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Abstract

Programming with dependent types is a blessing and a curse. It is a blessing to be able to bake invariants into the
definition of datatypes: we can finally write correct-by-construction software. However, this extreme accuracy is
also a curse: a datatype is the combination of a structuring medium together with a special purpose logic. These
domain-specific logics hamper any attempt to reuse code across similarly structured data.

In this article, we capitalise on the structural invariants of datatypes. To do so, we first adapt the notion of ornament
to our universe of inductive families. We then show how code reuse can be achieved by ornamenting functions. Using
these functional ornaments, we capture the relationship between functions such as the addition of natural numbers
and the concatenation of lists. With this knowledge, we demonstrate how the implementation of the former informs
the implementation of the latter: the user can ask the definition of addition to be lifted to lists and she will only be
asked the details necessary to carry on adding lists rather than numbers.

Our presentation is formalised in a type theory with a universe of datatypes and all our constructions have been
implemented as generic programs, requiring no extension to the type theory.

1 Introduction

Imagine designing a library for an ML-like language. For instance, we start with natural numbers and
their operations, then we move to binary trees, then rose trees, etc. It is the garden of Eden: datatypes are
data-structures, each coming with its unique and optimised set of operations. If we move to a language
with richer datatypes, such as a dependently-typed language, we enter the Augean stables. Where we used
to have binary trees, now we have complete binary trees, red-black trees, AVL trees, and countless other
variants. Worse, we have to duplicate code across these tree-like datatypes: because they are defined upon
this common binarily branching structure, a lot of computationally identical operations will have to be
duplicated for the type checker to be satisfied.

Since their first introduction in ML, datatypes have evolved: besides providing an organising structure
for computation, they are now offering more control over what is a valid result. With richer datatypes, we
can enforce invariants on top of the data-structures. In such a system, programmers strive to express the
correctness of their programs in the types: a well-typed program is correct by construction.

A simple yet powerful recipe to obtain richer datatypes is to index the data-structure. These datatypes
have originally been studied in type theory under the name of inductive families (Dybjer, 1994; Morris
et al., 2009). Inductive families made it to mainstream functional programming with Generalised Al-
gebraic Data-Types (GADTs) (Cheney & Hinze, 2003; Schrijvers et al., 2009), a subset of inductive
families for which the principal-types property is preserved thus enabling modular (local) type inference.
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Refinement types (Freeman & Pfenning, 1991; Swamy et al., 2011) are another technique to equip data-
structures with rich invariants. In a dependently-typed setting, refinement types are expressible in terms
of Σ-types. As such, they offer a clear-cut separation between the data (what is predicated upon, i.e.
the first projection of the Σ-type) and the logic (the predicate, i.e. the second projection of the Σ-type).
This approach benefits from a straightforward compilation strategy, which simply erases the refining
predicates. Atkey et al. (2012) have shown how refinement types relate to inductive families.

1.1 Ornaments?

However, these carefully crafted datatypes are a threat to any library design: the same data-structure is
used for logically incompatible purposes. This explosion of specialised datatypes is overwhelming: these
objects are too specialised to fit in a global library. Yet, because they share this common structure, many
operations on them are extremely similar, if not exactly the same. To address this issue, McBride (2013)
developed ornaments, describing how one datatype can be enriched into another with the same structure.
Such structure-preserving transformations take two forms. First, we can extend the initial type with more
information.

1.1 Example (Ornament: Extending the Booleans to the option type). We can extend the Booleans to the
option type by attaching an a :A to the constructor true:

data Bool : SET where

Bool 3 true

| false

Maybe-OrnA⇒
data Maybe [A : SET] : SET where

Maybe A 3 just(a :A)
| nothing

4

1.2 Example (Ornament: Extending numbers to lists). Or we can extend natural numbers to lists by
inserting an a :A at each successor node:

data Nat : SET where

Nat 3 0

| suc(n :Nat)

List-OrnA⇒
data List [A : SET] : SET where

List A 3 nil

| cons(a :A)(as :List A)

4

Second, we can refine the indexing of the initial type, following a finer discipline. By refining the
indices of a datatype, we make it logically more discriminating.

1.3 Example (Ornament: Refining numbers to finite sets). We refine natural numbers to finite sets by
indexing the number with an upper-bound:

data Nat : SET where

Nat 3 0

| suc(n :Nat)

Fin-Orn⇒
data Fin (n :Nat) : SET where

Fin (n=sucn′) 3 f0 (n′ :Nat)

| fsuc(n′ :Nat)(k :Finn′)

Put otherwise, the datatype Finn is a type of cardinality n.
4

We can also do both at the same time, as illustrated by the following example.



ZU064-05-FPR paper 12 December 2013 19:58

Functional Ornaments 3

1.4 Example (Ornament: Extending and refining numbers to vectors). We extend natural numbers to lists
while refining the index to represent the length of the list thus constructed:

data Nat : SET where

Nat 3 0

| suc(n :Nat)

VecOA
=⇒

data Vec [A : SET](n :Nat) : SET where

Vec A (n=0) 3 nil

Vec A (n=sucn′) 3 cons(n′ :Nat)(a :A)(vs :Vec An′)

Note that we declare datatype parameters in brackets – e.g., [A : SET] – and datatype indices in paren-
theses – e.g., (n : Nat). We make equational constraints on the latter only when needed, and explicitly –
e.g., (n=sucn′). We come back to the notation for inductive definitions in Section 3.3.

4

Because of their constructive nature, ornaments are not merely identifying similar structures: they give
an effective recipe to build new datatypes from old, guaranteeing by construction that the structure is
preserved. Hence, we can obtain a plethora of new datatypes with minimal effort.

1.2 Functional ornaments!

Whilst we have a good handle on the transformation of individual datatypes, we are still facing a major
reusability issue: a datatype often comes equipped with a set of operations. Ornamenting this datatype,
we have to entirely re-implement many similar operations. For example, the datatype Nat comes with
operations such as addition and subtraction. When defining lists as an ornament of natural numbers,
it seems natural to transport the structure-preserving functions of Nat to List A, such as moving from
addition of natural numbers to concatenation of lists:

(m :Nat)+(n :Nat) : Nat

0 + n 7→ n
(sucm) + n 7→ suc(m+n)

⇒
(xs :List A)++(ys :List A) : List A
nil ++ ys 7→ ys
(consa xs) ++ ys 7→ consa (xs++ys)

or, from subtraction of natural numbers to dropping a prefix:

(m :Nat)− (n :Nat) : Nat

0 − n 7→ 0

m − 0 7→ m
(sucm) − (sucn) 7→ m−n

⇒

drop (xs :List A) (n :Nat) : List A
drop nil n 7→ nil

drop xs 0 7→ xs
drop (consa xs) (sucn) 7→ dropxs n

More interestingly, the function we start with may involve several datatypes, each of which may be
ornamented differently. In this paper, we develop the notion of functional ornament as a generalisation of
ornaments to functions:

• We manually transport the comparison of numbers to the list lookup function in Section 2. This
example provides the impetus for the rest of this article: we aim at explaining the structure behind
it, generalise, and automate it;
• For this article to be self-contained, we recall the type theoretic foundations (Chapman et al., 2010)

upon which this article builds in Section 3. We strive to provide an intuition for our universe-based
presentation of datatypes, and describe a convenient notation for inductive definitions;
• We adapt ornaments to our universe of datatypes in Section 4. This presentation benefits greatly

from our ability to inspect indices when defining datatypes. This allows us to consider ornaments
that delete information, yielding a key simplification in the construction of the algebraic ornament
from the ornamental algebra;
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• We describe how functions can be transported through functional ornaments. We formalise the
concept of functional ornament by a universe construction in Section 5. Based on this universe,
we establish the connection between a base function (such as addition and subtraction) and its
ornamented version (such as, respectively,−++− and drop). Within this framework, we redevelop
the example of Section 2 with all the automation offered by our framework;

• In Section 6, we provide further support to drive the computer into lifting functions. As we can
see from our examples above, the lifted functions often follow the same recursion pattern and
return similar constructors: with a few smart constructors, we shall remove further clutter from our
libraries.

This article is an exercise in constructive mathematics: upon identifying an isomorphism, we shall look
at it with our constructive glasses and obtain an effective procedure to cross it. It is crucial to note that
this article is built entirely within type theory. No change or adaptation to the meta-theory is required. In
particular, the validity of our constructions is justified by mere type checking.

1.5 Remark (Notations). We shall write our code in a syntax inspired by the Epigram programming
language (McBride & McKinna, 2004). For an optimal experience, we recommend reading the colour
version of this article, available on Dagand’s webpage. Colours are used to classify the terms of the type
theory. We also make use of the by (⇐ ) and return ( 7→ ) programming gadgets, further extending them
to account for the automatic lifting of functions. For brevity, we write pattern-matching definitions when
the recursion pattern is evident and unremarkable.

As in ML, unbound variables in type signatures are universally quantified, further abating syntactic
noise. For higher-order functions, we indicate the implicit arguments with the quantifier ∀x.(. . .) – or its
annotated variant ∀x :T .(. . .) – as follows:

example (op :∀n.Vec An→1) (xs :Vec Ak) (ys :Vec Al) : op xs = op ys
· · ·

Because we implicitly quantify over unbound type variables, these variables are not explicitly bound
in the definition. We rely on the convention that these implicit arguments are automatically in scope of
the definition, using the same variable name. For example, in the following definition, n is universally
quantified in the type declaration and is in scope in the definition of lengthVec:

lengthVec (vs :Vec An) : Nat

lengthVec vs 7→ n

The syntax of datatype definitions draws upon the ML tradition as well: its novelty will be presented by
way of examples in Section 3. Following mathematical usage, we shall extensively use mixfix operators,
i.e. operators in prefix, infix, postfix, or closed form.

All the constructions presented in this article have been modelled in Agda, using only standard induc-
tive definitions and two levels of universes. Rather than presenting the machine-checked code, we have
chosen to use an high-level notation. This notation relies on the reader’s ability to cope with ambiguity.
We shall therefore indulge in many abuse of language, as is common in mathematics. This allows us to
focus on conveying ideas to the reader, rather than on satisfying a type checker. Throughout this article,
we relate the high-level definitions to their Agda counterparts using a MODEL footnote indicating their
location. For an absolutely formal treatment, we therefore refer the reader to the companion formalisation.
The formalisation is available on Dagand’s website.

♦



ZU064-05-FPR paper 12 December 2013 19:58

Functional Ornaments 5

(m :Nat)< (n :Nat) : Bool
m < 0 7→ false
0 < (sucn) 7→ true
(sucm) < (sucn) 7→ m<n

?
=⇒

lookup (m :Nat) (xs :ListA) : MaybeA
lookup m nil 7→ nothing
lookup 0 (consa xs) 7→ justa
lookup (sucn) (consa xs) 7→ lookupn xs

Fig. 1: Implementation of −<− and lookup

A shorter version of this article has appeared in the proceedings of ICFP 2012 (Dagand & McBride,
2012). This version benefits from several presentational modifications to include significantly more ex-
amples (in particular, in Section 3 and Section 4). The running example – lifting the comparison function
of natural numbers – is also complemented by another example, lifting the addition of natural numbers.
Worked out examples, throughout the paper, shall help the reader build a strong intuition of the generic
constructions at play. We have also extended the original paper with new material. In Section 4.2, we
cast the forcing and detagging transformations of Brady et al. (Brady et al., 2003) in our universe of
datatypes. Using these intuitions, we have streamlined the definition of reornaments and discuss the
limits of iterating reornaments (Section 4.5). We have extended the lifting of recursion patterns to handle
induction and case analysis (Section 6). Our treatment of the lifting of constructors (Section 6) has also
treated in more details and its underlying mechanisms has been thoroughly illustrated.

2 From Comparison to Lookup, Manually

There is an astonishing resemblance between the comparison function −<− on numbers and the list
lookup function (Fig. 1). Interestingly, the similarity is not merely at the level of types. It is also in their
implementation: their definition follows the same pattern of recursion (first, case analysis on the second
argument; then induction on the first argument) and they both return a failure value (respectively, false

and nothing) in the first case analysis and a success value (respectively, true and just) in the base case of
the induction.

This raises the question: what exactly is the relation between −<− and lookup? Also, could we use
the implementation of −<− to guide the construction of lookup? First, let us work out the relation at
the type level. To this end, we use ornaments to explain how each individual datatype has been promoted
when going from −<− to lookup:

−<− Nat Nat Bool

lookup Nat List A Maybe A

idONat-func List-OrnA Maybe-OrnA

: → →

: → →

Note that the first argument is ornamented to itself, or put differently, it has been ornamented by the
identity ornament idO (Definition 4.9, p.20).

Each of these ornaments come with a forgetful map:

length (as :List A) : Nat

length nil 7→ 0

length (consa as) 7→ suc(lengthas)

isJust (m :Maybe A) : Bool

isJust nothing 7→ false

isJust (justa) 7→ true
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As we shall see in Section 4.3, the forgetful maps can be automatically derived from the ornament
definition.

Using these forgetful maps we deduce a relation, at the operational level, between −<− and lookup.
This relation is uniquely determined by the ornamentation of the individual datatypes. This coherence
property is expressed as follows

(n :Nat)(xs :List A)→ isJust(lookupn xs) = n< lengthxs

or, equivalently, using a commuting diagram:

Nat×List A Maybe A

Nat×Nat Bool−<−

lookup

id× length isJust

2.1 Remark (Vocabulary). We call the function we start with the base function (here, −<−), its type be-
ing the base type (here, Nat→Nat→Bool). The richer function type built by ornamenting the individual
pieces is called the functional ornament1 of the base type (here, Nat→ List A→Maybe A). A function
inhabiting this type is called a lifting (here, lookup). A lifting is said to be coherent if it satisfies the
coherence property.

♦

2.2 Remark (Coherence and functional ornament). It is crucial to understand that the coherence of a
lifting is relative to a given functional ornament: the same base function ornamented differently would
give rise to a different coherence property.

For example, the base type Nat→Nat→Nat can be functionally ornamented to

Nat→List A→List A

for which drop is a coherent solution with respect to −−−. However, it can also be functionally orna-
mented to

List A→List A→List A

for which −++− is a coherent solution with respect to −+−. Nonetheless, the two solutions are
exclusive: drop is not coherent with respect to −+−, nor is −++− coherent with respect to −−−.

♦

We now have a better grasp of the relation between the base function and its lifting. However, lookup

remains to be implemented while making sure that it satisfies the coherence property. Traditionally, one
would stop here: we would implement lookup and prove the coherence as a theorem. This works rather
well in a system like Coq since it offers a powerful theorem proving environment. It does not work so
well in a system like Agda that does not offer tactics to its users, forcing them to write explicit proof
terms. It would not work at all in an ML language with GADTs, which has no notion of proof.

Historically, Coq has been engineered to specify (simply-typed) programs using (dependently-typed)
propositions (Paulin-Mohring, 1989). This paradigm started shifting with languages such as Epigram,

1 Note that a functional ornament is entirely determined by the ornamentation of its individual components, which
we shall (unambiguously) call “a functional ornament” in Section 5.2. This follows the common usage of saying
that “lists are an ornament of natural numbers”, when in fact lists are the result of interpreting an ornament of
natural numbers.
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Cayenne, or Agda: these systems offer an environment for dependently-typed programming. In this
setting, the approach that consists in writing a simply-typed programming to prove it correct after the
fact feels utterly laborious. If we have dependent types, why should we use them only for proofs, as an
afterthought? A dependently-typed programming environment lets us write a lookup function correct by
construction: by implementing a more finely indexed version of lookup, the user drives the type checker
into verifying the necessary invariants. This article is an exploration of this paradigm, in which we develop
techniques to relieve the dependently-typed programmer from the burden of proofs.

To get the computer to work for us, we would rather implement the function ilookup

ilookup (m :Nat) (vs :Vec An) : IMaybe A(m<n)
ilookup m nil 7→ nothing

ilookup 0 (consa vs) 7→ justa
ilookup (sucm) (consa vs) 7→ ilookupm vs

where IMaybe A is the option type indexed by the truth value computed by isJust. It is defined as follows

data IMaybe [A : SET](b :Bool) : SET where

IMaybe A (b= true) 3 just(a :A)
IMaybe A (b= false) 3 nothing

and it comes with a forgetful map:

forgetIMaybe (ima : IMaybe Ab) : (ma :Maybe A)× isJustma = b
forgetIMaybe (justa) 7→ (justa, refl)

forgetIMaybe nothing 7→ (nothing, refl)

2.3 Remark. We overload the constructors of Maybe and IMaybe: for a bi-directional type checker, there
is no ambiguity as constructors are checked against their type.

♦

The rationale behind ilookup is to index the types of lookup by their unornamented version. In effect,
we index the types of its arguments by the (respective) arguments m : Nat and n : Nat of −<− and we
index the type of its result by m<n. By doing so, we can make sure that the result computed by ilookup

respects the output of −<− on the unornamented indices: the result is necessarily correct, by indexing!
The type of ilookup is naturally derived from the ornamentation of −<− into lookup and is uniquely
determined by the functional ornament we start with. We shall automate its construction in Section 5.3
with the notion of patch (Definition 5.15).

2.4 Remark (Vocabulary). Expanding further our vocabulary, such a finely indexed function that is
coherent by construction is called a coherent liftings.

We had separately introduced the notion of lifting and coherence in Remark 2.1, with the idea that
a lifting is not necessarily coherent. Here, we are defining the coherent lifting as those liftings that are
coherent by construction. In fact, we shall establish in Theorem 5.19 that a lifting satisfying the coherence
condition is isomorphic to a coherent lifting. There is therefore no ambiguity in identifying both notions
of a “coherent lifting” and of a “lifting satisfying the coherence condition”.

