at or lower 
−20% SoC19. For the batteries used in this study, 0.5 V corresponds to −1.9% SoC and as such, in agreement with 
Guo et al.19, only SEI dissolution and gassing occurs.

�e battery degradation results presented in this section suggests a voltage stability window between 2.0 V and 
2.3 V (−0.4% to 0% SoC) where the discharge voltage leads to a minimal e�ect on cell ageing. However, practical 
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Figure 1. Discharge voltage and constant voltage storage for all cells. Cells stored at 0.5 V became dysfunctional 
a�er 30 days.

Cell 
Voltage

Cell 1 Cell 2 Cell 3 Average

SoE SoCWh Ah Wh Ah Wh Ah Wh Ah

2.3 24.62 7.77 24.66 7.77 24.89 7.85 24.72 7.80 0.0% 0.0%

2.0 24.70 7.80 24.74 7.81 24.95 7.87 24.80 7.83 −0.3% −0.4%

1.0 24.80 7.88 24.86 7.89 25.07 7.96 24.91 7.91 −0.8% −1.5%

0.5 24.84 7.91 24.89 7.92 25.10 7.99 24.94 7.94 −0.9% −1.9%

Table 3. Showing the energy extracted in Wh and Ah by discharging to each voltage in comparison to 
discharging to the manufacturer recommended 2.3 V. �e di�erence is calculated using the average of three cells.

Figure 2. Capacity fade with storage duration at di�erent voltage.
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abuse testing is still required to investigate whether this voltage represent an improvement in safety. �e 2.3 V 
condition was chosen for abuse testing as it has a higher remaining energy than other conditions where cells were 
discharged to a lower voltage. If the cell is shown to be inert at 2.3 V, then this inertness will hold at lower voltages.

Short Circuit Abuse Experiment. A lithium-ion cell which is discharged to −1.9% ≤SoC ≤0% (as done in 
this study) is expected to be safer to transport than at higher SoC conditions. While the toxicity of the active mate-
rial within the cell remains the same, it is less likely to self-ignite due to internal/external short-circuits or even 
under a crash scenario. Within this SoC window the batteries have less stored energy; under a failure scenario, the 
cells are likely to produce less heat and thus the probability of reaching thermal runway is signi�cantly lower36–38. 
If a cell reaches thermal runway, the stored chemical energy will be released, which may lead to an explosion9.

To validate the low voltage transportation protocol proposed in this paper, external short-circuit tests 
were performed at di�erent SoCs. An external short-circuit is one of the most common reasons (Table 2) for 
lithium-ion battery failure/incidents during transport and therefore it was chosen to mimic a real failure condi-
tion. For this test, a new set of 15 cells were used. �e �rst batch of three cells were stored as supplied with around 
60% SoC; SoC of subsequent batches of three cells were adjusted to 70%, 30% and 5% SoC; the 5th batch of three 
cells were discharged to 2.3 V (0% SoC). �e test setup is shown in Fig. 4. An external short circuit was applied 
to the cell using thick copper cables and a contactor synchronised with a data acquisition system; contactor was 
used to close the circuit remotely. A 0.1 Ω resistor was embedded into the current path to measure current. �e 
test was completed within a purpose-built chamber for abuse testing of high energy storage systems. �e test was 
performed at room temperature (25 ± 3 °C). Video recording and cell surface temperature measurements were 
made during the test.

Snapshots of the cell taken during the short-circuit tests are presented in Fig. 5. Video recordings capturing the 
cell response to a short-circuit can be found in the online version of the paper under supplementary information. 
�e cell which was discharged to 2.3 V did not have any sparks, fumes or �re (Fig. 5). �e temperature rose by 
6 °C. In contrast, cells with SoC ranging from 5% to 70% exhibited sparks and the cell enclosure near to the elec-
trode tab caught �re. In addition, the tabs of the cells with the highest SoC melted and fused under a short-circuit, 
see Fig. 5. �ese cells eventually could not discharge, which meant that considerable energy was still stored within 
the cell and posed a risk of further short-circuiting. Although the cells with 5% SoC had enough energy stored to 
create a �re, it was not enough to fuse the electrode tab material; however, clearly any sort of �re is undesirable 
on an aircra�.

It is important to note that the �re which ignited the cell’s outer packaging close to the cells electrode tab 
did not cause an ignition of the cell’s active material in any of the cases considered in this work. Moreover, cell 
temperatures did not reach a high enough level to ignite the active material within the cell. Although it could be 
argued that an e�ective discharge under extremely high currents could have led to an internal short circuit due to 
lithium plating21, there were no external signs (such as swelling) of an internal short-circuit.

