
Transpositions and Move Groups in Monte Carlo Tree Search

Benjamin E. Childs, Member, IEEE, James H. Brodeur, and Levente Kocsis.

Abstract— Monte Carlo search, and specifically the UCT
(Upper Confidence Bounds applied to Trees) algorithm, has
contributed to a significant improvement in the game of Go and
has received considerable attention in other applications. This
article investigates two enhancements to the UCT algorithm.
First, we consider the possible adjustments to UCT when the
search tree is treated as a graph (and information amongst
transpositions are shared). The second modification introduces
move groupings, which may reduce the effective branching fac-
tor. Experiments with both enhancements were performed using
artificial trees and in the game of Go. From the experimental
results we conclude that both exploiting the graph structure and
grouping moves may contribute to an increase in the playing
strength of game programs using UCT.

I. INTRODUCTION

Monte Carlo search, and specifically the UCT algorithm

[1], has both contributed to a significant improvement in the

game of Go [2] and has received considerable attention in

other applications as well (e.g., general game playing [3], or

parameter optimization [4]). Monte Carlo programs simulate

a large number of games starting from the current position,

and select the move that led to a win most often. During

simulation, the UCT algorithm treats the selection of moves

as a multi-armed bandit problem, using the UCB1 algorithm

[5] for selection. Since UCB converges to the best arm in

the bandit setting, UCT similarly converges to the best move

(see [1] for a theoretical analysis of the algorithm).

In the ‘basic’ UCT algorithm, the space of the game is

treated as a tree, which can lead to having multiple nodes

for the same position. This is the case when several paths

are leading to the same positions (referred to usually as

transpositions). In game programs based on some alpha-beta

variants, previously visited positions are identified by storing

them in a transposition table. In chess, transposition tables

are one of the most basic building blocks, and their use

and design has been extensively studied (see e.g., [6]). In

the context of Monte Carlo search, handling transpositions

efficiently may have an important effect as well; nevertheless,

it has received little attention so far (exceptions being [7]

and some e-mails on the Go mailing list, e.g., [8] that deal

Benjamin E. Childs is with the Computer Science Department of Worces-
ter Polytechnic Institute, 100 Institute Rd, Worcester MA, 01609, U.S.A;
email:bchilds@alum.wpi.edu

James H. Brodeur is with the Computer Science Department of Worcester
Polytechnic Institute, 100 Institute Rd, Worcester MA, 01609, U.S.A;
email:jbrodeur@alum.wpi.edu

Levente Kocsis is with the Computer and Automation Research Institute
of the Hungarian Academy of Sciences, Kende u. 13-17, 1111 Budapest,
Hungary; email: kocsis@sztaki.hu

We would like to thank Gábor Sarközy and Stanley Selkow for their
assistance with our research.

1UCB stands for Upper Confidence Bounds, while UCT stands for UCB
applied to trees.

mostly with the necessary data structures). In this article

we investigate various solutions to employ transpositions in

UCT. Moreover, we consider an additional situation when

transpositions appear ‘artificially’; that is, when moves are

intentionally grouped. This is motivated by the presumption

that the information gained for one move generalizes to

other moves in the group, and the technique can lead to

a reduction of the effective branching factor2 as discussed

in Section III. For move groupings, additional nodes are

introduced. Group selection is then handled similarly to move

selection. Grouping moves has been discussed in [9], but only

non-overlapping groups were considered. If groups overlap,

the same move is included in many paths (corresponding to

the different groups it is a member of) in the tree, and that

leads to artificial transpositions (nodes reached by identical

move sequences, but different node sequences). This may

lead to a significant increase in transposition count, which

raises even further the importance of efficiently handling the

transpositions.

While attempting to adapt UCT to deal with transposi-

tions, we consider only directed acyclic graphs (DAGs). The

presence of cycles in a simulated game is related to the

Graph History Interaction (GHI) problem (see e.g., [10] or

in Go [11]) that is induced by leaving out some information

about preceding positions in the state representation that are

relevant for future play (violating essentially the Markov

property). In principle, to overcome the GHI problem in UCT

it would suffice to store all relevant history information for a

position (e.g., in Go it would be necessary to identify ko or

super-ko). However, in practical tournament programs for op-

timal performance only the small cycles are worth detecting

(in Go that would amount to detecting ko). Cycles may pose

a problem in UCT even if the state representation includes

all relevant information; more precisely, if we update the

statistics for a node as many times as it occurs in a particular

simulated game. Similar problems occur for Monte Carlo

policy evaluation for Markov Decision Processes (see e.g.,

[12]) and solutions that are suitable there are likely to work

in UCT as well. A simple solution would be to update the

node only the first time it is visited (as in first-visit Monte

Carlo methods).