♦

Ko and Gibbons (2011) use ornaments to specify the coherence requirements for functional liftings,
but we work the other way around. From ilookup, we extract the lookup function

lookup (m :Nat) (xs :List A) : Maybe A
lookup m xs 7→ π0(forgetIMaybe(ilookupm (makeVecxs)))
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and its proof of correctness

cohLookup (n :Nat) (xs :List A) : isJust(lookupn xs) = n< lengthxs
cohLookup m xs 7→ π1(forgetIMaybe(ilookupm (makeVecxs)))

where makeVec : (xs : List A)→Vec A(lengthxs) turns a list into a vector of the corresponding length.
Operationally, it is an identity. In Section 4.4, we show that it can be automatically derived from the
ornament of lists.

The construction of lookup and cohLookup feels automatic: we shall see in Section 5.4 how lookup

can automatically be obtained by patching (Definition 5.22), while cohLookup is merely an instance of a
generic coherence result (Definition 5.23).

2.5 Remark (ilookup vs. vlookup). The function ilookup is very similar to the more familiar vlookup

function:
vlookup (m :Finn) (vs :Vec An) : A
vlookup f0 (consa xs) 7→ a
vlookup (fsucn) (consa xs) 7→ vlookupn xs

These two definitions are actually equivalent, thanks to the isomorphism

(m :Nat)→ IMaybe A(m<n) ∼= Finn→A

where we silently lift the boolean predicate m<n at the type-level, as is common practice in SSRE-
FLECT (Gonthier et al., 2008) for instance.

Intuitively, we can move the constraint “m<n” from the result – where we return an object of type
IMaybe A(m<n) – to the premise – where we expect an object of type Finn. Indeed, we can think of the
type Finn as the combination of a number m :Nat together with a proof that m<n.

♦

With this example, we have manually unfolded the key steps of the construction of a lifting of −<−.
Let us recapitulate each steps:

• Start with a base function, here −<− :Nat→Nat→Bool;
• Ornament its inductive components as desired, here Nat to List A and Bool to Maybe A in order to

describe the lifting of interest, here lookup :Nat→List A→Maybe A satisfying

(n :Nat)(xs :List A)→ isJust(lookupn xs) = n< lengthxs

• Implement a carefully indexed version of the lifting, here

ilookup :(m :Nat)(vs :Vec An)→ IMaybe A(m<n)

• Derive the lifting, here lookup, and its coherence proof, without writing a proof!

Besides, ilookup is a useful addition to our library: it corresponds to the familiar vector lookup function, a
function that one would have implemented anyway. Thus, ilookup is not just some scaffolding necessary
to define lookup, it is a purposeful operation on its own.

This manual unfolding of the lifting is instructive: it involves many constructions on datatypes (here,
the datatypes List A and Maybe A) as well as on functions (here, the type of ilookup, the definition of
lookup and its coherence proof). Yet, it feels like a lot of these constructions could be automated. In
Section 5, we shall build the machinery to describe these transformations and obtain them within the type
theory itself.
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3 A Universe of Datatypes

In dependently-typed systems such as Coq or Agda, datatypes are an external entity: each datatype
definition extends the type theory with new introduction and elimination forms. The validity of a datatype
definition is guaranteed by a positivity-checker that is part of the meta-theory of the proof system. A
consequence is that, from within the type theory, it is not possible to create or manipulate inductive
definitions, since they belong to the meta-theory.

In previous work (Chapman et al., 2010), we have shown how to internalise inductive families into
type theory. The practical outcome of this approach is that we can manipulate datatype declarations as
first-class objects. We can program over the grammar of datatypes and, in particular, we can compute new
datatypes from old. This is particularly useful to formalise the notion of ornament entirely within type
theory. This also has a theoretical outcome: we do not need to prove meta-theoretical properties of our
constructions, we can work in our type theory and use its logic as a formal system.

3.1 Remark (Theory vs. meta-theory). The constructions described in this article are also applicable in
a setting where datatype definitions are not internalised: all our constructions could be justified at the
meta-level and then be syntactically presented in a language, such as, say, Agda, Coq, or an ML with
GADTs. Working with an internalised presentation, we can simply avoid these two levels of logic and
work in the logic provided by type theory.

Our requirements on the ambient type theory are boxed in a TYPE THEORY frame (e.g., Fig. 2,
p.10), whilst constructions within that type theory are boxed in a DEFINITION frame (e.g., Fig. 3, p.17).
Because our work is grounded in an intensional reading of extensional isomorphisms, we box the original,
extensional results in META-THEOREM frames (e.g., Equation 4.20, p.24). The proof of these results are
absent from our (intensional) Agda model. Examples illustrating the various concepts are left unboxed.

♦

3.1 The type theory

Following our previous work, our requirements on the type theory are minimal: we will need Σ-types, Π-
types, the unit set 1, and at least two universes, SET and SET1. Σ-types are denoted (a :A)×B, introduced
by pairs (x,y) and eliminated by first and second projections, respectively π0 and π1. Π-types are denoted
(a:A)→B, introduced by λx.b and eliminated by function application. The unit set is (uniquely) inhabited
by ∗. For convenience, we require the η-laws for the unit set, Σ-types (i.e. surjective pairing), and Π-types
to hold definitionally. When x is not free in B, we use the following abbreviations:

(x :A)→B, A→B

(x :A)×B, A×B

Hence obtaining the (non dependent) implication and conjunction from the dependent quantifiers.
For convenience, we ask for our type theory to support enumerations of tags. We shall not dwell on their

type theoretic definition, which can be found elsewhere (Dagand, 2013). We declare a (finite) enumeration
of tags ’a, ’b, and ’c by writing {’a ’b ’c}. Similarly, we define functions from such a collection by
exhaustively enumerating the returned values, using the notation

{’a 7→ ea, ’b 7→ eb, ’c 7→ ec}

When the cases are vertically aligned, we shall skip the separating commas.
We also need a pre-existing notion of propositional equality, denoted − = −. We shall assume that

it is reflexive, as witnessed by refl, and substitutive. Because we perform numerous pattern-matches on
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data IDesc [I : SET] : SET1 where
IDesc I 3 var(i : I)

| 1
| Π(S : SET) (T :S→ IDesc I)
| Σ(S : SET) (T :S→ IDesc I)

J(D : IDesc I)K (X : I→SET) : SET

Jvar iK X 7→ X i
J1K X 7→ 1
JΠS T K X 7→ (s :S)→JT sKX
JΣS T K X 7→ (s :S)×JT sKX

TYPE THEORY

Fig. 2: Universe of inductive families

indexed datatypes, we also require our equality to satisfy the K rule (McBride, 1999), i.e. refl is the
unique inhabitants of a propositional equality.

3.2 Universe of descriptions

We internalise inductive families by a universe construction. The role of this universe is to describe
signature functors over SET indexed by I, i.e. functors from SET I to SET I . However, up to some currying-
uncurrying, this type is subject to the isomorphism

SET I→SET I , (I→SET)→(I→SET)

∼= I→(I→SET)→SET

that lets us focus on describing functors from SETI→SET, with the I-indexing being pulled away in the
exponential. Following this remark, we focus first on describing signature functors of type SET I→SET

(Definition 3.2). Then, to capture signature functors between slices of SET, we simply introduce an
exponential (Definition 3.3), a construction akin to the Reader monad.

3.2 Definition (Universe of descriptions 2 ). The universe of descriptions is defined in Fig. 2. The meaning
of codes – the inhabitants of IDesc – is given by their interpretation in SET:

• Σ codes Σ-types – to build sums-of-products;
• Π codes Π-types – to capture higher-order arguments;
• 1 codes the unit type – to terminate codes;
• var codes the recursive arguments of inductive definitions, taken at an index i.

O

3.3 Definition (Descriptions 2 ). We obtain the universe of descriptions func by simply pulling the I-index
to the front. The interpretation J− K extends pointwise to func:

func (I : SET) : SET1

func I 7→ I→ IDesc I
J(D : func I)K (X : I→SET) : I→SET

JDK X 7→ λi.JD iK X

TYPE THEORY

2 MODEL: IDesc.IDesc

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.IDesc.html
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Because it describes functors, this universe offers a generic map operator:

J(D : func I)K→ :( f :∀ i.X i→Y i)(xs :JDKX i)→JDKY i

TYPE THEORY

Inhabitants of the func type are called descriptions.
O

3.4 Remark (Overloaded notation). We overload the symbol J− K to denote both the interpretation of a
description code to a functor from SET I to SET (Definition 3.2), and the interpretation of a description to
an endofunctor from SET I to SET I (Definition 3.3). Indeed, the latter is merely of pointwise lifting of the
former.

♦

Descriptions, by interpreting to strictly positive functors on slices of SET, admit a least fixpoint3

construction:

data µ [D : func I](i : I) : SET where

µ D i 3 in(xs :JDK (µ D) i)

TYPE THEORY

The inductive types thus formed are eliminated by a generic elimination principle4:

induction :∀P :∀ i : I.µ D i→SET.

(α :(i : I)(xs :JDK (µ D) i)→�D P xs→P (inxs))
(x : µ D i)→P x

TYPE THEORY

that corresponds to transfinite induction over tree-like structures. A formal description of induction can
be found elsewhere (Dagand, 2013). Intuitively, �D P xs asserts that all sub-trees of xs satisfy P: this
captures precisely the inductive hypothesis. The argument α therefore corresponds to the inductive step:
given that the induction hypothesis holds for sub-elements of xs, we must prove that P holds for the whole.
In the categorical literature (Hermida & Jacobs, 1998; Fumex, 2012), �D is called the canonical lifting5

of D.
Well-founded recursive definitions by pattern-matching can be expressed in terms of the induction

principle (McBride, 2002). For conciseness, we adopt a pattern-matching style when the recursive pattern
is unsurprising, with the confidence that it can be expressed in terms of to induction.

3 MODEL: IDesc.IDesc.InitialAlgebra
4 MODEL: IDesc.IDesc.Induction
5 MODEL: IDesc.IDesc.Lifting

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.IDesc.InitialAlgebra.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.IDesc.Induction.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.IDesc.Lifting.html
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3.3 Inductive definitions

Whilst we could code our inductive families directly in this universe, let us introduce an informal notation
to declare datatypes. Our purpose here is to relate the reader’s intuition for inductive definitions with our
encodings. By relying on a more intuitive notation, we wish to make our examples more palatable. Our
notation is strongly inspired by Agda’s datatype declarations.

As witnessed by the Agda model, all the inductive definitions given in this article can be translated
into descriptions. For a datatype T , we write T -func the code it elaborates to. Similarly, we call T -elim

the elimination principle of T , and T -case the case analysis over T . These operations can be reduced
generically derived from induction (McBride et al., 2004; Dagand & McBride, 2013b).

We also write datatype constructors (in expressions) and constructor patterns (in pattern-matching
clauses) using the high-level notation. In fact, they correspond to (low-level) terms built from the generic
in constructor and a tuple of arguments. This elaboration mechanism is described elsewhere (Dagand,
2013).

3.5 Example. For Peano numbers (i.e. natural numbers Nat), these induction principles amount to – after
suitable currying and simplification – the propositions:

Nat-elim :∀P :Nat→SET.P 0→((m :Nat)→P m→P (sucm))→(n :Nat)→P n

Nat-case :∀P :Nat→SET.P 0→((m :Nat)→P (sucm))→(n :Nat)→P n

4

A formal presentation of the elaboration of inductive definitions to code will be found elsewhere
(Dagand & McBride, 2013b). However, it is intuitive enough to be understood with a few examples.
Three key ideas are at play:

• Constructors are presented as sums of products, à la ML (Example 3.6);
• Indices can be constrained by equality, à la Agda (Example 3.7);
• Indices can be matched upon (Examples 3.8).

3.6 Example (Sums of products, following the ML tradition). We name the datatype and then comes a
choice of constructors. Each constructor is then defined by a Σ-telescope of arguments. For example, the
list datatype6 is defined by

data List [A : SET] : SET where

List A 3 nil

| cons(a :A)(as :List A)

 

List-func (A : SET) : func1

List-func A 7→ λ∗.Σ
{

’nil

’cons

}{
’nil 7→1
’cons 7→ΣAλ− .var∗

}

6 MODEL: IDesc.Examples.List

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.List.html
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Ordinals7 also follow this pattern:

data Ord : SET where

Ord 3 0

| suc(o :Ord)

| lim(l :Nat→Ord)

 

Ord-func : func1

Ord-func 7→ λ∗.Σ


’0
’suc

’lim




’0 7→1
’suc 7→ var∗
’lim 7→ΠNatλ− .var∗


Note the use of the higher-order Π code to express the limit ordinal.
The datatypes Bool – the Booleans8 – and Nat – the natural numbers9 – fall in this category too. They

elaborate to descriptions indexed by 1, respectively Bool-func and Nat-func, following a similar sums-
of-products pattern. We leave it as an exercise to compute their code, guided by the following remarks:

• Nat-func is a degenerate case of List-func: it is a list taking no A-argument;

• Bool-func is a degenerate case of Nat-func: it offers two constructors, but no recursive argument.

4

3.7 Example (Indexing, following the Agda convention). Indices can be constrained to some particular
value. For example, vectors can be defined by constraining the index to be 0 in the nil case and sucn′ for
some n′ :Nat in the cons case10:

data Vec [A : SET](n :Nat) : SET where

Vec A (n=0) 3 nil

Vec A (n=sucn′) 3 cons(n′ :Nat)(a :A)(vs :Vec An′)

 

Vec-func (A : SET) : funcNat

Vec-func A 7→ λn.Σ
{

’nil

’cons

}{
’nil 7→Σ(n = 0)λ− .1
’cons 7→ΣNatλn′.Σ(n = sucn′)λ− .ΣAλ− .varn′

}

The constraint notation (n= t) reads “for any index n, as long as n equals t”, following the Henry Ford
principle (McBride, 1999). In particular, it must not be confused with a definition pattern-matching on
the index.

7 MODEL: IDesc.Examples.Ordinal
8 MODEL: IDesc.Examples.Bool
9 MODEL: IDesc.Examples.Nat

10 MODEL: IDesc.Examples.Vec

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Ordinal.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Bool.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Nat.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Vec.html
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In the same vein, finite sets11 can be defined by constraining the upper-bound n to always be strictly
positive, and indexing the argument of fsuc by the predecessor:

data Fin (n :Nat) : SET where

Fin (n=sucn′) 3 f0 (n′ :Nat)

| fsuc(n′ :Nat)(k :Finn′)

 

Fin-func : funcNat

Fin-func 7→ λn.Σ
{

’f0
’fsuc

}{
’f0 7→ΣNatλn′.Σ(n = sucn′)λ− .1
’fsuc 7→ΣNatλn′.Σ(n = sucn′)λ− .varn′

}
4

Note that elaboration captures the constraints on indices by using propositional equality. In the case of
Vec, we first abstract over the index n, introduce the choice of constructors with the first Σ and then, once
the constructors have been chosen, we restrict n to its possible value(s): 0 in the first case and sucn′ for
some n′ in the second case. Hence the placement of the equality constraints in the elaborated code: after
the constructor is chosen, we first introduce a fresh variable and then constrain the index with it. If no
fresh variable needs to be introduced, we directly constrain the index.

3.8 Example (Computing over indices). We can also use the crucial property that a datatype definition
is, in effect, a function from its indices to a choice of datatype constructors. Our notation should reflect
this ability. For instance, inspired by Brady et al. (2003), we give an alternative presentation of vectors
that matches on the index to determine the constructor to be presented12, hence removing the need for
constraints:

data Vec [A : SET](n :Nat) : SET where

Vec A n ⇐ Nat-casen
Vec A 0 3 nil

Vec A (sucn) 3 cons(a :A)(vs :Vec An)

 

Vec-func (A : SET) : funcNat

Vec-func A n ⇐ Nat-casen
Vec-func A 0 7→ Σ{’nil}λ− .1
Vec-func A (sucn) 7→ Σ{’cons}λ− .ΣAλ− .varn

In order to be fully explicit about computations, we use the “by” (⇐ ) gadget, which lets us appeal to
any elimination principle. For simplicity, we shall use a pattern-matching style when the recursion pattern
is unremarkable.

11 MODEL: IDesc.Examples.Fin
12 MODEL: IDesc.Examples.Vec

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Fin.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Vec.html
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Using pattern-matching, we define the computational counterpart of finite sets by matching on n13,
offering no constructor in the 0 case, and the two expected constructors in the sucn case:

data Fin (n :Nat) : SET where

Fin 0 3
Fin (sucn) 3 f0

| fsuc(k :Finn)

 

Fin-func : funcNat

Fin-func 0 7→ Σ0 0-elim

Fin-func (sucn) 7→ Σ

{
’f0
’fsuc

}{
’f0 7→1
’fsuc 7→ varn

}
Note the pattern used here to provide no constructor when the index is 0: we ask for a witness of the

empty set, effectively preventing any constructor to be introduced.
4

3.9 Remark (Forcing and detagging (Brady et al., 2003)). This technique of extracting information
by case analysis on the indices applies to descriptions exactly where Brady’s forcing and detagging
optimisations apply in compilation. They eliminate just those constructors, indices and constraints which
are redundant even in open computation.

Detagging amounts to restricting the choice of constructors by matching on the index. For detagging to
apply, constructors must be in injective correspondence with the indices. Our presentation of vectors
above is obtained by detagging. By noticing whether the index is 0 or suc, we deduce the vector’s
constructor.

