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Abstract

Finding repetitions in music is a fundamental music information re-
trieval problem that has several scientific and engineering applications.
A popular algorithm for the problem is SIA, the structure induction
algorithm developed by Meredith et. al. [10]. SIA is transposition
invariant, allows gaps between the notes, and can process both mono-
phonic and polyphonic music. However, the algorithm does not allow
any distortion in the time dimension.

In this paper, we introduce a new algorithm that has all SIA’s
capabilities, but also respects time-warp invariance. Such invariance
is highly needed, for instance, when there are rhythmic variations in
the music, or the input data stems from a live performance. Like SIA,
our algorithm works in O(n2 log n) time, where n denotes the number
of notes, and can efficiently process inputs of thousands of notes using
current computers.

1 Introduction

In this paper we consider the problem of finding repetitions in Western, equal
tempered, polyphonic music. Repetitions in Western music are frequent
and finding them forms an important medium to understand the structure
of the music at hand. This makes it easier for listeners to detect musical
ideas and remember music [9]. Found repetitions can also be used for genre
classification purposes [2].

There has been surprisingly little work on this interesting and impor-
tant problem. A rather recent survey on symbolic algorithms can be found
in [5], and methods based on the audio domain are described in [6, 14]. An
apparent advantage gained when using symbolic algorithms is that there
is no need to find a sufficient solution to the very challenging problem of
fundamental frequency estimation for the polyphonic case. Moreover, as
shown in [8], the border between symbolic and audio music and methods is
not unbreakable, suggesting that in some cases techniques developed for one
domain could be also used directly for the other.
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Figure 1: An excerpt from Schubert’s Der Leiermann and the related geo-
metric, point-set representation. The points associated with the vocal part
are represented distinctly (by squares).

Traditionally methods developed for symbolically encoded music infor-
mation retrieval (MIR) problems have been based on an approximate string
matching framework using edit distance (see e.g. [1, 11, 4, 12, 13]). The
framework has originally been developed for linear strings, such as natural
language, and it is therefore rather straightforwardly applicable to handle
melodies (monophonic music). Nevertheless, this approach is incapable to
handle polyphonic music with a multitude of simultaneous notes and paral-
lelly developing musical themes. Here, instead, we rely on the piano-roll-like,
geometric representation of music, suggested by Meredith et. al. [10], where
each note is represented by a point in the plane (Figure 1). For each point,
the horizontal location (x-axis) gives its onset time and the vertical location
(y-axis) its pitch level.

Given a set of n notes (a musical work), Meredith et. al. considered
the problems of discovering all maximal repeated patterns and all occur-
rences of maximal repeated patterns. They presented the algorithms SIA
and SIATEC for computing the solutions in O(n2 log n) and O(n3) time,
respectively.

Their algorithms, however, are tolerant to distortion in the time dimen-
sion only to a certain extent: if a note is out of time, it is simply discarded.
This works rather nicely when only some sporadic notes are distorted. How-
ever, if a more systematic distortion has taken place (for instance, a theme
has different rhythmic patterns, or the input is a transcription of a live per-
formance), they probably omit the vast majority of the musically meaningful
repetitions because they do not find a sufficient count of matching individual
notes to form a repetition.

In this paper we introduce an algorithm that works like SIA but can
also discover repeated patterns with differences in the time dimension. The
algorithm finds for each input note pair the longest repeating pattern whose
last note pair is that pair. We also show how the algorithm can be extended
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Figure 2: A repeating pattern of four notes. The first pattern consists of
notes (1, 3), (2, 5), (4, 4), and (6, 5), and the second pattern consists of notes
(5, 1), (7, 3), (8, 2), and (10, 3). The intervals between consecutive notes are
the same, but the onset time differences are different.

so that it has an additional parameter w (window size) that restricts the
onset differences between consecutive notes. Like SIA, the algorithm works
in O(n2 log n) time in both cases.

The structure of the rest of the paper is as follows: In Section 2, we define
our problem and show how it differs from the previously studied problem. In
Section 3, we present our transposition and time-warp invariant algorithm
for finding repetitions in symbolic music. In Section 4, we study the actual
performance of our new algorithm, and finally, in Section 5, we present our
conclusions and outline some ideas for future work.

2 Problem statement

Let S be a set of n notes, numbered 1, 2, . . . , n. Each note i is associated
two real numbers: an onset time t(i) and a pitch p(i). Geometrically each
note can be considered as a two-dimensional point (t(i), p(i)).