The article is organized as follows. The UCT algorithm

is described briefly in Section II. Enhancements to the

algorithm to deal with transpositions and move groups are

2The branching factor is the number of moves available in a position. In
the alpha-beta context the effective branching factor relates to the increase
in tree size, when the search goes one ply deeper. In Monte Carlo search it
can be related to the number of simulations that are necessary to allocate to
sub-optimal alternatives. Reducing the effective branching factor in games
like 19x19 Go can have a significant impact for UCT based programs.

978-1-4244-2974-5/08/$25.00 ©2008 IEEE 389

discussed in Section III, while the experiments on artificial

trees and Go are described in Section IV. Section V presents

the conclusions.

II. THE UCT ALGORITHM

The UCT algorithm [1] is a best-first search method

that builds its tree by repeatedly simulating game episodes

starting from an initial position. The tree is built by adding

the information gathered during a single episode to the tree

in an incremental manner. In a basic setting each node of

the tree corresponds to a position that has been visited. The

information stored for a node s after t games have been

simulated includes the number of times the node has been

visited Ns(t) and the average result for the games going

through Qs(t). These statistics can also be defined for a move

a available in position s: the number of times the move has

been selected in the position Ns,a(t) and the corresponding

average result Qs,a(t). At termination the search returns the

move with the best average result.3

The above description fits most Monte Carlo tree search

algorithms. The critical part is the selection of moves dur-

ing the simulation. In UCT the selection amongst moves

available in a position is comparable to a multi-armed

bandit problem. More precisely, the UCB1 algorithm [5] is

employed as follows. During the tth simulated game, for each

move available in a current position s, an upper confidence

bound is computed. This is the sum of the average result,

Qs,a(t − 1), and a bias term, cNs(t−1),Ns,a(t−1). According

to UCB1, the bias is chosen to be

cn,m =

√

2 lnn

m
. (1)

The move with the highest upper confidence bound is se-

lected for simulation. In the simplest implementation, when

a move has not been tried before, a maximum (infinite)

confidence bound is assumed.

There are several variants of the algorithm described

above. These involve both the decision of when to add a

position to the tree, and how to select moves in unvisited (or

under sampled) positions. In the experiments with artificial

trees described in [1] all visited positions were added to the

tree. The same approach is followed for artificial trees in

Section IV-A. In most Go programs for a simulated game

only the first position not yet present in the tree is added.

In most game programs the sampling policy for unvisited

positions is based on game dependent knowledge, which

often is employed in a diminishing manner for positions that

were visited a few times.

III. UCT ENHANCEMENTS

A. Transpositions

The algorithm described in Section II builds a tree that

can have multiple nodes for the same position. To share

information amongst such nodes, such transpositions have

3Some implementations prefer the most explored move instead, which
will often be the move with the best average result as well.

to be identified first. In most games, transposition tables

(see e.g., [6]) are the usual choice for storing information

about positions, and the sharing of information to subsequent

occurrences of the same position during the search. While

identifying transpositions is a rather simple task, adapting

the move selection is less straightforward. In the following,

we outline several selection rules. The preference for any of

these may depend on several factors including the frequency

of transpositions, the speed of updating the information in

the nodes, and other such implementation issues.

In Section II we introduced some notations; we refine

these, along with some additional notations. The set of

available actions in a position s is denoted by A(s), and

the position that results after playing move a in position s
by g(s, a). Regarding the information collected after t games

were simulated: Ns,a(t) is the number of times move a has

been simulated in position s, Ns(t) is the number of times

position s has been visited, Qs(t) is the average result of the

simulated games going through s, and Qs,a(t) is the average

result of the simulated games when move a was selected in

s. The choice of a selection policy π in the tth simulation

is denoted by Iπ
s (t). The selection policies will include the

bias term cn,m as defined by Equation 1. In the following

we outline four UCT variants:

(0) The most simple choice is to exclude detecting trans-

positions, and use the basic variant unaltered. This may be

convenient if few transpositions occur in the game. This

selection rule will be referred to as UCT0.