Forcing amounts to computing the argument x :X of a constructor from its index i :I. Hence, for forcing
to apply, we must have a function f – ideally, the identity – from I to X such that f i 7→ x. Our alternative
presentation of Fin above is obtained by forcing: instead of storing an index n′, we pattern-match on the
index n and directly use its predecessor in the recursive argument.

♦

This last definition style departs radically from the one adopted by Coq, Agda, or GADTs. While it
is possible to encode these definitions in Coq and Agda (through a large elimination), we have to step
outside the realm of inductive definitions. Doing so, we lose access to the system’s machinery for handling
inductive reasoning. For instance, one would have to manually provide an elimination principle for the
resulting object.

It is crucial to understand that this notation is but reflecting the actual semantics of inductive families
as functors of type I→(I→SET)→SET. By using the function space I→− to its full potential, we
can compute over indices, not merely constrain them. With our syntax, we give the user the ability to
write these functions: the reader should now understand a datatype definition as a special kind of function
definition, taking indices as arguments, potentially computing over them, and eventually emitting a choice
of constructors.

The original definition of ornaments was based on a universe following the Agda convention, which
could only capture the indexing disciplines through equality constraints. Our ability to compute over

13 MODEL: IDesc.Examples.Fin

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Fin.html
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indices has far-reaching consequences on ornaments. First, it enables the definition of a novel deletion or-
nament (Section 4), which uses the indexing information to delete redundant arguments in an ornamented
datatype. Second, it enables a better structured and, consequently, more space-efficient definition of the
algebraic ornament by the ornamental algebra (Section 4.5).

3.10 Example. We can sensibly mix these definition styles. An example that benefits from this approach
is the presentation of minimal logic14 – i.e., from the other side of Curry-Howard, the simply-typed
lambda calculus (Benton et al., 2012) – given as an inductively-defined inference system. We express the
judgement Γ`T through an inductive family indexed by a context Γ of typed variables and a type T :

data (Γ :Context)` (T :Type) : SET where

Γ` T 3 var(v :T ∈Γ)

| app(S :Type)( f :Γ`S⇒T )(s :Γ`S)
Γ` unit 3 ∗
Γ`S⇒T 3 lam(b :Γ ;S`T )

where, for simplicity, we have restricted the language of types to the unit and the exponential:

data Type : SET where

Type 3 unit

| (S :Type)⇒(T :Type)

data Context : SET where

Context 3 ε

| (Γ :Context) ;(T :Type)

and for which we can define (inductively, in fact) a predicate T ∈Γ that indexes a variable of type T in
context Γ.

Crucially, the variable and application rules take the index as is, without constraint or computation.
The remaining rules depends on the index: if it is an exponential, we give the abstraction rule; if it is the
unit type, we give the (only) inhabitant of that type.

4

3.11 Remark (Constraints and equality). We have been careful in using equality to introduce constraints
here: our definition of datatypes is absolutely agnostic in the notion of propositional equality offered
by the underlying type theory. For instance, our universe of inductive families cannot be used to define
equality through the identity type: the identity type would only expose the underlying notion of equality
to the user.

This is unlike systems such as Coq or Agda, where propositional equality is introduced by the identity
type

data Id [a1 :A](a2 :A) : SET where

Id a1 (a2=a1) 3 refl

whose elimination principle gives the J-rule (Hofmann & Streicher, 1994).
In our system, this definition15 would elaborate to a description packaging the propositional equality:

Id-func (a1 :A) : funcA
Id-func a1 7→ λa2.Σ{’refl}{Σ(a2 = a1)λ− .1}

♦

14 MODEL: IDesc.Examples.STLC
15 MODEL: IDesc.Examples.Id

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.STLC.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/IDesc.Examples.Id.html
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dataOrn (D : IDescK)[u : I→K] : SET1 where
– Extend with S:

Orn D u 3 insert(S : SET)(D+ :S→OrnD u)
– Refine index:

Orn (vark) u 3 var(i :u−1 k)
– Copy the original:

Orn 1 u 3 1
Orn (ΠS T )u 3 Π(T+ :(s :S)→Orn(T s)u)
Orn (ΣS T ) u 3 Σ(T+ :(s :S)→Orn(T s)u)

– Delete S:
| delete(s :S)(T+ :Orn(T s)u)

J(O :OrnD u)Korn : IDesc I
JinsertS D+Korn 7→ ΣSλs.JD+ sKorn
Jvar(inv i)Korn 7→ var i
J1Korn 7→ 1
JΠT+Korn 7→ ΠSλs.JT+ sKorn
JΣT+Korn 7→ ΣSλs.JT+ sKorn
Jdeletes T+Korn 7→ JT+Korn

DEFINITION

Fig. 3: Universe of ornaments

4 A Universe of Ornaments

Originally, McBride (2013) presented the notion of ornament for a universe where the indexing discipline
could only be enforced by equality constraints. As a result, the deletion ornament was not expressible in
that setting. We shall now adapt the original definition to our system.

4.1 Definition (Universe of ornaments16). The grammar of ornaments (Fig. 3) is similar to the original
one. It is defined over a base datatype D indexed by K and ornaments it to a datatype indexed by I. The
(forgetful) function u : I→K specifies a refinement of the K-indices into I-indices. We can copy the base
datatype (with the codes 1, Π, and Σ), extend it by inserting sets (with the code insert), and refine the
indexing subject to the relation imposed by u (with the code var). Also, following Brady’s insight that
inductive families need not store their indices (Brady et al., 2003), we can delete parts of the datatype
definition as long as we can provide a witness. This witness will typically be provided by the index, here
in the context.

The extension of ornaments computes the description of the extended datatype. This amounts to travers-
ing the ornament code, packing the freshly insert-ed data into Σ codes. In the delete case, no Σ code is
generated: we use the witness to compute the extension of the rest of the ornament. The Π and Σ ornament
codes simply duplicate the underlying datatype definition: we retrieve the set S from the index ornament
D (which is equal to ΣS T for a Σ ornament, and to ΠS T for a Π ornament).

O

4.2 Remark (Inverse image17). The inverse of a function f is defined by the following inductive type

data [ f :A→B]−1 (b :B) : SET where

f −1 (b= f a) 3 inv(a :A)

DEFINITION

16 MODEL: Orn.Ornament
17 MODEL: Logic.Logic

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Logic.Logic.html
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Equivalently, it can be defined with a Σ-type:

( f :A→B)−1 (b :B) : SET

f −1 b 7→ (a :A)× f a = b

♦

4.3 Definition (Ornament18). An ornament is defined upon a base datatype – specified by a description
D : funcK – and a refined set of indices – specified by a function u : I→K. The ornament of D is an
I-family of ornament codes for each D (u i), with i : I:

orn (D : funcK) (u : I→K) : SET1

orn D u 7→ (i : I)→Orn(D (u i))u
J(o :ornD u)Korn : func I
JoKorn 7→ λi.Jo iKorn

DEFINITION

In effect, ornamenting a description func consists merely in lifting the ornamentation of IDesc codes to
a family indexed by I.

O

4.4 Remark (Overloaded notation). We overload the symbol J− Korn to denote both the interpretation
of an ornament code to a description code (Definition 4.1), and the interpretation of an ornament to a
description (Definition 4.3). As for descriptions (Remark 3.4), the latter is merely of pointwise lifting of
the former.

♦

4.1 Notation

As for inductive definitions, we adopt an informal notation to succinctly define ornaments. The idea
is to simply mirror our data definition, adding from which datatype the ornament builds upon. When
specifying a constructor, we can then extend it with new information – using [x:S] – or delete an argument
originally named x by providing a witness – using [x , s]. We require the order of constructors to be
preserved across ornamentation, as their name might change from the original to the ornamented version.

This high-level notation enables us to succinctly specify ornaments. It provides an abstraction over
the code of ornament, in the same manner that inductive definitions let us abstract over the code of
description (Section 3.3). From the definition of an ornamented type T , we conventionally call T -Orn its
ornament code. A formal description of the translation is beyond the scope of this article. Nonetheless, a
few examples are enough to illustrate our notation and shall help us build some intuition for ornaments.

In an effort to reduce the syntactic noise, our notation for ornaments does not specify the forgetful
function relating the indices of the ornamented type to its base type. For the examples given in this
article, these functions can be inferred from the context. If in doubt, the reader should consult the
corresponding definitions in the Agda model. In an actual implementation, the user would have to provide
this information.

18 MODEL: Orn.Ornament

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.html
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4.5 Example (Ornament: from Booleans to the option type19). We obtain the option type from the
Booleans by inserting an extra a :A in the true case:

data Maybe [A : SET] from Bool where

Maybe A 3 just [a :A]
| nothing

 

Maybe-Orn (A : SET) : ornBool-func id

Maybe-Orn A 7→ λ∗. insert

{
’just

’nothing

}{
’just 7→delete ’true (insertAλ− .1)
’nothing 7→delete ’false 1

}
We leave it to the reader to verify that the interpretation of this ornament (by J− Korn) followed by

the interpretation of the resulting description (by J− K) yields the signature functor of the option type
X 7→ 1+A:

JJMaybe-OrnAKornKX ∼= 1+A

4

4.6 Remark (Notation). To reduce the notational burden, we overload the interpretation of ornaments
J−Korn to denote both the description and the interpretation of that description. For instance, we write the
above isomorphism as follows:

JMaybe-OrnAKorn X ∼= 1+A

♦

4.7 Example (Ornamenting natural numbers to lists20). We obtain lists from natural numbers with the
following ornament:

data List [A : SET] from Nat where

List A 3 nil

| cons [a :A](as :List A)

 

List-Orn (A : SET) : ornNat-func id

List-Orn A 7→ λ∗. insert

{
’nil

’cons

}{
’nil 7→delete ’0 1
’cons 7→delete ’suc (insertAλ− .var(inv∗))

}
Unfolding the interpretations, we check that we obtain the signature functor of lists X 7→ 1+A×X :

JList-OrnAKorn X ∼= 1+A×X

4

19 MODEL: Orn.Ornament.Examples.Maybe
20 MODEL: Orn.Ornament.Examples.List

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.Maybe.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.List.html
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4.8 Example (Ornamenting natural numbers to finite sets21). We obtain finite sets by inserting a number
n′ :Nat, constraining the index n to sucn′, and – in the recursive case – indexing at n′:

data Fin (n :Nat) from Nat where

Fin n 3 f0 [n′ :Nat][q :n = sucn′]
| fsuc [n′ :Nat][q :n = sucn′](k :Finn′)

 

Fin-Orn : ornNat-func (λn.∗)

Fin-Orn 7→ λn. insert

{
’f0
’fsuc

}
’f0 7→delete ’0

(insert Natλn′. insert (n = sucn′)λ− .1)
’fsuc 7→delete ’suc

(insert Natλn′. insert (n = sucn′)λ− .var(invn′))


Again, we leave it as an exercise to unfold the interpretations of this ornament and verify that it is

indeed describing the signature of finite sets.
4

4.9 Example (Identity ornament22). In Section 2, we have introduced the identity ornament idO as the
(trivial) ornament that merely duplicates the definition of its base type. This construction is a straightfor-
ward generic program over description codes:

idO (D : IDesc I) : OrnD id

idO (var i) 7→ var(inv i)
idO 1 7→ 1
idO (ΠS T ) 7→ Πλs. idO(T s)
idO (ΣS T ) 7→ Σλs. idO(T s)

which lifts then pointwise to ornaments:

idO :(D : func I)→ornD id

4

In Section 3.3, we had to adapt the original presentation of ornaments to our universe. In the process,
we have discovered a new ornamental operation, namely the “deletion ornament”. In Section 4.2, we
explore some of the possibilities offered by having such a code in our system. However, we shall also
verify that the ornamental constructions presented in the original framework still apply: this shall be the
topic of Section 4.3 – where we recast the ornamental algebra in our setting – and Section 4.4 – where we
recast the algebraic ornament construction. Finally, we revisit the algebraic ornament by the ornamental
algebra in Section 4.5, making crucial use of the deletion ornament and of the optimisations discussed in
the following section.

21 MODEL: Orn.Ornament.Examples.Fin
22 MODEL: Orn.Ornament.Identity

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.Fin.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Identity.html
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4.2 Brady optimisations, internalised

In Example 3.8, we have seen an example of Brady’s forcing and detagging optimisations, respectively on
finite sets and vectors. We have explained how, thanks to our definition of descriptions as functions, we
could (manually) craft datatypes in this form. Instead of a presentation based on constraints, we gave an
equivalent but less redundant definition. Seen as a datatype transformation, this operation is (obviously)
structure-preserving. In fact, these transformations are an instance of ornamentation. The key ingredient
is the delete code that lets us delete parts of a definition, using a witness extracted from the index. We can
therefore craft our own Brady-optimised datatypes by ornamentation and benefit from this optimisation
as early as at type checking.

To illustrate this approach, we give an example of detagging (Example 4.10) and forcing (Exam-
ple 4.11). To focus solely on the Brady optimisations, we define these ornaments on the naive indexed
family we wish to optimise. In practice, we would compose (Dagand & McBride, 2013a) the ornament of
natural numbers (Example 1.4 (p.2) for vectors, and Example 4.8 for finite sets) with these optimisations.
The composition would directly give the optimised version of, respectively, vectors and finite sets, thus
avoiding an unnecessary duplication of isomorphic datatypes.

4.10 Example (Detagging, by ornamentation23). The definition of vectors in Example 3.7 mirrors Agda’s
convention of constraining indices with equality. Our definition of ornaments lets us define a version of
Vec that does not store its indices. Indeed, we can describe Vec by an ornament that matches the index n
to determine which constructor to offer:

data Vec’ [A : SET](n :Nat) from Vec An where

Vec’ A 0 3 nil

Vec’ A (sucn) 3 cons [n′ , n](a :A)(vs :Vec’ An)

 

Vec’-Orn (A : SET) : ornVec-func id

Vec’-Orn A 0 7→ insert{’nil}λ− .delete ’nil (deleterefl 1)
Vec’-Orn A (sucn) 7→ insert{’cons}λ− .

delete ’cons (deleten (deleterefl (Σλ− .var(invn))))

Such a definition was unavailable in the original presentation of ornaments (McBride, 2013). We have
internalised detagging: the constructors of the datatype are determined by the index.

4

4.11 Example (Forcing, by ornamentation24). The definition of finite sets given in Example 3.7 is also
subject to an optimisation: by matching the index, we can avoid the duplication of n by deleting n′ with the
matched predecessor and trivialising the proofs. Hence, Fin can be further ornamented to the optimised

23 MODEL: Orn.Ornament.Examples.Vec
24 MODEL: Orn.Ornament.Examples.Fin

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.Vec.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.Fin.html
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Fin’, which makes crucial use of deletion:

data Fin’ (n :Nat) from Finn where

Fin’ 0 3 [b :0]
Fin’ (sucn) 3 f0 [n′ , n]

| fsuc [n′ , n](k :Fin’n′)

 

Fin’-Orn : ornFin-func id

Fin’-Orn 0 7→ insert0 0-elim

Fin’-Orn (sucn) 7→ Σ

{
’f0 7→deleten (deleterefl 1)
’fsuc 7→deleten (deleterefl (var(invn)))

}
Note that when n is 0, there is in fact no constructor: we insert the empty set 0 to account for the

absence of constructor at this index.
Again, this definition was previously unavailable to us. We have internalised forcing: the content of the

constructors – here n′ – are retrieved from the index, instead of being needlessly duplicated.
4

4.12 Remark (Non-generic transformations). The above transformations are ad-hoc: we have to manually
give the ornament that performs the detagging and/or forcing. Because of the higher-order nature of our
universe of descriptions, we cannot analyse the link between the indices, and the constructor choice and
the constructor’s contents. To achieve this from within type theory, we would need a first-order language
for describing (a sufficiently expressive fragment of) the function space I→ IDesc I. This is left to future
work.

♦

4.3 Ornamental algebra

Every ornament induces an ornamental algebra (McBride, 2013): an algebra that forgets the extra infor-
mation introduced by the extensions, mapping the ornamented datatype back to its original form.

4.13 Definition (Cartesian morphism25). For an ornament O : OrnD u, there is a function – actually, a
natural transformation (Dagand & McBride, 2013a) – projecting the ornamented functor down to the
non-ornamented one (Fig. 4). This function then lifts pointwise to ornaments:

forgetNT :(o :ornD u)→JoKorn (X ◦u) i→JDKX (u i)

DEFINITION

O

25 MODEL: Orn.Ornament.CartesianMorphism

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.CartesianMorphism.html
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forgetNT (O :OrnD u) (xs :JOKorn (X ◦u)) : JDKX
forgetNT (insertS D+) (s,xs) 7→ forgetNT(D+ s) xs
forgetNT (var(inv i)) xs 7→ xs
forgetNT 1 ∗ 7→ ∗
forgetNT (ΠT+) f 7→ λs. forgetNT(T+ s) ( f s)
forgetNT (ΣT+) (s,xs) 7→

(
s, forgetNT(T+ s) xs

)
forgetNT (deletes T+) xs 7→

(
s, forgetNTT+ xs

)

DEFINITION

Fig. 4: Cartesian morphism

4.14 Definition (Ornamental algebra 26 ). Applied with µ D for X and post-composed with the initial
algebra in, this Cartesian morphism induces the ornamental algebra:

forgetAlg (o :ornD u) : JoKorn (µ D◦u) i→µ D (u i)
forgetAlg o 7→ in◦(forgetNTo)

DEFINITION

O

4.15 Definition (Forgetful map 26 ). In turn, this algebra induces a forgetful map from the ornamented
type to its original form:

forget (o :ornD u) : µ JoKorn i→µ D (u i)
forget o 7→ LforgetAlgoM

DEFINITION

where L(α :∀ i.JDK X i→X i)M :∀ i.µ D i→X i denotes the catamorphism, which can be implemented in
terms of induction (Chapman et al., 2010).