A repeating pattern of length k consists of two note sequences a1, a2, . . . , ak
(first pattern) and b1, b2, . . . , bk (second pattern) such that p(ai)− p(bi) = c
for each i = 1, 2, . . . , k, where c is a constant, and t(ai) < t(ai+1) and
t(bi) < t(bi+1) for each i = 1, 2, . . . , k − 1. In other words, the interval of
each corresponding note pair is c, and the onset times in both sequences are
strictly increasing.

For example, Figure 2 shows a repeating pattern that consists of four
notes. The intervals between consecutive notes in the patterns match each
other, but the onset time differences do not match.

We want to find for each note pair x, y ∈ S a maximum-length repeating
pattern whose last note pair is (x, y). We also consider a variant of the
problem with a window size w. In this variant, we require that t(ai+1) −
t(ai) ≤ w and t(bi+1)− t(bi) ≤ w for each i = 1, 2, . . . , k − 1, i.e., the onset
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time difference between two consecutive notes in a pattern has to be at most
w.

Note that the total number of repeating patterns may be very large. An
extreme case is a set of notes where each note has the same pitch. In this
case, for each k = 1, 2, . . . , n, there are

(n
k

)

similar patterns. However, by
restricting ourselves to maximum-length repeating patterns we only have to
find O(n2) pattern pairs, and it is possible to efficiently solve the problem.

The SIA algorithm [10] solves the problem in O(n2 log n) time with an
additional constraint t(ai+1) − t(ai) = t(bi+1) − t(bi), i.e., no time-warping
is allowed. We may use some of the ideas of SIA in our present time-warp
invariant problem, but the overall situation is quite different. We will next
present an algorithm that solves our problem in O(n2 log n) time, both in
the unrestricted case and with a window size w.

3 Algorithm description

In this section we describe an efficient algorithm for finding maximum-length
time-warp invariant repeating patterns. The algorithm works in O(n2 log n)
time, and is based on dynamic programming and tree structures.

From now on, we will assume that all onset times are integers between
1 . . . n. If this is not the case, we can first sort and relabel them in O(n log n)
time, give each note an onset time between 1 . . . n, and make some straight-
forward modifications to the rest of the algorithm.

The first step of the algorithm is to create a list of all note pairs of
the form (x, y) where x, y ∈ S. After this, the list is sorted based on the
intervals p(x)− p(y), i.e., all note pairs with the same interval will be next
to each other in the list. Since there are O(n2) note pairs, this phase of the
algorithm works in O(n2 log n) time.

In a repeating pattern, each interval p(ai)− p(bi) is a constant c. Thus,
we can divide the note pairs into groups according to their intervals and
separately process each group. We will next show how we can process each
group in O(m log n) time where m is the number of note pairs in the group.
Since the sum of the group sizes is O(n2), the algorithm works in O(n2 log n)
time.

3.1 Unrestricted algorithm

We first consider the unrestricted case where the onset time differences be-
tween consecutive pattern notes can be arbitrarily large. It turns out that
we can reduce the problem to the longest increasing subsequence problem
and efficiently solve it using a range query structure.

Since we know that each pair has the same interval, we do not need
the pitches anymore and can focus on the onset times. More precisely,
our input is a list of m note pairs (x1, y1), (x2, y2), . . ., (xm, ym) where
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Figure 3: Reduction to the longest increasing subsequence problem. (a)
The first pattern consists of notes (2, 2), (4, 4) and (5, 3), and the second
pattern consists of notes (2, 4), (3, 6) and (6, 5). The interval of each note
pair is 2. (b) The corresponding increasing sequence consists of onset time
pairs (2, 2), (4, 3) and (5, 6).

p(xi) − p(yi) = c for each i = 1, 2, . . . ,m, and our task is to find for each
pair (xi, yi) a maximum-length sequence of pairs whose last pair is (xi, yi)
and both the t(x) and t(y) values are strictly increasing in the sequence.

To remove one dimension from the problem, we sort the pairs lexico-
graphically based on their onset times t(x) and t(y). In such an ordering,
the t(x) values are already increasing, and our remaining task is to find for
each pair the longest subsequence that ends at that pair and where also
the t(y) values are increasing. Geometrically, we have points of the form
(t(x), t(y)), where both coordinates correspond to onset times of the notes.
Figure 3 shows an example of the reduction.