(1) If transpositions are identified, it is sensible to share

the information that relates to the move selection in the

particular position. The selection rule in this case is same

as the basic variant, but the statistics are cumulated for the

position independently of where it occurs in the tree (while in

UCT0 the statistics are dependent on the path to the position):

IUCT1
s (t + 1) = argmax

a∈A(s)

(

Qs,a(t) + cNs(t),Ns,a(t)

)

(2) A step further in using the shared information is

replacing the Qs,a by Qg(s,a), thus using a refined value

estimate4 for the move selection of the parent. The selection

rules is as follows:

IUCT2
s (t + 1) = argmax

a∈A(s)

(

Qg(s,a)(t) + cNs(t),Ns,a(t)

)

It would be tempting to use the number of simulations

that lead to the evaluation of the transposition for the bias

term as well. However, this could lead to the value of

the parent converging to incorrect value, if most of the

simulations for the position that follows the best move in

the position is reached frequently through different paths (i.e.

when Ns,a/Ns is much lower than Ng(s,a)/Ns).

(3) In UCT2, the refined value estimation is used only

in selecting the moves in the parent node. Since Qg(s,a) is

a more reliable estimate than Qs,a and the estimate of the

4Qg(s,a) includes at least the samples of Qs,a, but potentially additional
samples as well, and therefore is a statistically more accurate estimate.

390 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

parent is a combination of the estimation of the child nodes,

it makes sense to refine the estimate of the parent with the

extra information available for the child nodes. This can be

done by weighting the estimate of the child node with the

number of times the move that lead to the child has been

simulated. Weighting with Ns,a is necessary for the correct

convergence (cf. the comment for UCT2). The selection rule

for this variant is as follows:

IUCT3
s (t + 1) = argmax

a∈A(s)

(

QUCT3
g(s,a) (t) + cNs(t),Ns,a(t)

)

QUCT3
s (t) =

∑

a∈A(s)

Ns,a(t)

Ns(t)
QUCT3

g(s,a) (t)

In the previous variants only the statistics that involve nodes

along the simulated path have to be updated. In this case all

nodes that preceded in some previous simulation the posi-

tions included in the current simulation have to be updated,

which is much more cumbersome and time consuming. It

is possible to update, however if references to all parents

are stored, and it might be worthwhile if the simulation is

significantly more time consuming than the update.

The updating procedure should have two components.

For those non-terminal (or internal) nodes s that were

present in the tth simulated game, the value of Q is up-

dated by ∆QUCT3
s (t) = QUCT3

g(s,IUCT3
s (t))/Ns(t). Thus the Q

value of the child node sampled is added to the sum of

results (instead of the actual result obtained in the sim-

ulation). Additionally, for all internal nodes s that have

some child nodes with altered Q value5 the update rule is

∆QUCT3
s (t) =

∑

a∈A(s) Ns,a(t)∆QUCT3
g(s,a) (t)/Ns(t). Algo-

rithmically the simplest choice to implement these update

rules is to propagate from the leaf node towards the root

vectors identifying the altered nodes for a specific depth.

The experiments in Section IV-A.1 with UCT3 are based on

this implementation.

The variants outlined above appear to us as the main

solutions to adapt UCT in the presence of transpositions.

There are additional variants similar to these that may use

some specificity of the graph. For example, in the case of

the artificial transpositions introduced by grouping moves, it

may be interesting to exploit the fact that some paths are

differing only in the group nodes.

B. Grouping moves

In some games a move consists of several steps (e.g., in

Amazons first a piece is moved and then arrow is shot).

In the program described in [13], first the piece move was

selected (according to UCT), and then in a similar way the

target of the arrow was chosen. If the moves are selected

according the UCB1, the frequency of selecting suboptimal

moves after n visits is αN log(n)/n, where N is the number

of available moves and α is a variable that depends on how

fast the optimal move is identified. In the particular case of

5We need to update only parent nodes with Ns,a(t) > 0, which is rather
convenient in games where parents are identified only after the move leading
to the particular node was sampled.