O

4.16 Example (From lists back to natural numbers27). Applied to the ornament List-Orn, the Cartesian
morphism removes the extra information added through insert, i.e. the inhabitant of A. The resulting
algebra thus takes nil to 0, and consa to suc. In turn, the forgetful map computes the length of the list. We
have (automatically) constructed the length function from Section 2.

4

26 MODEL: Orn.Ornament.Algebra
27 MODEL: Orn.Ornament.Examples.List

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Algebra.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.List.html
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4.17 Example (From the option type back to Booleans28). Applied to the ornament Maybe-Orn, the
Cartesian morphism removes the a :A we attached to the constructor true. The forgetful map corresponds
exactly to the function isJust (Section 2).

4

4.18 Example (From finite sets back to natural numbers 29 ). Applied to the ornament Fin-Orn, the
Cartesian morphism removes the equations introduced by insert and forgets the indexing discipline
enforced by the var code. The resulting forgetful map computes the cardinality – a natural number –
of a finite set. It corresponds to the following function:

forgetFin-Orn (k :Fin n) : Nat

forgetFin-Orn f0 7→ 0

forgetFin-Orn (fsuck) 7→ suc(forgetFin-Orn k)

4

4.19 Example (From optimised finite sets to naı̈ve finite sets 29 ). When an ornament relies on a delete

operation, the forgetful map has the – perhaps counter-intuitive – task to re-introduce the deleted informa-
tion into the base datatype. To do so, it simply uses the information obtained from the index to fill-in the
deleted arguments. For example, the forgetful map obtained from Fin’-Orn corresponds to the following
function:

forgetFin’-Orn (n :Nat) (k :Fin’ n) : Fin n
forgetFin’-Orn (sucn) f0 7→ f0 n refl

forgetFin’-Orn (sucn) (fsuck) 7→ fsucn refl (forgetFin’-Orn n k)
where, to be explicit about the origin of the recovered data, we pass the index n as an explicit argument.

4

4.4 Algebraic ornaments

An important class of datatypes is constructed by algebraic ornamentation of a base datatype. An alge-
braic ornament30 indexes an inductive type by the result of a catamorphism over its elements. From the
code D : funcK and an algebra α :∀k.JDK X k→X k, we define the algebraic ornament, denoted Dα , as
the signature indexed by (k :K)×X k that satisfies the following coherence property:

For all k :K and x : µ D k, we have:
µ JDαKorn (k,x) ∼= (t : µ D k)×LαM t = x (4.20)

META-THEOREM

Seen as a refinement type, this states that µ JDαKorn (k,x) is an inductive definition equivalent to the
refinement type31 {t ∈ µ D k | LαM t = x}. A categorical presentation is given by Atkey et al. (2012), who
explore the connection between refinement types and inductive families.

28 MODEL: Orn.Ornament.Examples.Maybe
29 MODEL: Orn.Ornament.Examples.Fin
30 MODEL: Orn.AlgebraicOrnament
31 Keeping with standard notations, we denote refinement types with a set comprehension. In type theory, this

amounts to a Σ-type.

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.Maybe.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Ornament.Examples.Fin.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.AlgebraicOrnament.html
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The type-theoretic construction of Dα was originally given by McBride (2013). We shall not reiterate
it here, the implementation being essentially the same.The idea is to define – by ornamentation of D – a
description whose fixpoint will satisfy the above coherence property.

4.21 Remark (Computational interpretation). Constructively, the coherence property (4.20) gives us two
(mutually inverse) functions, coherentOrn and make Dα .

The direction µ JDαKorn(k,x)→(t : µ D k)×LαM t = x relies on the generic forgetful map forgetDα to
compute the first component of the pair and gives us the following theorem32:

coherentOrn :(t+ : µ JDαKorn(k,x))→ LαM (forgetDα t+) = x

DEFINITION

This corresponds to the Recomputation theorem of McBride (2013). We shall not reprove it here, the
construction being similar.

In the other direction, the isomorphism (4.20) gives us a function of type

(t : µ D k)×LαM t = x→µ JDαKorn(k,x)

which, after simplifying the equation, gives a function that lifts a datatype to its algebraic version33, at
the index computed by the predicate:

make (D : func I)(α:∀ i.JDKX i→X i) :(t : µ D k)→µ JDαKorn(k,LαM t)

DEFINITION

This corresponds to the remember function of McBride (2013). Again, we will assume this construction
here.

♦

4.22 Example (Algebraic ornament: vectors). Ornamenting natural numbers to lists, we obtain an orna-
mental algebra: the algebra computing the length of a list. We can therefore build the algebraic ornament
of lists by the length algebra34. This corresponds exactly to the datatype of vectors (Example 3.7): the
resulting signatures are isomorphic, and both rely on constraints to enforce the indexing discipline.

Note that this operation generalises to all ornaments: any ornament induces an ornamental algebra.
Therefore, we can always build the algebraic ornament by the ornamental algebra. We shall study this
operation in more details in Section 4.5.

4

32 MODEL: Orn.AlgebraicOrnament.Coherence
33 MODEL: Orn.AlgebraicOrnament.Make
34 MODEL: Orn.AlgebraicOrnament.Examples.Vec

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.AlgebraicOrnament.Coherence.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.AlgebraicOrnament.Make.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.AlgebraicOrnament.Examples.Vec.html
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4.23 Example (Algebraic ornament: less-than-or-equal relation35). For a given natural number m : Nat,
the addition m+− :Nat→Nat is obtained by folding the algebra

plusAlg (m :Nat) (xs :JNat-funcKNat∗) : Nat

plusAlg m (’0,∗) 7→ m
plusAlg m (’suc,n) 7→ sucn

By algebraically ornamenting Nat by this algebra, we obtain the relation m≤− : Nat→SET that is
characterised by the isomorphism

m≤n ∼= (k :Nat)×m+k = n

Put explicitly, the datatype computed by the algebraic ornament corresponds to

data [m :Nat]≤(n :Nat) : SET where

m≤(n=m) 3 0

m≤(n=sucn′) 3 suc(k :m≤n′)

4

4.24 Example (Algebraic ornament: indexing by semantics36). A typical use-case of algebraic ornaments
is the implementation of semantic-preserving operations (McBride, 2013). For example, let us consider
arithmetic expressions, whose semantics is given by interpretation to Nat:

data Expr : SET where

Expr 3 const(n :Nat)

| add(d :Expr)(e :Expr)

evalAlg (es :JExpr-funcKNat∗) : Nat

evalAlg (’const,n) 7→ n
evalAlg (’add,(m,n)) 7→ m+n

Using the algebra evalAlg, we construct the algebraic ornament of Expr and obtain expressions indexed
by their semantics:

data ExprevalAlg (k :Nat) : SET where

ExprevalAlg (k=n) 3 const(n :Nat)

ExprevalAlg (k=m+n) 3 add(m n :Nat)(d :ExprevalAlg m)(e :ExprevalAlg n)

We can now enforce the preservation of semantics by typing. For example, let us optimise away all
additions of the form “0+ e”:

optimise-0+ (e :ExprevalAlg n) : ExprevalAlg n
optimise-0+ (constn) 7→ constn
optimise-0+ (add0 n d e) 7→ optimise-0+e
optimise-0+ (add(sucm)n d e) 7→ add(sucm)n d e

Because the type checker accepts our definition, we have that, by construction, this operation preserves
the semantics. We can then prune the semantics from the types using the forgetful map and retrieve the
transformation on raw syntax trees. The make function (Remark 4.21) lets us lift raw syntax trees to
semantically-indexed ones, while the coherentOrn theorem (Remark 4.21) certifies that the pruned tree
satisfies the invariant we enforced by indexing.

4

35 MODEL: Orn.AlgebraicOrnament.Examples.Leq
36 MODEL: Orn.AlgebraicOrnament.Examples.Expr

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.AlgebraicOrnament.Examples.Leq.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.AlgebraicOrnament.Examples.Expr.html
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4.5 Reornaments

In this article, we are particularly interested in a sub-class of algebraic ornaments. In Definition 4.14,
we have constructed, for an ornament o, its ornamental algebra forgetAlgo that forgets the extra in-
formation introduced by the ornament. As hinted at in Example 4.22, given an ornament o, we can
always algebraically ornament JoKorn using the ornamental algebra forgetAlgo. McBride (2013) calls
this construction the algebraic ornament by the ornamental algebra.

4.25 Remark (Notation). We write doe to denote the algebraic ornament of o by the ornamental algebra.
For brevity, we call it the reornament of o.

♦

4.26 Example (Reornament: vectors). Paraphrasing Example 4.22, we have that vectors are a reornament
of List-Orn. Explicitly, a vector is the algebraic ornament of List by the algebra computing its length, i.e.
the ornamental algebra from List to Nat.

4

4.27 Example (Reornament: indexed option type). In Example 4.5, we ornamented Booleans to the
option type. We can thus reornament the option type with its Boolean status. Unfolding the definition
of the reornament, we obtain the IMaybe A datatype that was introduced in Section 2. The function
forgetIMaybe corresponds to the left-to-right reading of the isomorphism (4.20) specialised to the Maybe

ornament.
4

Reornaments are thus straightforwardly obtained through a two steps process: first, compute the orna-
mental algebra and, second, construct the algebraic ornament by this algebra. However, such a simplistic
construction introduces a lot of spurious equality constraints and duplication of information. For instance,
using this naive definition of reornaments, a vector indexed by n is constructed as any list as long as it is
of length n.

4.28 Example (Reornamenting vectors, efficiently). Let us consider the ornament List-Orn, taking natu-
ral numbers to lists. We gave its code in Example 4.7. Here, for simplicity, we shall work on the following
variant

List-Orn (A : SET) : ornNat-func id

List-Orn A 7→ λ∗.Σ
{

’0 7→1
’suc 7→ insertAλ− .var(inv∗)

}
which does not update the constructor names, allowing us to focus on the essential transformations.

We can adopt a more fine-grained approach yielding an isomorphic but better structured datatype. In
our setting, where we can compute over the index, a finer construction of the reornament of List-Orn is
as follows:

• We retrieve the index, hence obtaining a number n :Nat;
• By inspecting the ornament List-Orn, we obtain the exact relationship between the index n and its

ornament describing lists
• If n = 0, we are in the first branch of the Σ code, and the ornamentation of n is necessarily the

empty list. The corresponding reornament can therefore delete the choice of constructor (since it is
entirely determined by the index), set it to ’0, and terminate immediately:

dList-OrnA∗e (’0,∗) delete ’0 1
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d(O :OrnD u)e (xs :JDK (µ E)) : OrnJOKorn (π0 :(i : I)×µ E (u i)→ I)
dinsertS D+e xs 7→ Σλs.dD+ se xs
dvar(inv i)e xs 7→ var(inv(i,xs))
d1e ∗ 7→ 1
dΠT+e f 7→ Πλs.dT+ se ( f s)
dΣT+e (s,xs) 7→ deletes (dT+ se xs)
ddeletes T+e (s′,xs) 7→ insert(s = s′)λ− .dT+e xs

DEFINITION

Fig. 5: Reornament

• If n = sucn′, we are in the second branch of the Σ code, and the ornament of sucn′ is a necessarily
non-empty list. Again, the corresponding reornament deletes the choice of constructor, by deducing
from the index that it must be ’cons. Since the list ornament extends natural numbers with an
argument of type A (through the insert code), we must preserve this information in the reornament
(through a Σ code). Finally, we index the recursive argument of the reornamented datatype by n′:

dList-OrnA∗e
(
’suc,n′

)
 delete ’suc (Σλa.var(inv

(
∗,n′

)
))

Altogether, we have ornamented lists by their length: when the index is 0, the ornamented list is empty;
when the index is sucn′, the ornamented list is non-empty and takes an argument indexed by n′. We have
effectively described the datatype of vectors.

4

4.29 Definition (Reornament37). A reornament (Fig. 5) is thus defined over an ornament code O :OrnDu
(for some description D : IDesc I) and an index belonging to the base datatype xs : JDK (µ D). On the 1
and Π codes, the reornament simply mirrors the underlying ornament, while peeling off the index: the
structure of the three datatypes is identical. On a var code, the reornament also duplicates the underlying
structure by pairing the index of the ornament (provided by the index i) with the recursive argument of
the base datatype (provided by the argument xs). On an insert code, the reornament preserves the extra-
information introduced by the ornament since it is absent from the index. However, on a Σ code, the
ornament is merely duplicating information already provided by xs: in this case, we delete the argument,
filling in the gap with the data provided by the index xs. On a delete code, we make sure – through an
equality constraint – that the index xs is in sync with the data deleted by the ornament.

This definition over codes then lifts pointwise to ornaments:

d(o :ornD u)e : ornJoKorn (π0 :(i : I)×µ D (u i)→ I)
doe 7→ λ(i, inxs).do ie xs

DEFINITION

O

37 MODEL: Orn.Reornament

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Reornament.html
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4.30 Example (Reornament: vectors38). Applied to the ornament List-Orn (Example 4.7), this construc-
tion gives the fully Brady-optimised – detagged and forced – version of vectors (Example 3.8). That is,
we determine which constructor of Vec is available by pattern-matching on the index. This is unlike the
naive reornament (Example 4.26), which relies on constraints to enforce the indexing discipline.

4

4.31 Example (Reornament: indexed option type39). Under this definition, the reornament of Maybe-Orn

(Example 4.5) describes the datatype

data IMaybe [A : SET](b :Bool) : SET where

IMaybe A true 3 just(a :A)
IMaybe A false 3 nothing

where, similarly, constraints are off-loaded by pattern-matching on the indices (Example 3.8). Again, this
must be compared with the definition obtained through the naive construction (Example 4.27), where we
relied on constraints.

4

Note that our ability to compute over indices is crucial for this construction to work. Also, the datatypes
we obtain are isomorphic to the datatypes one would have obtained by the algebraic ornament of the
ornamental algebra, i.e.:

For all ornament o :ornD u, we have
JdoeKorn ∼= JJoKornforgetAlgoKorn

META-THEOREM

4.32 Remark (Computational interpretation). Consequently, the coherence property of algebraic orna-
ments (Equation 4.20) is still valid. Constructively, this isomorphism gives the coherentOrn theorem40 in
one direction and the make function41 in the other.

♦

4.33 Remark (Iterating reornamentation42). Every ornament induces a reornament. A reornament is
itself an ornament: it therefore induces yet another reornament. We are naturally led to wonder if this
process ever stops, and if so when. For example, the ornament of natural numbers into lists reornaments
to vectors. Reornamenting vectors, we obtain an inductive predicate representing the length function
Length : Nat→List A→SET. Reornamenting Length leads to an object with no computational content:
all its information has been erased and is provided by the indices.

The same pattern arises in general: every chain of reornaments is bound to end with a computationally
trivial object. We deduce this from our massaged definition of reornaments (Definition 4.29). To illus-
trate our reasoning, we simultaneously iterate the reornamentation of the following (artificial) ornament

38 MODEL: Orn.Reornament.Examples.List
39 MODEL: Orn.Reornament.Examples.Maybe
40 MODEL: Orn.Reornament.Coherence
41 MODEL: Orn.Reornament.Make
42 MODEL: Orn.Reornament.Examples.Iterative

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Reornament.Examples.List.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Reornament.Examples.Maybe.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Reornament.Coherence.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Reornament.Make.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/Orn.Reornament.Examples.Iterative.html
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indexed by n :Nat

o : ornD (λn.∗)
o 7→ λn.Σλa. insertCλc.Πλb.deletetrue (var(sucn))

which ornaments the description

D : func1
D 7→ λ∗.ΣAλa.ΠBλb.ΣBoolλx.var∗

where A, B, and C are sets.
We proceed by case analysis on the ornament. On a 1, Π, and var code, the reornamentation proceeds

purely structurally, merely duplicating the ornament’s code and introducing no information (Defini-
tion 4.29, first 3 cases). The reornamentation deletes Σ codes, using the indexing information (Defini-
tion 4.29, fourth case). On a delete code, the reornament inserts an equality constraint (Definition 4.29,
sixth case), which contains no information per se: it is only enforcing the indexing discipline. Only on an
insert code does the reornament introduce new information through a Σ code (Definition 4.29, fifth case).
On our example, the first reornament is defined by

o+ : orn(JoKorn : funcNat)π0

o+ 7→ doe

and unfolds to

o+ λ(n, in(a, f )).deletea (ΣCλc.Πλb. insert(true = π0 ( f b))λ− .var(inv(sucn,π1 ( f b))))

In the subsequent iteration, these Σ codes in the reornament are in turn deleted by the re-reornament.
On our example, the second reornamentation is defined by

o++ : orn(Jo+Korn :Nat×µ D∗)π0

o++ 7→ do+e

and unfolds to

o++ λ((n, in(a, f )), in(a′,(c, f+))). insert(a′ = a)λ− .deletec (Πλb.Σλq.
var(inv((sucn,π1 ( f b)), f+ b))

where the Σ code duplicates the (computationally trivial) equation on x (true = x) that was inserted in the
previous step.

In the third iteration, there is nothing left in the code but equations and structural scaffoldings (in the
form of var, 1, and Π codes): the resulting datatype is computationally trivial and is entirely determined
by its indices. On our example, the third reornamentation is defined by

o+++ : orn(Jo++Korn : func(n :Nat)×µ D∗×µ JoKorn n)π0

o+++ 7→ do++e

and unfolds to

o+++ λ(((n, in(a, f )), in(a,(c, f+))), in(c′, f++)).