Finding longest increasing subsequences is a classical algorithm design
problem [7, 3] that can be efficiently solved using several strategies. To solve
the problem so that we can also later support a window size w, we use a
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Figure 4: A range query structure that corresponds to the array
[5, 1, 2, 2, 1, 2, 4, 3]. Each node has the maximum of its children, and the
tree has O(log n) levels. We can both update an array value and determine
the maximum value in a range in O(log n) time.

dynamic range query structure that maintains a sequence q(1), q(2), . . . , q(n)
and has two operations:

1. setValue(k, x): set the value of q(k) to x

2. maxValue(a, b): return the maximum q(k) value, k ∈ [a, b]

Both the operations can be implemented in O(log n) time using a balanced
binary tree (Figure 4).

We calculate for each i = 1, 2, . . . ,m a value d(i): the length of the
longest repeating pattern whose last note pair is (xi, yi). We can calculate
each such value in O(log n) time using the range query structure. The idea
is that each value q(k) in the structure corresponds to the maximum length
of a repeating pattern discovered so far whose last t(y) value is k.

Initially we set q(k) = 0 for each k = 1, 2, . . . , n, because we have not dis-
covered any patterns. Then, on each step, we set d(i) = maxValue(1, t(yi)−
1) + 1, because we want to extend a maximum-length repeating pattern
whose last t(y) value is less than t(yi). Finally, if d(i) > q(t(yi)), we also
call setValue(t(yi), d(i)) to update the range query structure. Since each
operation takes O(log n) time, the total running time of the algorithm is
O(m log n).

Note that if there are several pairs with the same t(x) value, it is not
possible to update the range query structure at the end of each iteration,
because this could produce a repeating pattern where the t(x) values are
not strictly increasing. Instead, we store the updates in a buffer and process
the updates always when the t(x) value changes.

In practice, we would also like to trace the notes in the repeating pat-
terns. This can be done by extending the algorithm so that it also maintains
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Figure 5: The longest increasing subsequence reduction in the windowed
case. There is a w × w region that must contain the previous pair in the
sequence.

for each i = 1, 2, . . . ,m a value e(i): the index of the previous note pair in
a longest repeating pattern. We can update those values when calculating
the values of d(i).

3.2 Windowed algorithm

In many situations, the unrestricted algorithm can produce musically ques-
tionable results, because it allows arbitrarily large gaps between notes. For-
tunately, we can modify the algorithm and create a windowed algorithm that
only considers patterns where the maximum onset time difference between
consecutive pattern notes is w.

Figure 5 shows how the parameter w changes the longest increasing
subsequence problem. We no longer accept any previous pair whose t(x)
and t(y) values are smaller, but only consider pairs in a w × w region. In
fact, we can easily add this restriction to the t(y) values, because we can
just modify the range query. However, a more difficult task is to make sure
that the t(x) values also obey the restriction.

The idea is to assign each onset time k = 1, 2, . . . , n two tree structures:
a range query structure, like in the unrestricted algorithm, but also an addi-
tional multiset structure s(k) that contains all lengths of discovered patterns
whose last t(y) value is k and that are currently inside the window. Each
multiset structure is implemented as a balanced binary-search tree, so we
can both add and remove values in O(log n) time.

During the execution or the algorithm, the range query structure is main-
tained so that q(k) always has the largest value in s(k). After calculating
a value of d(i), we add it to s(t(yi)) and update the value of q(t(yi). Fur-
thermore, we maintain a value j that stores the left position of the window.
Initially we set j = 1. Then, after each round, as long as t(xi)− t(xj) > w,
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we remove d(j) from s(t(yj)), update the value of q(t(yj)), and increase the
value of j by one.

Since we add and remove every d(i) value at most once and every op-
eration works in O(log n) time, the windowed algorithm processes m note
pairs in O(m log n) time, like the unrestricted algorithm.

4 Experiment

In this section we study the actual performance of our algorithm. We imple-
mented1 the algorithm in C++ and carried out experiments using generated
test sets of various sizes. We used the following three test sets:

• Test Set 1 : There are n notes whose onset times are 1, 2, . . . , n and
pitches are random integers in the range [1, 100].

• Test Set 2 : There are n notes whose onset times are random integers
in the range [1, n/10] and pitches are random integers in the range
[1, 100].

• Test Set 3 : There are n notes whose onset times are random integers
in the range [1, 106] and each pitch is constant.

The test sets focus on different aspects of the algorithms. In Test Set
1, each note has a distinct onset time, which simulates monophonic music.
Then, in Test Set 2, each onset time is assigned ten notes on average, which
simulates polyphonic music. Finally, Test Set 3 represents a special case
where the interval of each note pair is the same.

We performed the experiments using a modern laptop computer with
an Intel Core i5-7200U CPU. We generated test sets where n is an integer
between [1000, 10000], and tested both the unrestricted algorithm and the
windowed algorithm using w = 1000. Table 1 shows the test results for
the unrestricted algorithm, and Table 2 shows the results for the windowed
algorithm.