Figure 3. Change of impedance measured by EIS at 50% SoC. �e x-axis has the real part of the complex 
impedance and y-axis has the imaginary part, both has unit of Ω.
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Discussion
As mentioned earlier, battery SoC is adjusted to a value between 30% and 70% at the end of cell production. �is 
is mainly due to the speculation within the battery industry that calendar ageing of Li-ion cells are accelerated 
when stored at low SoC. However, the authors have found little evidence in literature to support this claim. In 
contrast, there is evidence that battery ageing is minimised when stored at low SoC25. If these batteries need to be 
shipped via sea, then they are subject to calendar aging. A regular shipment from China to UK typically takes 
about 6–8 weeks. On the voyage, the temperature within a regular cargo will vary depending on the route and 
time of the year. Based on calendar life studies of lithium-ion cells24, 26, 39, 40, an ageing of 2–5% (depending on 
temperature) is expected for this duration when stored between 30% and 70% SoC. In contrast air-freight takes 
only days, but currently is considered dangerous cargo and have led to several incidents. In a viable transportation 
scenario, safety is maximised with no compromise to the functionality of the system. �is work presents results 
showing that cells which are discharged to 0% SoC or lower become inert and cannot create a �re even under a 
short-circuit scenario. Such conditions are therefore conducive to safer transportation of Li-ion batteries. 
Although storing batteries at SoCs below 0% SoC, i.e., at signi�cantly low voltages, is ideal from a transport safety 
point of view, it was found that SEI dissolution and gassing persevere under such conditions causing irreversible 
ageing. At 0% SoC however, cells only exhibited reversible capacity loss, and therefore the adverse e�ects on func-
tionality due to long term ageing can be avoided. Although long-term calendar life studies at 0% SoC (and lower), 
such as the work presented in this paper, is not reported in literature, Li et al.25 reported calendar ageing at 10% 
SoC which shows similar trends as found here at 0% SoC, namely that there is an apparent rise in capacity. 
Furthermore, the results reported here are in-line with the electrochemical mechanisms of degradation for 
extremely low SoCs (≤0%) described by Guo et al.19. �erefore, a voltage stability window around 0% SoC exist, 
where the cell degradation is minimal. In summary, discharging Li-ion cells to 0% SoC, can be adopted as a stand-
ard for transpiration of lithium ion batteries. Even cells discharged to 5% SoC exhibited �re, highlighting that cells 
need to be discharged to 0% SoC, well below the 30% SoC standard. If safe air freight is possible, it will accelerate 
the development and production of EV battery packs, and reduce transportation costs.

�ese conclusions based on the LFP cells may persist for other cell chemistries as well, as �rstly, the �re created 
in an external short-circuit event is due to the stored energy and if the energy is removed from any cell they will 
simply become inert. Secondly, when cells are stored a�er removing energy, the ageing is dominated by the neg-
ative electrode, which in most commercial batteries is graphite, LiC6, hence other Li-ion battery chemistry cells 
will also likely not age at such low SoC conditions – although this point requires further investigation. Hence, a 
number of opportunities exist where the research presented here may be further extended and re�ned. Although 
it is estimated that the conclusions will persist for other Li-ion cell chemistries, validation with various cell chem-
istries and form factors is required to establish conclusive proof. Also, given the limited datasets employed for 
this initial study, further experiments within the 0% to 5% SoC window will precisely identify the best SoC point 
to store the cells for transport. A detailed electrochemical study into gassing and resulting degradation on the 
cells stored at low SoC will be a natural extension of this work. �is will investigate if there is any phase change 
occurring at low voltage16.

It should be noted that although by discharging the cells to 0% SoC, the stored electrical/electrochemical 
energy is predominantly removed, chemical energy stored within the bonds of the chemical compounds of com-
ponent martials still exist. As such, under abuse conditions which will stimulate extensive exothermic chemical 
reactions, such as aggressive thermal insult, the hazard of thermal runway and combustion9 still exists.

Figure 4. External short circuit test setup.
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Conclusion
Considering the challenges facing long-haul transportation of Li-ion batteries, in this paper we propose a proto-
col whereby 99.1% of the battery’s energy is removed prior to shipping. We show that removing 99.1% of the total 
stored energy (0% SoC) of a Li-ion battery of LFP chemistry is safer than the current ICAO standard of 30% SoC 
for transportation in the event of short circuit. Using a novel dataset, it was shown that cells stored at such low 
SoC values did not exhibit signi�cant irreversible capacity fade. While storing at very low voltages (≤0.5 V per 
cell) is ideal from an electrical hazard perspective, the results indicate, in agreement with previous literature, that 
SEI dissolution was more pronounced, leading to signi�cant degradation of battery capacity (up-to 30% within 15 
days). On the other hand, around 0% SoC was found to be a voltage stability window for the transportation of 
Li-ion batteries, which does not comprise the battery’s state of health.

An external short-circuit test was performed on the cells to validate the proposed safer transport protocol 
where the SoC is discharged to 0% SoC. �e external short-circuit tests on the cells at di�erent SoC from 5% to 
70% exhibited sparks, fuming and even �re. However, the cells discharged to 2.3 V (0% SoC) did not show any 
of these signs; only exhibiting a surface temperature rise of 6 °C. �e paper presented discussion on why these 
conclusions may still be valid for other Li-ion battery chemistries.

�is research provides evidence that safer air-freight is possible by removing almost all of a cell’s stored energy. 
While there are other measures such as stringent packaging standard, that can be employed to reduce the hazard, 
the method proposed in this work e�ciently removes the hazard, enabling safer transport of Li-ion batteries.

Figure 5. External short-circuit test performed on �ve cells at 0% SoC (discharged to 2.3 V), 5% SoC, 30% SoC, 
70% SoC and as supplied (around 60% SoC) by the manufacturer. From le� to right, �rst picture is just before 
the short-circuit was applied, just a�er application of short circuit (~1 sec), 2 second a�er application of short 
circuit, maximum �re/spark found (around 4–5 seconds a�er the short circuit was applied) and in last picture 
the cell electrode tab a�er short-circuit test. Results of the test are presented in last column.
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