Σλq1. insert (c′ = c)λq2.Πλb. delete refl (var(inv(((sucn,π1 ( f b)), f+ b),π1 ( f++ b))))

where the Σ code duplicates the (computationally trivial) equation on a (a′ = a) that was inserted in the
previous step.
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Formally, we have that any two inhabitants of a triple reornament are provably equal:

Let o :ornD u be an ornament.
Let

1. i : I
2. ds : µ D (u i)
3. os : µ JoKorn i
4. os+ : µ JdoeKorn (i,ds)

be some indices.
For any pair

1. xs : µ JdddoeeeKorn (((i,ds),os),os+)
2. ys : µ JdddoeeeKorn (((i,ds),os),os+)

We have:

xs ∼= ys

META-THEOREM

♦

In this section, we have adapted ornaments to our universe of datatypes. In doing so, we have introduced
deletion ornaments, which rely on indexing to remove duplicated information from the datatypes. We
shall see in Section 6 how this more careful definition can be turned to our advantage when we transport
functions across ornaments.

5 A Universe of Function Types and their Ornaments

Ornaments provide us with a calculus of data-structures: from a given inductive family, we can ornament
it to as many similarly-structured datatypes. The universe of ornaments is essentially an intensional
characterisation of such structure-preserving transformation of datatype. Functional ornaments build upon
ornaments (but not exclusively, as discussed in Remark 5.2), relying on them to capture the structural ties
between the types of two functions, a base function and its lifting.

In that sense, the functional ornaments presented in this article are a generalisation of ornaments to
function types. To describe them, we first need to be able to, intensionally and in type theory, manipulate
function types. We thus define a universe of function types (Section 5.1). With it, we will be able to write
generic programs over the class of functions captured by this universe. We define a functional ornament
as a decoration over this universe (Section 5.2). The liftings implementing the functional ornament are
related to the base function by a coherence property. To minimise the theorem-proving burden induced by
coherence proofs, we expand our system with patches (Section 5.3): a patch is the type of the functions
that satisfy the coherence property by construction. Finally, we show how we can project the lifting and
its coherence certificate out of a patch (Section 5.4).

5.1 A universe of function types

5.1 Definition (Universe of types43). For clarity of exposition, we restrict our language of types to the
bare minimum: a type can either be an exponential whose domain is an inductive type, or a product whose

43 MODEL: FunOrn.Functions

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Functions.html
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first component is an inductive type, or the unit type – used as a termination marker:

data Type : SET1 where

Type 3 µ{(D : funcK) · (k :K)}→(T :Type)

| µ{(D : funcK) · (k :K)}×(T :Type)

| 1

DEFINITION

This universe codes the function space from some (maybe none) inductive types to some (maybe none)
inductive types. Concretely, the codes are interpreted as follows:

J(T :Type)KType : SET

Jµ{D · k}→T KType 7→ µ D k→JT KType
Jµ{D · k}×T KType 7→ µ D k×JT KType
J1KType 7→ 1

DEFINITION

O

5.2 Remark (Extensions). The constructions we develop next could be adapted to a more powerful uni-
verse – such as one supporting higher-order functions, non-inductive parameters, or including dependent
quantifiers. However, this would needlessly complicate our exposition.

For instance, the treatment of non-inductive parameters would lead to further, but orthogonal, ex-
tensions of the functional ornaments; namely, inserting or deleting these quantifiers during functional
ornamentation. To support higher-order functions, we would have to distinguish the variance of ornamen-
tations, a technicality that we can simply overlook in a first-order system. ♦

5.3 Example (Coding −<−44). Written in the universe of function types, the type of the comparison
function is

type< : Type

type< 7→ µ{Nat-func · ∗}→µ{Nat-func · ∗}→µ{Bool-func · ∗}×1

The implementation of −<− is essentially the same as earlier, excepted that it ought to return a pair
of a Boolean and the inhabitant of the unit type. To reduce the syntactic noise introduced by this trivial
multiplication by the unit, we assume that the type isomorphisms A×1 ∼= 1×A ∼= A are definitionally
true: we spare ourselves from writing pairs with unit, and projections out of such pairs. Again, we refer
our reader to the companion Agda code for the non-simplified terms.

44 MODEL: FunOrn.Functions.Examples.Le

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Functions.Examples.Le.html
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To be explicit about the recursion pattern of this function, we make use of Epigram’s by (⇐ ) gadget:

− < − : Jtype<KType
m < n ⇐ Nat-elimn

m < 0 7→ false

m < (sucn)⇐ Nat-casem
0 < (sucn) 7→ true

(sucm)< (sucn) 7→ m<n

That is, we first do induction on n and then, in the successor case, we proceed by case analysis over m.
4

5.4 Example (Coding −+−45). In the universe of function types, the type of addition is given by

type+ : Type

type+ 7→ µ{Nat-func · ∗}→µ{Nat-func · ∗}→µ{Nat-func · ∗}×1

Again, up to a trivial multiplication by 1, the implementation of −+− is left unchanged:

− +− : Jtype+KType
m + n ⇐ Nat-elimm

0 + n 7→ n
(sucm)+ n 7→ suc(m+n)

That is, it is defined by induction over m.
4

5.2 Functional ornament

It is now straightforward to define functional ornaments: we traverse the function type and ornament the
inductive types as we go. Note that it is always possible to leave an object non-ornamented: we ornament
by the identity (Example 4.9), which simply copies the original description.

5.5 Definition (Universe of functional ornaments 46 ). Following this intuition, we define functional
ornaments by the following grammar:

data FunOrn (T :Type) : SET1 where

FunOrn (µ{D · k}→T ) 3 ∀u : I→K.µ+{(o :ornD u) · (i :u−1 k)}→(T+ :FunOrnT )
FunOrn (µ{D · k}×T ) 3 ∀u : I→K.µ+{(o :ornD u) · (i :u−1 k)}×(T+ :FunOrnT )
FunOrn 1 3 1

DEFINITION

O

45 MODEL: FunOrn.Functions.Examples.Plus
46 MODEL: FunOrn.FunOrnament

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Functions.Examples.Plus.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.FunOrnament.html
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5.6 Definition (Lifting type 46 ). We get the type of the liftings by interpreting the ornaments as we
traverse the functional ornament:

J(T+ :FunOrn T )KFunOrn : SET

Jµ+{o · inv i}→T+KFunOrn 7→ µ JoKorn i→JT+KFunOrn

Jµ+{o · inv i}×T+KFunOrn 7→ µ JoKorn i×JT+KFunOrn

J1KFunOrn 7→ 1

DEFINITION

O

We want the ornamented function to be coherent with respect to the base function we started from: for
a function f : µ D k→µ E l, the ornamented function f+ : µ JoDKorn i→µ JoEKorn j is said to be coherent
with f if the following diagram commutes

µ JoDKorn i µ JoEKorn j

µ D (u i) µ E (v j)

forgetoD forgetoE

f

f+

or, equivalently in type theory:

(x+ : µ JoDKorn i)→ f (forgetoD x+) = forgetoE ( f+ x+)

This captures our intuition that the lifted function f+ behaves like the base function f , only that it also
carries the extra-information introduced by the ornament oD over to the ornament oE . Coherence states
that this extra-step does not interfere with its core operational behaviour, which is specified by f .

5.7 Definition (Coherence47). This definition of coherence generalises to any arity. We define it by
induction over the code of functional ornaments:

Coherence (T+ :FunOrnT ) ( f :JT KType) ( f+ :JT+KFunOrn) : SET

Coherence (µ+{o · inv i}→T+) f f+ 7→
(x+ : µ JoKorn i)→CoherenceT+ ( f (forgeto x+)) ( f+x+)

Coherence (µ+{o · inv i}×T+) (x,xs) (x+,xs+) 7→
forgeto x+ = x×CoherenceT+ xs xs+

Coherence 1 ∗ ∗ 7→1

DEFINITION

O

47 MODEL: FunOrn.FunOrnament

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.FunOrnament.html
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5.8 Example (Ornamenting type< to describe lookup48). In Section 2, we have identified the ornaments
taking the type of −<− to the type of lookup. We ornament Nat to List A (Example 4.7), and Bool to
Maybe A (Example 4.5). From there, the functional ornament describing the type of the lookup function
is as follows:

typeLookup : FunOrntype<

typeLookup 7→ µ+{idONat-func · inv∗}→µ+{List-OrnA · inv∗}→µ+{Maybe-OrnA · inv∗}×1

We leave it to the reader to verify that JtypeLookupKFunOrn unfolds to the type of the lookup function,
up to a multiplication by 1. Also, unfolding the coherence condition gives the desired property:

CoherencetypeLookup (−<−) λ f+ :JtypeLookupKFunOrn.

(n :Nat)(xs :List A)→ isJust( f+ n xs) = n< lengthxs

4

5.9 Remark. This equation is not specifying the lookup function: it is only establishing a computational
relation between −<− and a candidate lifting f+, for which lookup is a valid choice. However, one
could be interested in other functions satisfying this coherence property and they would be handled by
our system just as well: the notion of functional ornament (Definition 5.5), and its coherence property
(Definition 5.7) still apply. For example, assuming that A is a monoid, a function that sums the elements
of List A from 0 to the index n, or returns nothing if the index is out of bound is coherent with −<−.

♦

5.10 Example (Ornamenting type+ to describe −++−49). The functional ornament of type+ relies
solely on the ornamentation of Nat into List A:

type++ : FunOrntype+

type++ 7→ µ+{List-OrnA · inv∗}→µ+{List-OrnA · inv∗}→µ+{List-OrnA · inv∗}×1

Again, we check that unfolding Jtype++KFunOrn gives the type of −++− while the coherence con-
dition Coherencetype++(−+−) correctly captures our requirement that appending lists preserves their
lengths. As before, the list append function is not the only valid lifting: one could for example consider a
function that reverses the first list and appends it to the second one.

4

5.3 Patches

The coherence of the lifting f+ : JT+KFunOrn of a base function f : JT KType is therefore captured by the
coherence predicate CoherenceT+ f . To implement a lifting that is coherent, we might ask the user to
first implement the lifting f+ and then prove its coherence. However, we find this process unsatisfactory:
we fail to harness the power of dependent types when implementing f+, this weakness being then paid
off by tedious proof obligations. To overcome this limitation, we define the notion of Patch as the type of
all the functions that are coherent by construction.

48 MODEL: FunOrn.FunOrnament.Examples.Lookup
49 MODEL: FunOrn.FunOrnament.Examples.Append

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.FunOrnament.Examples.Lookup.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.FunOrnament.Examples.Append.html
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5.11 Remark. We are looking for an isomorphism here: we will define patches in such a way that they
are in bijection with the liftings satisfying a coherence property. Put otherwise, we want that:

PatchT T+ f ∼= ( f+ :JT+KFunOrn)×CoherenceT+ f f+

♦

In this article, we constructively exploit this bijection in the left-to-right direction: having implemented
a patch f++ of type PatchT T+ f , we show how we can “apply” it, and extract a lifting together with its
coherence proof.

5.12 Example (Patching −<−). Before giving the general construction of a Patch, let us first work
through our running example. After having functionally ornamented −<− with typeLookup, the lifting
function f+ and coherence property can be represented by the following commuting diagram:

Nat List A Maybe A

Nat Nat Bool×

×

id

−<−

f+

length isJust

(5.13)

In type theory, this is written as

( f+ :Nat×List A→Maybe A)×
(m :Nat)(as :List A)→ isJust( f+ m as) = m< lengthas

Applying intensional choice, this is isomorphic to

∼= (m :Nat)×(n :Nat)×(as :List A)× lengthas = n→
(ma :Maybe A)× isJustma = m<n

Now, by the characterisation of reornaments (Equation 4.20), we have that:

(as :List A)× lengthas = n ∼= Vec An and

(ma :Maybe A)× isJustma = b ∼= IMaybe Ab

Applying these isomorphisms, we obtain the following type, which we call the Patch of the functional
ornament typeLookup:

∼= (m :Nat)→(n :Nat)×(vs :Vec An)→ IMaybe A(m<n)

This last type is thus isomorphic to the pair of a lifting and its coherence proof.
4

Intuitively, the Patch construction amounts to turning the vertical arrows of the commuting diagram
(5.13) into the equivalent reornaments. In type-theoretic terms, it turns the pairs of datatypes and their
algebraically defined constraints into the equivalent reornaments. The coherence property of reornaments
(Equation 4.20) tells us that projecting the ornamented function down to its non-ornamented components
gives back the base function. By turning the projection functions into inductive datatypes, we enforce
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the coherence property directly by the index: we introduce a fresh index for the arguments (in Exam-
ple 5.12, introducing m and n) and index the return types by the result of the non-ornamented function (in
Example 5.12, indexing IMaybe A by the result m<n).

5.14 Remark (Terminology). The name of “patch” comes from the idea that the Patch type PatchT T+ f
captures all those (coherent) functions that extends the base function f . In Section 5.4, we shall see how
such a patch can be applied (Definition 5.22), i.e. we describe how a base function is patched by an
inhabitant of a Patch type to build its coherent lifting.

♦

5.15 Definition (Patch type50). We define the Patch type generically by induction over the functional
ornament. Upon an argument (i.e. a code µ+{o · inv i}→ ), we introduce a fresh index and the reornament
of o. Upon a result (i.e. a code µ+{o · inv i}× ), we ask for a reornament of o indexed by the result of the
base function.

Patch (T :Type) (T+ :FunOrnT ) ( f :JT KType) : SET

Patch (µ{D ·u i}→T ) (µ+{o · inv i}→T+) f 7→
(x : µ D (u i))→µ JdoeKorn (i,x)→PatchT T+ ( f x)

Patch (µ{D ·u i}×T ) (µ+{o · inv i}×T+) (x,xs) 7→
µ JdoeKorn (i,x)×PatchT T+ xs

Patch 1 1 ∗ 7→ 1

DEFINITION

O

5.16 Example (Patch of typeLookup51). The type of the coherent liftings of −<− by typeLookup, as
defined by the Patch of −<− by typeLookup, unfolds to

(m :Nat)(m+ : µ JdidONat-funceKorn m)→(n :Nat)(vs : µ JdList AeKorn n)→µ JdMaybe AeKorn (m<n)×1

4

5.17 Remark. µ JdidONat-funceKorn m is isomorphic to 1: all the content of the datatype has been forced
– the recursive structure of the datatype is entirely determined by its index – and detagged – the choice
of constructors is entirely determined by its index, leaving no actual data in it. Being computationally
uninteresting, we ignore this argument. On the other hand, dList Ae and dMaybe Ae are, respectively, the
previously introduced vectors (Example 4.30) and indexed option (Example 4.31) types.

♦

5.18 Example (Patch of type+52). Similarly, the Patch of −+− by type+ unfolds to the type of the
vector append function

(m :Nat)(xs : µ JdList AeKorn m)→(n :Nat)(ys : µ JdList AeKorn n)→µ JdList AeKorn (m+n)×1

50 MODEL: FunOrn.Patch
51 MODEL: FunOrn.Patch.Examples.Lookup
52 MODEL: FunOrn.Patch.Examples.Append

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Patch.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Patch.Examples.Lookup.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Patch.Examples.Append.html
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where, again, the datatype µ JdList AeKorn corresponds exactly to vectors.
4

5.19 Theorem. Following our Remark 5.11, we have that a Patch is isomorphic to the pair of a lifting
and its coherence proof:

For any function type T :Type, any functional ornament T+ : FunOrnT of T , and any base
function f :JT KType, we have:

PatchT T+ f ∼= ( f+ :JT+KFunOrn)×CoherenceT+ f f+

META-THEOREM

That is, our definition of the Patch type enforces that its inhabitants are exactly those liftings that are
coherent by construction.

Proof. For clarity, we shall only write the proof for arity one. The generalisation to multiple input and
output arities is straightforward but laboriously verbose. So, from a base function f : µ D k→µ E l, we
start with its lifting and the associated coherence property:

( f+ : µ JoDKorn i→µ JoEKorn j)×
(ds+ : µ JoDKorn i)→ forgetoE ( f+ d+) = f (forgetoD ds+)

Applying intensional choice, we obtain the following isomorphic type:

∼= (ds : µ D (u i))×(ds+ : µ JoDKorn i)× forgetoD ds+ = ds→(es+ : µ JoEKorn j)× forgetoE es+ = f ds

Then, we can simply use the characterisation of reornaments (Equation 4.20) to turn every pair (x+ :
µ JoXKorn i)× t = forgetoX x+ into the isomorphic inductive type µ JdoXeKorn t:

∼=(ds : µ D (u i))×µ JdoDeKorn ds→µ JdoEeKorn ( f ds)

which corresponds to the Patch type of this functional ornament.

5.20 Remark (Computational interpretation). Constructively, we translate the left-to-right direction of this
isomorphism into the pair of a patch function (Definition 5.22, which extracts the lifting) and a coherence

proof (Definition 5.23, which establishes that such a lifting is coherent).
♦

5.21 Remark (When to index?). While these precisely indexed functions relieve us from the burden of
theorem proving, this approach is not always applicable. For instance, if we were to implement a length-
preserving list reversal function, our patching machinery would ask us to implement vrev:

vrev (xs :Vec An) : Vec An
vrev nil 7→ nil

vrev (consa vs) 7→ {(vrevvs)++(consa nil) :Vec A(1+n)}

To complete this goal calls for some proving in order to match up the types: we must appeal to the
equational theory of addition. Here, the term we put in the hole has type Vec A(n+1) while the expected
type is VecA(1+n). The commutativity of addition is beyond the grasp of most type checkers, which are
often limited to deciding definitional identities.
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In the case of vrev, unless the type checker works up to equational theories, as done in CoqMT
(Strub, 2010), the programmer is certainly better off using our machinery to generate the coherence
condition (Section 5.2), implement the lifting, and write its coherence proof manually. While the patching
machinery would still work, implementing a function realising the Patch specification would require
some (cumbersome) rewritings of the types, thus littering the program with proofs.