The experiments show that our algorithm has rather small constant fac-
tors and can be used to process data sets of several thousands of notes in a
few seconds. Even though the windowed algorithm uses more complex data
structures, the differences in running times between the unrestricted and
windowed algorithm are not substantial. The windowed algorithm, how-
ever, is much slower when Test Set 3 is used. A possible reason for this
is that since every note pair has the same interval, all of them will be pro-
cessed in a single pass and the additional set structures used in the windowed
algorithm will slow down the algorithm.

1Our implementations are available on GitHub, and a link to our repository will be

shown here in the final version.

8



n Test Set 1 Test Set 2 Test Set 3

1,000 0.25 s 0.26 s 0.62 s
2,000 1.06 s 1.08 s 2.58 s
3,000 2.47 s 2.53 s 6.16 s
4,000 4.46 s 4.55 s 11.16 s
5,000 7.08 s 7.24 s 17.95 s
6,000 10.43 s 10.61 s 26.43 s
7,000 14.27 s 14.58 s 36.10 s
8,000 18.99 s 19.11 s 46.77 s
9,000 24.02 s 24.49 s 60.53 s

10,000 30.04 s 30.29 s 73.91 s

Table 1: Running times of the unrestricted algorithm.

n Test Set 1 Test Set 2 Test Set 3

1,000 0.29 s 0.32 s 1.95 s
2,000 1.35 s 1.39 s 12.53 s
3,000 3.25 s 3.41 s 33.00 s
4,000 5.94 s 6.35 s 64.24 s
5,000 9.60 s 10.44 s 108.84 s
6,000 14.06 s 15.50 s 160.89 s
7,000 19.50 s 21.62 s 199.33 s
8,000 26.01 s 29.01 s 260.78 s
9,000 33.26 s 38.34 s 288.96 s

10,000 42.28 s 49.41 s 364.32 s

Table 2: Running times of the windowed algorithm.
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Since the algorithms process lists that contain all possible note pairs,
their memory usage is O(n2) which could be a problem when n is large.
In typical cases, like in Test Sets 1 and 2, we could modify the algorithms
so that they separately process each interval and create a list of pairs from
scratch in O(n2) time. This would take more time but require less memory.
However, for Test Set 3, such an optimization would not be possible.

Note that we could process Test Set 3 more efficiently using a dedicated
algorithm that first greedily finds for each note the longest possible pattern
that ends at the note, and then chooses for every note pair the minimum
of their corresponding pattern lengths. Such an algorithm would work in
O(n2) time and require only O(n) memory. However, this algorithm only
works if each note has the same pitch; we could easily create other difficult
test sets where, for example, there are two possible pitches.

5 Conclusions

In this paper we have focused on a central MIR problem of finding repeating
patterns in a given polyphonic musical work. In order to effectively deal with
polyphonic music and transposition invariance, the geometric framework
suggested by Meredith et. al. [10] appears superior over the others suggested
in the literature. They presented the SIA algorithm that is transposition
invariant and allows gaps. Considering the real-world cases, however, it has
a rather major shortcoming: it does not effectively allow distortion in the
time dimension.

We presented a time-warp invariant algorithm that works like SIA but
also allows distortion in the time dimension. We first considered a case where
the onset time differences in patterns are unrestricted, and then showed
how the algorithm can support a window size. It turned out that the new
problem can be solved without any addition to the computational complexity
when compared to that of the SIA algorithm, that is, the algorithm runs in
O(n2 log n) time.

It is an interesting question whether the O(n2 log n) bound could be
improved. In both SIA and in our algorithm, the size of the output is
O(n2), so it could be possible to get rid of the log n factor. In the time-
warp invariant problem, we can at least do this in some special cases. As
mentioned in Section 4.2, if all notes have the same pitch, the problem
can be solved in O(n2) time, and also if the number of distinct pitches is
constant, we can solve the unrestricted problem in O(n2) time using a greedy
choice in dynamic programming. However, it seems difficult to generalize
this approach to support arbitrary pitches or a window size.

Our experiments show that our new algorithm is quite efficient also in
practice, and could quickly find all repeated patterns, for example, in a
ten-minute long classical piano piece. However, processing a full concerto,
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symphony or opera would take a long time on current computers, and could
also force the algorithm to run out of memory. To effectively use the al-
gorithm for real-world repeated pattern detection cases would also require
ingenious post-processing that decimates musically meaningless, irrelevant
repetitions.
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