Amazons when a move is made in two steps, and denoting

N1 the number of moves available for the player’s pieces, and

N2 the number of places the arrow can land, the frequency

of selecting suboptimal moves is α(N1 + N2) log(n)/n for

the two stage selection and αN1N2 log(n)/n for selecting

amongst all combined moves. Thus, in this example, the

frequency of selecting suboptimal moves can be reduced by

N1N2/(N1 +N2) times. If the branching factor of the game

is high, this technique can reduce the effective branching

factor significantly.

Similar benefits can be achieved if the available moves

are grouped. One presumes that grouping moves can have

beneficial effect if there is some form of correlation amongst

the moves in a group, and therefore the information gained

for on move generalizes to the other moves. In the game of

Go, grouping moves was tested with some success by [9].

As stated in the introduction, additional nodes are introduced

for move groupings. Group selection is then handled simi-

larly to move selection. Although [9] considered only non-

overlapping (disjoint) groups, it is natural to extend to over-

lapping groups as well. If groups overlap, the same move is

included in many paths (corresponding to the different groups

it is a member of) in the tree, and that leads to artificial

transpositions (nodes reached by identical move sequences,

but different node sequences). This may lead to a significant

increase in transposition count, which raises even further the

importance of efficiently handling the transpositions.

IV. EXPERIMENTS

In order to quantify the effect of the modifications to UCT,

we performed a number of experiments using artificial game

trees and computer Go.

A. Artificial Game Trees

Due to the notoriously large size of computer Go game

trees, it is impractical to calculate the correctness of any

given search algorithm. In order to determine with certainty

if the search algorithm selects the correct move, one must

know the correct move. This is not possible in Go, except in

very limited end game scenarios. However, by generating

small artificial game trees, which can be solved using a

standard minimax search with alpha beta pruning, one can

then measure the correctness of any random search algorithm

given a certain amount of time or iterations.

One form of artificial game tree is called a P-Game tree.

A P-game tree [14] is a minimax tree that is meant to model

games where at the end of the game the winner is decided by

a global evaluation of the board position where some count-

ing method is employed. The final scores in leaf nodes are

computed by first assigning values to moves and summing

up the values along the path to the terminal state. If the sum

is positive, the result is a win for MAX; if it is negative,

the result is a win for MIN, whilst it is draw if the sum

is 0. For the purposes of our experiments, we modified the

version used in [1], where values for the moves of MAX are

chosen uniformly from the interval [0, 127] and for the moves

of MIN from the interval [−127, 0]. Our modifications added

3912008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

support for directed acyclic graph (DAG) based P-Games and

groupings. The source code of P-Games and UCT variants

are available at http://svn.bchilds.com/mqp/branches/ggame.

In the following, each experiment consisted of generating 200

different P-Game trees and running a particular algorithm

200 times on each tree. Thus, there were a total of 40,000

individual results per experiment.

1) Transpositions: In order to support testing on directed

acyclic graphs, the tree generation routine was modified in

order to create P-Game DAGs where moves at any one level

might lead to common nodes on the following level. It should

be noted that this results in the generation of a special type

of DAG where all of the paths to any given node are of the

same length. While this is not strictly the case in Go, it is

a reasonably close approximation and only paths involving

piece captures in Go may differ from this special case. In

order to simulate this in the P-Game we added a parameter

to the tree construction that specified the number of nodes at

any particular level that should be combined. Using higher

values for this parameter, referred to as DAG combination,

reduces the total number of nodes at any particular level. This

is shown in Figure 1. Comparatively, for a five ply search in

Go the search tree is reduced by approximately ten times if

transpositions are identified.

Fig. 1. Graph Size by Level for various DAG combination values

The node combination procedure operates per level of

the tree. When generating the next level it selects nodes

to combine using the DAG combination bias, the distance

between the nodes in the graph (biasing towards closer

nodes), and the difference in scores6 between the two parent

nodes. Then it combines the nodes and adds them to the

game graph. When two nodes are combined, it selects the

maximum score from either of the current nodes and then

sets the corresponding values for the moves to the combined

node (this is to ensure that moves never provide negative

6The score of a node here refers to the sum of values of those moves
that lead from the root to the particular node. This score is intended to be
independent of the path we are taking.

score for the current player). Finally, this procedure repeats

until all levels are completed.