This example gives a hint as to what can be seen as a “good” coherence property: because we want the
type checker to do all the proving, the equations we rely on at the type level have to be definitionally true,
either because our logic decides a rich definitional equality, or because we rely on operations that satisfy
these identities by definition.

♦

5.4 Patching and coherence

At this stage, we can implement the ilookup function exactly as we did in Section 2. From there, we now
want to obtain the lookup function and its coherence certificate. More generally, having implemented
a function satisfying the Patch type, we want to extract the lifting and its coherence proof. Perhaps
not surprisingly, we obtain this construction by looking at the meta-theorem of the previous section
(Theorem 5.19) through our constructive glasses: indeed, since the Patch type is isomorphic to the
class of liftings satisfying the coherence property, we effectively get a function taking every Patch to
a lifting (Definition 5.22) and its coherence proof (Definition 5.23). More precisely, we obtain the lifting
by generalising the reornament-induced forget functions to functional ornaments while we obtain the
coherence proof by generalising the reornament-induced coherentOrn theorem.

5.22 Definition (Patching53). We call patching the action of projecting the coherent lifting from a Patch

function. Again, it is defined by induction over the functional ornament. When ornamented arguments are
introduced (i.e. with the code µ+{o · inv i}→ ), we simply patch the body of the function. This is possible
because from x+ : µ JoDKorn, we can forget the ornament to compute f (forgetoD x+), and we can also
make the reornament to compute f++ (make doe x+). When an ornamented result is to be returned (i.e.
with the code µ+{o · inv i}× ), we simply forget the reornamentation computed by the coherent lifting:

patch (T+ :FunOrnT ) ( f :JT KType) ( f++ :PatchT T+ f ) : JT+KFunOrn

patch (µ+{o · inv i}→T+) f f++ 7→
λx+.patch T+ ( f (forgeto x+))

( f++ (forgeto x+) (make doe x+))
patch (µ+{o · inv i}×T+) (x,xs) (x++,xs++) 7→

(forgetdoe x++,patchT+ xs xs++)

patch 1 ∗ ∗ 7→ ∗

DEFINITION

O

5.23 Definition (Coherence of a patch54). Extracting the coherence proof follows a similar pattern. We
introduce arguments as we go, just as we did with patch. When we reach a result, we have to prove the

53 MODEL: FunOrn.Patch.Apply
54 MODEL: FunOrn.Patch.Coherence

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Patch.Apply.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Patch.Coherence.html
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coherence of the result returned by the patched function, which is a straightforward application of the
coherentOrn theorem:

coherence (T+ :FunOrnT ) ( f :JT KType) ( f++ :PatchT T+ f ) : CoherenceT+ f (patchT+ f f++)

coherence (µ+{o · inv i}→T+) f f++ 7→
λx+.coherence T+ ( f (forgeto x+))

( f++ (forgeto x+) (make doe x+))
coherence (µ+{o · inv i}×T+) (x,xs) (x+,xs++) 7→

(coherentOrnx+,coherenceT+ xs xs++)

coherence 1 ∗ ∗ 7→ ∗

DEFINITION

O

5.24 Example (Obtaining lookup and its coherence, for free55). This last step is a mere application of
the patch and coherence functions. Hence, we define lookup as follows:

lookup : JtypeLookupKFunOrn

lookup 7→ patchtypeLookup (−<−) ilookup

And we get its coherence proof, here spelled in full (up to a multiplication by 1):

cohLookup (n :Nat) (xs :List A) : isJust(lookupn xs) = n< lengthxs
cohLookup n xs 7→ coherencetypeLookup (−<−) ilookup n xs

4

5.25 Remark (Code readability). The lookup function thus defined is rather daunting, especially for a
potential user of that piece of code. However, we must bear in mind that lookup is in fact entirely specified
by ilookup: there is no point in inspecting the definition of lookup. In a programming environment, we
could imagine some syntactic sugar akin to our notation for ornaments. For example, we would state that
lookup is a functional ornamentation of −<−. We would be lead to – transparently – implement ilookup

in lieu of lookup.
♦

5.26 Example (Obtaining −++− and its coherence, for free56). Assuming that we have implemented
the coherent lifting vappend, we obtain concatenation of lists and its coherence proof by simply running
our generic machinery:

++ : Jtype++KFunOrn

++ 7→ patchtype++(−+−)vappend

coh++(xs :List A) (ys :List A) : length(xs++ys) = (lengthxs)+(lengthys)
coh++ xs ys 7→ coherencetype++(−+−)vappend xs ys

4

55 MODEL: FunOrn.Lift.Examples.Lookup
56 MODEL: FunOrn.Lift.Examples.Append

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Lookup.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Append.html
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Looking back at the pedestrian construction of Section 2, we can measure the progress we have made.
In the pedestrian approach, we had to (manually) index our datatypes (by defining Vec and IMaybe,
and their projections back to, respectively, the list and option types), index the type signature of lookup

(obtaining the type of ilookup), project lookup out of ilookup, and write its coherence proof (defining
cohLookup from ilookup and the projection functions).

Functional ornaments let us focus on ornamenting the individual datatypes (Example 5.8). The rest
is automatically generated for us: the coherence condition is computed by the generic Coherence type
(Example 5.8), the indexed type of lookup is computed by the Patch type (Example 5.16), lookup is
obtained by applying the patch (Example 5.24), and its coherence an instance of the generic coherence

lemma (Example 5.24).
This is not just convenient automation: a functional ornament establishes a strong connection between

two functions. By pinning down this connection in this universe, we turn this knowledge into an effective
object that can be manipulated and reasoned about within type theory.

We make use of this concreteness when we construct the Patch induced by a functional ornament: this
is again a construction that is generic now, while we had to tediously (and perhaps painfully) construct it
in Section 2. Similarly, we get patching and extraction of the coherence proof for free now, while we had
to manually fiddle with several projection and injection functions.

We presented the Patch type as the type of the liftings coherent by construction. As we have seen,
its construction and further projection down to a lifting is entirely automated, hence effortless. This is a
significant step forward: we could either implement lookup and then prove it coherent, or we could go
through the trouble of manually defining carefully indexed types and write a function correct by construc-
tion. Manually crafting these finely indexed types and functions takes up time and adds complexity to a
code base. By automating these constructions, using finely indexed types is now just as economic (time-
wise and complexity-wise) as proving the coherence after the fact. From a programming perspective, the
second approach is much more appealing. In a word, we have made an appealing technique extremely
cheap!

5.27 Remark (No meta-theory). We must reiterate that none of the above constructions involve extending
the type theory: building upon our universe of datatypes, ornaments and functional ornaments are inter-
nalised as a few generic programs and inductive types. For systems such as Agda, Coq, or an ML with
GADTs, we would need to extend the language – and therefore the meta-theory – to be able to reify
inductive definitions, and provide an ornament mechanism. The fact that our constructions – such as the
patching operations (Definition 5.22 and Definition 5.23), and the liftings (introduced in the next section,
Definition 6.5, and Definition 6.17) type check in our model suggests that adding these objects at the
meta-level is consistent with a pre-existing meta-theory.

♦

5.28 Remark (Efficiency considerations). The patching framework relies crucially on the duality between
a reornament and its ornament presentation subject to a proof. While patching (Definition 5.22), we cross
this isomorphism in both directions. In effect, this involves a traversal of each of the input datatypes and
a traversal of each of the output datatypes. However, operationally, these traversal are identities: the only
purpose of these terms is at the logical level, for the type checker to fix the types.

For example, the lookup function amounts to the following term:

lookup, patchtypeLookup (−<−) ilookup

 λm :Nat.λxs :List A.π0(forgetIMaybe(ilookupm (makeVecxs)))
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− < − : Jtype<KType
m < n ⇐ Nat-elimn

m < 0 7→ false
m < (sucn)⇐ Nat-casem

0 < (sucn) 7→ true
(sucm)< (sucn) 7→ m<n

ilookup (m :Nat) (vs :VecAn) : IMaybeA(m<n)
ilookup m vs ⇐ Vector-elimvs

ilookup m nil 7→ nothing
ilookup m (consa vs)⇐ Nat-casem

ilookup 0 (consa vs) 7→ justa
ilookup (sucm) (consa vs) 7→ ilookupm vs

Fig. 6: Implementations of −<− and ilookup

In this definition, we rely on makeVec, which traverses the (input) list to return a vector indexed by the
list’s length. Operationally, this is an identity. We also rely on forgetIMaybe, which traverses the (output)
IMaybe type to project it back to a non-indexed option type. Again, operationally, this is an identity.

In future work, we would like to transform our library of smart constructors into a proper domain-
specific language (DSL). This way, implementing a coherent lifting would amount to working in a DSL
for which an optimising compiler could compute away – by partial evaluation (Brady & Hammond, 2010)
– the computationally irrelevant operations.

♦

6 Lazy Programmers, Smart Constructors

In our journey from −<− to lookup, we had to implement the ilookup function. It is instructive to put
−<− and ilookup side-by-side (Fig. 6). First, both functions follow the same recursion pattern: induction
over n/vs followed by case analysis over m. Second, the returned constructors are related through the
Maybe ornament: knowing that we have returned true or false when implementing−<−, we can deduce
which of just or nothing will be used in ilookup. Interestingly, the only unknown, hence the only necessary
input from the user, is the a in the just case: this is precisely the information that has been introduced by
the Maybe ornament.

In this section, we are going to leverage our knowledge of the definition of the base function – such as
−<− – to guide the implementation of the coherent lifting – such as ilookup: instead of re-implementing
ilookup by duplicating most of the code of −<−, the user indicates what to transport and only provides
the strictly-necessary inputs. We are primarily interested in transporting two forms of structure:

Recursion pattern: if the base function is a catamorphism LαM and the user provides us with a coherent
algebra α++ of α , we construct the coherent lifting Lα++M of LαM;

Returned constructor: if the base function returns a constructor C and the user provides us with a
coherent extension of C, we construct the coherent lifting of C.

We shall formalise what we understand by being a coherent algebra and a coherent extension below.
The key idea is to identify the strictly-necessary inputs from the user, helped in that by the ornaments. It
is then straightforward to build the lifted objects, automatically and generically.

6.1 Transporting recursion patterns

When transporting a function, we are very unlikely to change the recursion pattern of the base function.
Indeed, the very reason why we can do this transformation is that the lifting uses exactly the same
underlying structure to compute its results. Hence, most of the time, we could just ask the computer
to use the recursion pattern induced by the base function: the only task left to the user will be to give an
algebra.
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6.1 Example (Lifting a catamorphism). To understand how we transport recursion patterns, let us look
again at the coherence property of liftings, but this time specialising to a function that is a catamorphism:

µ JoDKorn i µ JoEKorn i

µ D (u i) µ E (u i)

forgetoD forgetoE

LαM

Lβ M

By the fold-fusion theorem (Bird & de Moor, 1997), it is sufficient to work on the algebras, where we
have the following diagram:

JoDKorn (µ JoEKorn) i µ JoEKorn i

JoDKorn (µ E ◦u) i JDK (µ E) (u i) µ E (u i)

JJoDKornK→ (forgetoE)

forgetNToD

forgetoE

α

β

We can therefore reduce the problem of describing the commuting square of catamorphisms (i.e. the
Patch of LαM) to the one consisting in working directly with their algebras. In effect, we are going to
characterise the algebras α++ whose catamorphism is coherent by construction (i.e. inhabits the Patch

of LαM).
4

6.2 Remark. We have established that if the square composed of the algebras commutes, then the square
composed of their catamorphisms commutes. However, the converse does not hold: having that the square
of catamorphisms commutes does not necessarily imply that the square of algebras commutes.

♦

6.3 Example (Lifting isSuc). To illustrate our approach, let us work through a concrete example: we
derive hd:ListA→MaybeA from isSuc:Nat→Bool by transporting the algebra. For the sake of argument,
we artificially define isSuc by a catamorphism:

isSuc (n :Nat) : Bool

isSuc n 7→ LisSucAlgMn where

isSucAlg (xs :JNat-funcK (λ∗.Bool)∗) : Bool

isSucAlg (’0,∗) 7→ false

isSucAlg (’suc,xs) 7→ true

Our objective is thus to define the algebra for hd, which has the following type

hdAlg :JList-func AK (λ∗.Maybe A)∗→Maybe A

such that its catamorphism is coherent. By the fold-fusion theorem, it is sufficient for hdAlg to satisfy
the following condition:

(ms :JList-func AK (λ∗.Maybe A)∗)→
isJust(hdAlg ms) = isSucAlg(forgetNT(List-OrnA) (JList-func AK→ isJust ms))
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Following the same methodology we applied to define the Patch type, we can massage the type of
hdAlg and its coherence condition to obtain an isomorphic definition enforcing the coherence by indexing.
In this case, we obtain the type

liftAlg hdAlg, ∀n.JVec-funcAK (λn′. IMaybe A(isSucn′))n→ IMaybe A(isSucn)

4

This construction generalises to any functional ornament.

6.4 Definition (Coherent algebra 57 ). We define the coherent algebras over an algebra α to be the
inhabitants of the type

liftAlg (α :∀k :K.JDK (λ− .JT KType) k→JT KType) (o :ornD u) (T+ :FunOrnT ) : SET

liftAlg α o T+ 7→ ∀(i, t) :(i : I)×µ D (u i).
JdoeKorn (λ(i, t).PatchT T+ (LαM t)) (i, t)→PatchT T+ (LαM t)

DEFINITION

O

6.5 Definition (Lifting of coherent algebra 57 ). Constructively, we get that coherent algebras induce
coherent liftings, by the catamorphism of the coherent algebra:

lift-fold (α :∀k :K.JDK (λ− .JT KType) k→JT KType)
(α++ : liftAlg α o T+) : Patch(µ{D ·u i}→T ) (µ+{o · inv i}→T+) LαM

lift-fold α α++ 7→ λx.λx++.Lα++M x++

DEFINITION

O

The treatment of induction is essentially the same, as hinted at by the fact that induction can be reduced
to a catamorphism (Hermida & Jacobs, 1998). We first define the coherent inductive step and deduce an
operation lifting induction principles:

57 MODEL: FunOrn.Lift.Fold

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Fold.html


ZU064-05-FPR paper 12 December 2013 19:58

Functional Ornaments 45

6.6 Definition (Coherent inductive step 58 ). We define the coherent inductive step over an inductive step
α to be the inhabitants of the type

liftIH (α :(k :K)(xs :JDK (µ D) k)→�D (λ− .JT KType) xs→JT KType)
(o :ornD u)(T+ :FunOrnT ) : SET

liftIH α o T+ 7→ ((i, t) :(i : I)×µ D (u i))→(xs :JdoeKorn (µ JdoeKorn) (i, t))→
�JdoeKorn (λ(i, t).PatchT T+ (inductionα t)) xs→
PatchT T+ (inductionα t)

DEFINITION

O

6.7 Definition (Lifting of inductive step 58 ). As for algebras, a coherent inductive step α++ induces a
coherent lifting, by merely applying the induction:

lift-ind (α :(k :K)(xs :JDK (µ D) k)→�D (λ− .JT KType) xs→JT KType)
(α++ : liftIH α o T+) : Patch(µ{D ·u i}→T ) (µ+{o · inv i}→T+) (inductionα)

lift-ind α α++ 7→ λx.λx++. inductionα++ x++

DEFINITION

O

6.8 Definition (Lifting of case analysis59). Lifting case analysis is trivial, since it is derivable from
induction by stripping out the induction hypotheses (McBride et al., 2004):

lift-case (α :(k :K)(xs :JDK (µ D) k)→JT KType)
(α++ : liftIH (λxs − .α xs)o T+) : Patch (µ{D ·u i}→T )

(µ+{o · inv i}→T+)

(induction(λxs − .α xs))
lift-case α α++ 7→ lift-ind(λxs − .α xs) (λxs − .α++ xs)

DEFINITION

O

6.9 Example (Transporting the recursion pattern of isSuc60). We can now apply our generic machinery
to transport isSuc to hd: using a high-level notation, we write the command of Fig. 7(a) (p.52). This
command instructs the system to generate the skeleton of the algebra, as shown in Fig. 7(b) (p.52). In the

58 MODEL: FunOrn.Lift.Induction
59 MODEL: FunOrn.Lift.Case
60 MODEL: FunOrn.Lift.Examples.Head

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Induction.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Case.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Head.html
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low-level type theory, this corresponds to the following term:

ihd (vs :Vec An) : IMaybe A(isSucn)
ihd vs 7→ lift-fold isSucAlg ihdAlg vs

where

ihdAlg (vs :JVec-funcAK (λn′. IMaybe A(isSucn′))n) : IMaybe A(isSucn)
ihdAlg (’nil,∗) 7→ {?}
ihdAlg (’cons,(a,xs)) 7→ {?}

Note that we do not need to specify the arguments over which the catamorphism is lifted in Fig. 7(a):
indeed, this information is provided by the base function. This is reflected by the elaborated code: the
arguments of lift-fold are only the algebras. The resulting catamorphism is applied to the correct variables,
by construction.

4

6.10 Remark (High-level notation). Formalising the elaboration process from the high-level notation
to the low-level type theory is beyond the scope of this article. The reader will convince herself that
the high-level notation contains all the information necessary to reconstruct a low-level term. Indeed,
when lifting a recursion pattern, the goal – a Patch type – provides all the information concerning the
functional ornament being constructed, including the algebra that is being lifted. Similarly, when lifting
a constructor, the goal – still a Patch type – carries the functional ornament as well as the constructor
being lifted. We shall use the high-level notation to succinctly describe our transformations, with the
understanding that it builds a low-level term that type checks. We come back the practicality of such a
notation in Remark 6.22.

♦

6.11 Example (Transporting the recursion pattern of −<−61). To implement ilookup, we use lift-ind to
transport the induction over n:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil {?}
ilookup m m+ (sucn) (consa vs) {?}

Followed by a lift-case to transport the case analysis over m:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil {?}
ilookup m m+ (sucn) (consa vs) lift⇐ lift-case

ilookup 0 0 0 nil {?}
ilookup (sucm) (sucm+) 0 nil {?}

The interactive nature of this construction is crucial: the user needs only to specify a lifting – symbol-
ised by the lift⇐ command – together with the action to be carried out, while the computer does all the
heavy lifting and generates the resulting patterns.

4

61 MODEL: FunOrn.Lift.Examples.Lookup

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Lookup.html
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6.12 Example (Transporting the recursion pattern of −+−62). In order to implement the concatenation
of vectors, we can also benefit from our generic machinery. We simply have to instruct the machine that
we want to lift the case analysis used in the definition of −+− and the computer comes back to us with
the following goals:

vappend : Patchtype+ type++ −+−
vappend m xs n ys lift⇐ lift-ind

vappend 0 nil n ys {?}
vappend (sucm) (consa xs)n ys {?}

4

6.2 Transporting constructors

Just as the recursive structure, the returned values frequently mirror the original definition: we are often in
a situation where the base function returns a given constructor and we would like to return its ornamented
counterpart. Informing the computer that we simply want to lift that constructor, it should fill in the parts
that are already determined and ask only for the missing information, i.e. the data newly introduced by
the ornament.

Recall that, when constructing an inhabitant of a Patch type, we are working on the reornaments of the
lifting. When returning a constructor-headed value, we are simply building an inhabitant of a reornament
(Definition 5.15, case µ+{o · inv i}× ). By definition of reornaments (Section 4.5), all the information
provided by the non-ornamented datatype – the index – is optimally used: every opportunity for deletion
has been taken. In particular, none of the data provided by index – the non-ornamented data – needs to be
duplicated within the reornamented datatype: only the extensions introduced by the ornament need to be
provided.

This suggests a decomposition of the inhabitants of reornaments in two components:

• Giving the extension of the ornament, i.e. all the extra information introduced by the ornament;
• Giving the recursive arguments – dictated by its structure – of the reornamented datatype.

6.13 Example (Inhabiting the reornament of List-Orn). Let us illustrate this decomposition on the reor-
nament of List-Orn. The reornament of List-Orn is structured as follows:

• We retrieve the index, hence obtaining a number n :Nat;
• By inspecting the ornament List-Orn, we obtain the exact information by which n is extended into

a list: if n = 0, no supplementary information is needed; if n = sucn′, we need to extend it with an
a :A. We call this the extension – denoted Extension – of List-Orn at n:

Extension(List-OrnA∗) (’0,∗) 1

Extension(List-OrnA∗)
(
’suc,n′

)
 (a :A)×1

• By inspecting the ornament List-Orn again, and provided an extension of the index n, we obtain
the recursive structure of the reornament at that index by extracting the refined indexing discipline:
if n = 0, no argument is expected; if n = sucn′, we expect the tail to be a vector of size n′. We call

62 MODEL: FunOrn.Lift.Examples.Append

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Append.html
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this the (recursive) structure – denoted Structure – of List-Orn at n:

Structure(List-OrnA∗) (’0,∗)∗ 1

Structure(List-OrnA∗)
(
’suc,n′

)
(a,∗) µ JdList-OrnAeKorn

(
∗,n′

)
Provided an extension – an inhabitant e of Extension(List-OrnA ∗) n – and its recursive arguments –

an inhabitant of Structure(List-OrnA ∗) n e, we have all the necessary data to inhabit of reornament of
List-Orn (i.e., to inhabit a vector indexed by n).

4

This decomposition generalises to any reornament. We define the extension of an ornament (Defini-
tion 6.14), and the structure of its reornament (Definition 6.15). Given an extension and its structure,
we then show how to inhabit a reornament (Definition 6.16). In what follows, we take E : func I to be a
description and o :ornE u to be an ornament of E.

6.14 Definition (Reornament extension 63 ). The extension of an ornament is given by its insert codes.
Therefore, the Extension function merely collects these insertions (the insert case). It also makes sure that
the indexing respects the previously deleted data through equations (the delete case). On a Σ case, no data
is required: the information is already available from the index. Otherwise, it proceeds purely structurally
(the var, 1, and Π cases).

Extension (O :OrnD u) (xs :JDK (µ E)) : SET

– Ask for freshly inserted data, it is the data missing from xs:
Extension (insertS D+) xs 7→ (s :S)×Extension(D+ s) xs

– Do not duplicate the original data, it is already in xs:
Extension (var(inv i)) xs 7→ 1
Extension 1 ∗ 7→ 1
Extension (ΠT+) f 7→ (s :S)→Extension(T+ s) ( f s)
Extension (ΣT+) (s,xs) 7→ Extension(T+ s) xs
– Deleted data must be consistent with the index:

Extension (deletes T+) (s′,xs) 7→ (q :s = s′)×ExtensionT+ xs

DEFINITION

Note that while we copy the Π codes as a Π-type, we are not duplicating information: the codomain
of the Π-type contains only new information, or is isomorphic to 1 (in which case, the whole Π-type is
itself isomorphic to 1).

O

6.15 Definition (Reornament structure 63 ). We capture the recursive structure of the reornament by
traversing the ornament while peeling off the index xs along the way. The crucial step is the variable case
(case var): we ask for a reornament µ JdoeKorn taken at the index specified by the ornament and the current
index xs. The other cases are only creating the necessary scaffolding to cover all the recursive arguments.

63 MODEL: FunOrn.Lift.MkReorn

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.MkReorn.html
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Structure (O :OrnD u) (xs :JDK (µ E)) (e :ExtensionO xs) : SET

– Extract the next index from the ornament and the index:
Structure (var(inv i)) xs ∗ 7→ µ JdoeKorn (i,xs)
– Duplicate (only) the recursive structure:

Structure (insertS D+) xs (s,e) 7→ Structure(D+ s) xs e
Structure 1 ∗ ∗ 7→ 1
Structure (ΠT+) f e 7→ (s :S)Structure(T+ s) ( f s) (e s)
Structure (ΣT+) (s,xs) e 7→ Structure(T+ s) xs e
Structure (deletes T+) (s,xs) (refl,e) 7→ StructureT+ xs e

DEFINITION

O

The decomposition of the reornament in terms of an extension and its recursive structure is formally
expressed by the following isomorphism:

Let D : IDesc I be a description code and let O :OrnD u be an ornament code of D.
For all xs :JDK (µ E), we have:

(e :ExtensionO xs)×StructureO xs e ∼= JJdOeKorn xsKorn (µ o)

META-THEOREM

In practice, we are interested in the left-to-right direction of the isomorphism, which allows us to
inhabit a reornament by focusing on the extension introduced by the ornament and its recursive arguments.
Constructively, this translates into the mkReorn function below.

6.16 Definition (Inhabitation of reornaments64). For a given ornament O : OrnD u and some index xs :
JDK (µ E), we can therefore combine an extension of O at xs with its recursive arguments to inhabit the
reornament of O. To do so, we proceed by case analysis over the ornament O: we find that the data
required by the reornament is either provided by the extension (case insert), or the structure (case var).
The other cases contain no data per se, only the recursive structure of the datatype.

mkReorn (O :OrnD u) (xs :JDK (µ E))
(e :ExtensionO xs) (a :StructureO xs e) :JdOe xsKorn (µ JdoeKorn)

mkReorn (insertS D+) xs (s,e) a 7→ (s,mkReorn(D+ s) e a)
mkReorn (var(inv i)) xs ∗ a 7→ a
mkReorn 1 ∗ ∗ ∗ 7→ ∗
mkReorn (ΠT+) f e a 7→ λs.mkReorn(T+ s) ( f s) (e s) (a s)
mkReorn (ΣT+) (s,xs) e a 7→ mkReorn(T+ s) xs e a
mkReorn (deletes T+) (s,xs) (refl,e)a 7→ (refl,mkReornT+ xs e a)

DEFINITION

64 MODEL: FunOrn.Lift.MkReorn

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.MkReorn.html
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O

6.17 Definition (Lifting of constructor65). This clear separation of concerns is a blessing for us: when
lifting a constructor, we only have to provide the extension and the arguments of the datatype, nothing
more. The implementation is as simple as:

lift-constructor (e :Extension(o i) xs) – coherent extension
(a :Structure(o i) xs e) – recursive arguments
(t++ :PatchT T+ t)
: Patch(µ{D ·u i}×T ) (µ+{o · inv i}×T+) (inxs, t)

lift-constructore a t++ 7→ (in(mkReorn(o i) xs e a), t++)

DEFINITION

For convenience, we extend our high-level notation with a gadget for returning a lifted constructor. We
shall therefore write

. . .
lift7→ e[a]

to denote the low-level term

lift-constructore a∗
A few examples illustrating this notation follow (Example 6.18 and Example 6.19).

O

6.18 Example (Transporting the constructors of isSuc66). Let us finish the implementation of hd from
isSuc. Our task is simply to transport the true and false constructors along the Maybe ornament. In
a high-level notation, we would write the command shown in Fig. 7(c) (p.52). The interactive system
would then respond by generating the code of Fig. 7(d) (p.52). The unit goals are trivially solved. The
only information the user has to provide is a value of type A, which is required by the just constructor.

4

6.19 Example (Transporting the constructors of−<−67). As for ilookup, we want to lift the constructors
true and false to the Maybe ornament. In a high-level notation, this would be represented as follows:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil
lift7→ nothing∗[∗]

ilookup m m+ (sucn) (consa vs) lift⇐ lift-case

ilookup 0 0 (sucn) (consa vs) lift7→ just {a :A} [∗]
ilookup (sucm) (sucm+) (sucn) (consa vs) {?}

As before, in an interactive setting, the user would instruct the machine to execute the command lift7→ and
the computer would come back with the skeleton of the expected inputs. Finishing the implementation of

65 MODEL: FunOrn.Lift.Constructor
66 MODEL: FunOrn.Lift.Examples.Head
67 MODEL: FunOrn.Lift.Examples.Lookup

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Constructor.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Head.html
http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Lookup.html
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ilookup is now a baby step away for the programmer:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil
lift7→ nothing∗[∗]

ilookup m m+ (sucn) (consa vs) lift⇐ lift-case

ilookup 0 0 (sucn) (consa vs) lift7→ justa[∗]
ilookup (sucm) (sucm+) (sucn) (consa vs) 7→ ilookupm m+ n vs

This last step is out of reach of our framework: the recursive call is justified by the first induction over
the vector vs, which gives us access to an higher-order induction hypothesis (taking natural numbers to
the IMaybe type). We have to fully apply this induction hypothesis to m and im to perform the recursive
call, an operation for which can offer no support.

4

6.20 Remark (Lifting vs. manual construction). Had we ignored the structural ties between −<− and
lookup, we would have constructed ilookup by duplicating its underlying structure:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs ⇐ Vector-elimvs

ilookup m m+ 0 nil 7→ nothing

ilookup m m+ (sucn) (consa vs)⇐ Nat-casem+

ilookup 0 0 (sucn) (consa vs) 7→ justa
ilookup (sucm) (sucm+) (sucn) (consa vs) 7→ ilookupm m+ n vs

That is, we would have duplicated the induction over the second argument (. . . ⇐ Vec-elim vs), and
the induction over the first argument (. . . ⇐ Nat-elim m). We would also have duplicated the returned
constructor (. . . 7→ nothing and . . . 7→ justa).

Ignoring the structural ties has two consequences. First, this provides less opportunities for the system
to guide the implementation of ilookup: the search space is less constrained. Second, having lost the
connection between −<− and ilookup, a modification of the former will not impact the latter. In the
course of a development, the two implementations might diverge in incompatible ways.

♦

6.21 Example (Transporting the constructors of−+−68). We can also benefit from the automatic lifting
of constructors to fill out the cons case of vector append. We instruct the system that we want to lift the
suc constructor, which results in the following goals:

vappend : Patchtype+ type++ −+−
vappend m xs n ys lift⇐ lift-ind

vappend 0 nil n ys {?}
vappend (sucm) (consa xs)n ys lift7→ cons {? :A} [ {?} ]

68 MODEL: FunOrn.Lift.Examples.Append

http://gallium.inria.fr/~pdagand/stuffs/journal-2013-patch-jfp/model/html/FunOrn.Lift.Examples.Append.html
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Concluding the implementation of vappend is then left to the programmer:

vappend : Patchtype+ type++ −+−
vappend m xs n ys lift⇐ lift-ind

vappend 0 nil n ys 7→ ys

vappend (sucm) (consa xs)n ys lift7→ cons a[vappendm xs n ys]

4

(a) Request lifting of algebra (user input):

ihd (vs :VecAn) : IMaybeA(isSucn)
ihd { lift⇐ lift-fold}

(b) Result of lifting the algebra (system output):

ihd (vs :VecAn) : IMaybeA(isSucn)

ihd
lift⇐ lift-fold where

ihdAlg (vs :JVec-funcK (λn′. IMaybeA(isSucn′))n) : IMaybeA(isSucn)
ihdAlg ’nil {?}
ihdAlg (’consa xs) {?}

(c) Request lifting of constructors (user input):

ihd (vs :VecAn) : IMaybeA(isSucn)

ihd
lift⇐ lift-fold where

ihdAlg (vs :JVec-funcK (λn′. IMaybeA(isSucn′))n) : IMaybeA(isSucn)
ihdAlg ’nil { lift7→}
ihdAlg (’consa xs) { lift7→}

(d) Result of lifting constructors (system output)

ihd (vs :VecAn) : IMaybeA(isSucn)

ihd
lift⇐ lift-fold where

ihdAlg (vs :JVecAK (λn′. IMaybeA(isSucn′))n) : IMaybeA(isSucn)

ihdAlg ’nil lift7→ nothing {? :1} [ {? :1} ]
ihdAlg (’consa xs) lift7→ just {? :A} [ {? :1} ]

(e) Type checked term (automatically generated from (d)):

ihd (vs :VecAn) : IMaybeA(isSucn)
ihd vs 7→ lift-fold isSucAlg ihdAlg where

ihdAlg (vs :JVecAK (λn′. IMaybeA(isSucn′))n) : IMaybeA(isSucn)
ihdAlg ’nil 7→ lift-constructor ’nil {? :1} {? :1} ∗
ihdAlg (’consa xs) 7→ lift-constructor(’sucn) {? :A} {? :1} ∗

Fig. 7: Guided implementation of ihd



ZU064-05-FPR paper 12 December 2013 19:58

Functional Ornaments 53

6.22 Remark (About an interactive system). To convey our message to the reader, we have used an
(informal) notation, extending the Epigram programming gadgets with lifting-specific gadgets. We have
not given much information about their implementability, or even hinted at a formal specification. It
would certainly be interesting to elaborate on such a language extension. However, as for the notation
for ornaments (Section 4.1), this notation was meant to convey high-level intuitions to the reader, and to
keep us from flooding these pages with lambda terms.

In terms of implementation, elaborating this notation (or a less ambiguous version thereof) might
reveal arduous. A more pragmatic alternative would be to implement a semi-decision procedure à la
Agsy (Lindblad & Benke, 2004) that would attempt to automatically lift a function. In this setting, the
lifting constructors we have defined in this section serve as a precise language in which to express the
lifting problem, and over which to compute its solution. They thus narrow the search-space and guide the
decision procedure.

♦

7 Related Work

Our work is an extension of the work of McBride (2013) on ornaments, originally introduced to organise
datatypes according to their common structure. This gave rise to the notion of ornamental algebras –
forgetting the extra information of an ornamented datatype – and algebraic ornaments – indexing a
datatype according to an algebra. This, in turn, induced the notion of algebraic ornament by ornamental
algebras, which is a key ingredient for our work. However, for simplicity of exposition, these ornaments
had originally been defined on a less index-aware universe of datatypes. As a consequence, computation
over indices was impossible and deletion of duplicated information was impossible. A corollary of this
was that reornaments contained a lot of duplication, hence making the lifting of values from ornamented
to reornamented datatypes extremely tedious.

Our presentation of algebraic ornament has been greatly improved by the categorical model developed
by Atkey et al. (2012): the authors gave a conceptually clear treatment of algebraic ornament in a
Lawvere fibration. At the technical level, the authors connected the definition of algebraic ornament
with truth-preserving liftings, which are also used in the construction of induction principles, and op-
reindexing, which models Σ-types in type theory. Whilst the authors did not explicitly address the issue
of transporting functions across ornaments, much of the infrastructure was implicitly there: for instance,
lifting of catamorphisms is a trivial specialisation of induction.

In their work on realizability and parametricity for Pure Type Systems, Bernardy and Lasson (2011)
have shown how to build a logic from a programming language. In such a system, terms of type theory
can be precisely segregated based on their computational and logical contribution. In particular, the idea
that natural numbers realise lists of the corresponding length appears in this system under the guise of
vectors, the reflection of the realizability predicate. The strength of the realizability interpretation is that it
is naturally defined on functions: while McBride (2013) and Atkey et al. (2012) only consider ornaments
on datatypes, Bernardy and Lasson’s work is the first, to our knowledge, to capture a general notion of
functions realising – i.e. ornamenting – other functions.

Bernardy and Moulin has further shown that this technique can be internalised in a type theory with
color (Bernardy & Guilhem, 2013), for which the logical system and the programming language are a
single entity. In this setting, the realizability predicate is specialised to an (internalised) parametricity
result. This parametricity result gives “theorems for free” (Wadler, 1989), relating functions operating on
colored types (akin to our functional ornaments) to functions operating on color-erased types (akin to our
base types). On inductive types, colors allow a user to specify restrictions of types (dually to the extension
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mechanism offered by ornaments), by filtering out some colors from a definition. This difference is mostly
methodological. Our work is focused on creating more precise datatypes from less precise ones, and
lifting functions from basic types to richer types: hence our focus on extensions. Being guided by erasure,
Bernardy and Moulin focus on extracting functions on less precise types from the more informative
ones: hence their focus on restrictions. In our setting, the erasure-based approach corresponds to the
right-to-left direction of the Patch isomorphism (Theorem 5.19). The refinement mechanism offered by
ornaments seems absent from the initial proposal of the calculus of colored constructions: this suggests
a natural generalisation of the calculus with inductive families. Our base types and functional ornaments
are however limited to a first-order, simply-typed setting, whilst the calculus of colored constructions
defines erasure for Π-types and Σ-types: it would be interesting to extend our universe of function types
and functional ornaments in that direction (following Remark 5.2).

Following the steps of Bernardy and Lasson, Ko and Gibbons (2011) adapted the realizability inter-
pretation to McBride’s universe of datatypes and explored the other direction of the Patch isomorphism
(Theorem 5.19), using reornaments to generate coherence properties: they describe how one could take
list append together with a proof that it is coherent with respect to addition and obtain the vector append
function. Their approach would shift neatly to our index-aware setting, where the treatment of reorna-
ments is streamlined by the availability of deletion.

However, we prefer to exploit the direction of the isomorphism which internalises coherence: we
would rather use the full power of dependent types to avoid explicit proof. Hence, in our framework,
we simultaneously induce list append and implicitly prove its coherence with addition just by defining
vector append. Of course, which approach is appropriate depends on one’s starting point. Moreover, our
universe of function types takes a step beyond the related work by supporting the mechanised construction
of liftings, leaving to the user the task of supplying a minimal patch. Our framework could easily be used
to mechanise the realizability predicates of Bernardy and Lasson (2011), and Ko and Gibbons (2011).

8 Conclusion

In this article, we have adapted McBride’s ornaments to our universe of datatypes, a cosmetic evolution of
an earlier presentation (Chapman et al., 2010) . This gave us the ability to compute over indices, hence in-
troducing the deletion ornament. Deletion ornaments are a key ingredient for the internalisation of Brady’s
optimisation over inductive families. By applying these ideas, we obtained a simpler implementation of
reornaments.

We then developed the notion of functional ornament as a generalisation of ornaments to functions:
from a universe of function type, we define a functional ornament as the ornamentation of each of its
inductive components. A function of the resulting type will be subject to a coherence property, akin to the
ornamental forgetful map of ornaments. We have constructively presented this object by building a small
universe of functional ornaments.

We have finally shown how to achieve code reuse by transporting functions along a functional orna-
ment in such a way that the coherence property holds. Instead of asking the user to write cumbersome
proofs, we defined a Patch type as the type of all the functions that satisfies the coherence property by
construction. Hence, we make extensive use of the dependently-typed programming machinery: in this
setting, the type checker, that is the computer, is working with us to construct a term, not waiting for us
to produce a proof.

Having implemented a function correct by construction, one then gets, for free, the lifting and its
coherence certificate. This is a straightforward application of the isomorphism between the Patch type
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and the set of coherent functions. These projection functions have been implemented in type theory by
simple generic programming over the universe of functional ornaments.

To further improve code reuse, we provide a few smart constructors to implement a Patch type: the idea
is to use the structure of the base function to guide the implementation of the coherent lifting. Hence, if
the base function uses a specific induction principle or returns a specific constructor, we make it possible
for the user to specify that she wants to lift this structure one level up. This way, the function is not
duplicated: only the new information, as determined by the ornament, is necessary.

To conclude, we believe that this is a first yet interesting step toward code reuse for dependently-
typed programming systems. With ornaments, we were able to organise datatypes by their structure. With
functional ornaments, we are now able to organise functions by their structure-preserving computational
behaviour. For a large class of functional ornaments, the original program and its lifting share a similar
recursion pattern and returned value. To take advantage of this structural similarity, we have developed
some appealing automation to assist their implementation, without any proving required, hence making
this approach even more accessible.

Future work Whilst we have deliberately chosen a simple universe of types, we plan to extend it in
various directions. Supporting higher-order functions and adding type dependency (Π-types and Σ-types)
is a necessary first step. Inspired by Bernardy and Lasson (2011), we would like to add a parametric
quantifier: in the implementation of ilookup, we would mark the index A of List A as parametric so that in
the consa case, the a could automatically be carried over.

The universe of functional ornaments could be extended as well, especially once the universe of
function types has been extended with dependent quantifiers. For instance, we want to consider the
introduction and deletion of quantifiers, as we are currently doing on datatypes. Whilst we have only
looked at least fixpoints in this article, we also want to generalise our universe with greatest fixpoints and
the lifting of co-inductive definitions.

Besides enriching the universe, its systematic exploration offers exciting prospects. For pedagogical
reasons, this article is confined to a handful of ornaments (natural numbers to lists, Booleans to the
option type, etc.) and focuses on two functional ornaments (the comparison and the addition). A quick
comparison between natural numbers and lists reveals a few other opportunities, such as the −−/drop,
null/head, or pred/tl. Keeping with non-indexed data-structures, a whole zoo of ornaments is available
for tree-like structures, depending on whether one stores the data at the leaves, nodes, or both. One
could imagine writing the structural operations on the bare structure and to instantiate them for specific
data-storage strategies by lifting. Finally, many gems are awaiting us in the indexed setting, the true raison
d’être of ornaments. For example, we would like to exploit the fact that the simply-typed lambda-calculus
(Example 3.10) is an ornament of the untyped one and lift its substitution operators from the one defined
over the untyped calculus.
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A Worked example: from comparison to lookup

A.1 The comparison function

(a) Specify the type of the comparison function:

type< : Type

type< 7→ µ{Nat-func · ∗}→µ{Nat-func · ∗}→µ{Bool-func · ∗}×1

(b) Implement the comparison function:

− < − : Jtype<KType
m < n ⇐ Nat-elimn

m < 0 7→ false

m < (sucn)⇐ Nat-casem
0 < (sucn) 7→ true

(sucm)< (sucn) 7→ m<n

A.2 The functional ornament

(a) Specify the ornamented type of the lookup function:

typeLookup : FunOrntype<

typeLookup 7→ µ+{idONat-func · inv∗}→µ+{List-OrnA · inv∗}→µ+{Maybe-OrnA · inv∗}×1

(b) Implement its Patch type:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs {?}

(c) Lift the induction:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil {?}
ilookup m m+ (sucn) (consa vs) {?}

(d) Lift the case analysis:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil {?}
ilookup m m+ (sucn) (consa vs) lift⇐ lift-case

ilookup 0 0 0 nil {?}
ilookup (sucm) (sucm+) 0 nil {?}



ZU064-05-FPR paper 12 December 2013 19:58

Functional Ornaments 59

(e) Lift the constructors:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil
lift7→ nothing∗[∗]

ilookup m m+ (sucn) (consa vs) lift⇐ lift-case

ilookup 0 0 (sucn) (consa vs) lift7→ just {a :A} [∗]
ilookup (sucm) (sucm+) (sucn) (consa vs) {?}

(f) Finish the definition:

ilookup : Patchtype< typeLookup (−<−)
ilookup m m+ n vs lift⇐ lift-ind

ilookup m m+ 0 nil
lift7→ nothing∗[∗]

ilookup m m+ (sucn) (consa vs) lift⇐ lift-case

ilookup 0 0 (sucn) (consa vs) lift7→ justa[∗]
ilookup (sucm) (sucm+) (sucn) (consa vs) 7→ ilookupm m+ n vs

A.3 Extracting the lookup function

(a) Obtain the lookup function by applying the patch:

lookup : JtypeLookupKFunOrn

lookup 7→ patchtypeLookup (−<−) ilookup

(b) Obtain a proof of its coherence:

cohLookup (n :Nat) (xs :List A) : isJust(lookupn xs) = n< lengthxs
cohLookup n xs 7→ coherencetypeLookup (−<−) ilookup n xs
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B Definitions

B.1 Universe of descriptions

data IDesc [I : SET] : SET1 where

IDesc I 3 var(i : I)
| 1
| Π(S : SET) (T :S→ IDesc I)
| Σ(S : SET) (T :S→ IDesc I)

J(D : IDesc I)K (X : I→SET) : SET

Jvar iK X 7→ X i
J1K X 7→ 1
JΠS T K X 7→ (s :S)→JT sKX
JΣS T K X 7→ (s :S)×JT sKX

func (I : SET) : SET1

func I 7→ I→ IDesc I
J(D : func I)K (X : I→SET) : I→SET

JDK X 7→ λi.JD iK X

Code and interpretation

data µ [D : func I](i : I) : SET where

µ D i 3 in(xs :JDK (µ D) i)

induction :∀P :∀ i : I.µ D i→SET.

(α :(i : I)(xs :JDK (µ D) i)→�D P xs→P (inxs))
(x : µ D i)→P x

Least fixpoint and induction principle
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B.2 Universe of ornaments

data Orn (D : IDescK)[u : I→K] : SET1 where

– Extend with S:
Orn D u 3 insert(S : SET)(D+ :S→OrnD u)

– Refine index:
Orn (vark) u 3 var(i :u−1 k)

– Copy the original:
Orn 1 u 3 1
Orn (ΠS T )u 3 Π(T+ :(s :S)→Orn(T s)u)
Orn (ΣS T ) u 3 Σ(T+ :(s :S)→Orn(T s)u)

– Delete S:
| delete(s :S)(T+ :Orn(T s)u)

J(O :OrnD u)Korn : IDesc I
JinsertS D+Korn 7→ ΣSλs.JD+ sKorn
Jvar(inv i)Korn 7→ var i
J1Korn 7→ 1
JΠT+Korn 7→ ΠSλs.JT+ sKorn
JΣT+Korn 7→ ΣSλs.JT+ sKorn
Jdeletes T+Korn 7→ JT+Korn

orn (D : funcK) (u : I→K) : SET1

orn D u 7→ (i : I)→Orn(D (u i))u
J(o :ornD u)Korn : func I
JoKorn 7→ λi.Jo iKorn

Code and interpretation

forgetNT :(o :ornD u)→JoK (X ◦u) i→JDKX (u i)

forgetAlg :(o :ornD u)→JoKorn (µ D◦u) i→µ D (u i)

forget :(o :ornD u)→µ JoKorn i→µ D (u i)

Ornamental algebra

(D : funcK)(α:JDKX →̇X) :ornD (π0 :(k :K)×X k→K)

coherentOrn :(tα : µ JDαKorn(k,x))→ LαM (forgetDα tα) = x

make (D : func I)(α:∀ i.JDKX i→X i) :(t : µ D k)→µ JDαKorn(k,LαM t)

Algebraic ornament

d(o :ornD u)e :ornJoKorn (π0 :(k :K)×X k→K)

Reornament
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B.3 Universe of function types

data Type : SET1 where

Type 3 µ{(D : funcK) · (k :K)}→(T :Type)

| µ{(D : funcK) · (k :K)}×(T :Type)

| 1

J(T :Type)KType : SET

Jµ{D · k}→T KType 7→ µ D k→JT KType
Jµ{D · k}×T KType 7→ µ D k×JT KType
J1KType 7→ 1

Code and interpretation

B.4 Universe of functional ornaments

data FunOrn (T :Type) : SET1 where

FunOrn (µ{D · k}→T ) 3 ∀u : I→K.µ+{(o :ornD u) · (i :u−1 k)}→(T+ :FunOrnT )
FunOrn (µ{D · k}×T ) 3 ∀u : I→K.µ+{(o :ornD u) · (i :u−1 k)}×(T+ :FunOrnT )
FunOrn 1 3 1

J(T+ :FunOrn T )KFunOrn : SET

Jµ+{o · inv i}→T+KFunOrn 7→ µ JoKorn i→JT+KFunOrn

Jµ+{o · inv i}×T+KFunOrn 7→ µ JoKorn i×JT+KFunOrn

J1KFunOrn 7→ 1

Code and interpretation

Coherence (T+ :FunOrnT ) ( f :JT KType) ( f+ :JT+KFunOrn) : SET

Coherence (µ+{o · inv i}→T+) f f+ 7→
(x+ : µ JoKorn i)→CoherenceT+ ( f (forgeto x+)) ( f+x+)

Coherence (µ+{o · inv i}×T+) (x,xs) (x+,xs+) 7→
forgeto x+ = x×CoherenceT+ xs xs+

Coherence 1 ∗ ∗ 7→1

Coherence
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B.5 Patches

Patch (T :Type) (T+ :FunOrnT ) ( f :JT KType) : SET

Patch (µ{D ·u i}→T ) (µ+{o · inv i}→T+) f 7→
(x : µ D (u i))→µ JdoeKorn (i,x)→PatchT T+ ( f x)

Patch (µ{D ·u i}×T ) (µ+{o · inv i}×T+) (x,xs) 7→
µ JdoeKorn (i,x)×PatchT T+ xs

Patch 1 1 ∗ 7→ 1

Patch

patch (T+ :FunOrnT ) ( f :JT KType) ( f++ :PatchT T+ f ) : JT+KFunOrn

patch (µ+{o · inv i}→T+) f f++ 7→
λx+.patch T+ ( f (forgeto x+))

( f++ (forgeto x+) (make doe x+))
patch (µ+{o · inv i}×T+) (x,xs) (x++,xs++) 7→

(forgetdoe x++,patchT+ xs xs++)

patch 1 ∗ ∗ 7→ ∗

coherence (T+ :FunOrnT ) ( f :JT KType) ( f++ :PatchT T+ f ) : CoherenceT+ f (patchT+ f f++)

coherence (µ+{o · inv i}→T+) f f++ 7→
λx+.coherence T+ ( f (forgeto x+))

( f++ (forgeto x+) (make doe x+))
coherence (µ+{o · inv i}×T+) (x,xs) (x+,xs++) 7→

(coherentOrnx+,coherenceT+ xs xs++)

coherence 1 ∗ ∗ 7→ ∗

Patching and its coherence proof
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B.6 Transporting recursion patterns

liftAlg (α :∀k :K.JDK (λ− .JT KType) k→JT KType) (o :ornD u) (T+ :FunOrnT ) : SET

liftAlg α o T+ 7→ ∀(i, t) :(i : I)×µ D (u i).
JdoeKorn (λ(i, t).PatchT T+ (LαM t)) (i, t)→PatchT T+ (LαM t)

lift-fold (α :∀k :K.JDK (λ− .JT KType) k→JT KType)
(α++ : liftAlg α o T+) : Patch(µ{D ·u i}→T ) (µ+{o · inv i}→T+) LαM

lift-fold α α++ 7→ λx.λx++.Lα++M x++

Coherent algebra and its lifting

liftIH (α :(k :K)(xs :JDK (µ D) k)→�D (λ− .JT KType) xs→JT KType)
(o :ornD u)(T+ :FunOrnT ) : SET

liftIH α o T+ 7→ ((i, t) :(i : I)×µ D (u i))→(xs :JdoeKorn (µ JdoeKorn) (i, t))→
�JdoeKorn (λ(i, t).PatchT T+ (inductionα t)) xs→
PatchT T+ (inductionα t)

lift-ind (α :(k :K)(xs :JDK (µ D) k)→�D (λ− .JT KType) xs→JT KType)
(α++ : liftIH α o T+) : Patch(µ{D ·u i}→T ) (µ+{o · inv i}→T+) (inductionα)

lift-ind α α++ 7→ λx.λx++. inductionα++ x++

Coherent inductive step and its lifting

lift-constructor (e :Extension(o i) xs) – coherent extension
(a :Structure(o i) xs e) – recursive arguments
(t++ :PatchT T+ t)
: Patch(µ{D ·u i}×T ) (µ+{o · inv i}×T+) (inxs, t)

lift-constructore a t++ 7→ (in(mkReorn(o i) xs e a), t++)

Constructor lifting


	Worked example: from comparison to lookup
	The comparison function
	The functional ornament
	Definitions
	A Universe of Datatypes
	The type theory
	Universe of descriptions
	Inductive definitions

	A Universe of Ornaments
	Notation
	Brady optimisations, internalised
	Ornamental algebra
	Algebraic ornaments
	Reornaments

	A Universe of Function Types and their Ornaments
	A universe of function types
	Functional ornament
	Patches
	Patching and coherence

	Lazy Programmers, Smart Constructors
	Transporting recursion patterns
	Transporting constructors

	Related Work
	Conclusion

	References
	Extracting the lookup function
	Universe of descriptions
	Universe of ornaments
	Universe of function types
	Universe of functional ornaments
	Patches
	Transporting recursion patterns