The generation procedure for a P-Game DAG is simple

but does have some complexity in order to ensure that all

paths to any node result in the same overall score. If this

were not the case, the algorithms would fail as their base

assumption that the game is path-independent would not be

upheld.

With this modification we evaluated the performance of

UCT1, UCT2, and UCT3 vs. UCT0 with varying levels

of DAG combination. Since UCT0 did not use the smaller

size of the DAG to its advantage, it treated the DAG as if

it were a tree; thusly, UCT1, UCT2, and UCT3 generally

outperformed UCT0 in terms of the total number of Monte

Carlo simulations required to converge to the correct answer.

The results of one of these experiments is shown in

Figure 2. This figure shows the ratio of the average errors

for UCT0, UCT1, UCT2 and UCT3 using 20% DAG combi-

nation. This particular experiment used trees with branching

factor 2, and depth 20. Also shown are error bars of the

upper bound of a 95% confidence interval of the average

error. In this experiment we notice a significant improvement

in performance of UCT1, UCT2 and UCT3 over UCT0.

UCT3 has slightly better results then the simpler variants

(UCT1 and UCT2), but the time necessary for updating the

nodes was much larger. UCT1 and UCT2 had similar time

overhead, and UCT2 seems to be slightly better than UCT1,

therefore in the remaining experiments we use UCT2 as a

good compromise between speed and performance. We note,

however, that if the time necessary for simulating games

dominates the time overhead of the UCT3 updates, UCT3

can be an interesting choice as well.

Fig. 2. Average Error vs. Number of Iterations with 20% DAG combination

Following, in Figure 3, are the results of the same exper-

iment but showing the ratio of average error between UCT0

and UCT2 with varying DAG combinations. Predictably,

UCT2 shows larger improvements with a higher DAG com-

bination. However, discounting the noise towards the end of

392 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

the plot, one can also see that UCT2 never performs worse

than UCT0. This plot also shows the lower bound of a 95%

confidence interval.

Fig. 3. Base Average Error / Average Error vs. Number of Iterations with
varying DAG combination

As a result of these experiments with UCT2 on artificial

game trees, one can be reasonably confident that this modifi-

cation can improve performance in situations where a game

tree can be better represented as a directed acyclic graph.

2) Groups: The addition of move groups to P-Game

required the addition of several parameters to the P-Game

generation algorithm. The first parameter, group bias, de-

termined how likely it was for a group to contain winning

moves vs. losing moves. With a low group bias, losing moves

would be more likely to be in a group, whereas with a

high group bias, winning moves would be more likely to be

grouped. In addition, group size and the number of groups

were added as parameters. Finally, there were two modes of

operation, in one groups were disjoint (without overlap), in

the other mode groups could overlap and all nodes would be

a member of the ‘ungrouped’ group.

Shown below are the results of two experiments varying

the group bias with and without overlap using game trees

with branching factor 10 and depth 6. In these experiments

there were just two groups: the biased group, and the un-

grouped group. With overlap, the ungrouped group included

all available moves, while without overlap it included only

those moves that were not present in the biased group.

The biased group consisted of usually five moves that were

selected depending on the bias parameter. The size of this

group may be different if there are not enough good (or

bad) moves in the node. Without group overlap, group bias

performs in a symmetrical manner. Shown in Figure 4,

experiments with group bias closer to 100% or 0% perform

better than those with group bias closer to 50%. This is

predictable as in this case the ungrouped group contains the

complement of the grouped group.

With group overlap turned on, however, the algorithm

Fig. 4. Average Error vs. Number of Iterations with varying group bias
and no overlap

performs even better with group biases closer to 100%, but

performs worse with group biases closer to 0%. These results

are shown in Figure 5. In this case the ungrouped group

contains all of the possible moves. Thus, the algorithm will

be biased towards exploring those nodes that are grouped as

there will be twice as many paths to such nodes (both through

the group nodes and the ungrouped nodes). This important

effect of grouping would not be as effective without UCT2

as the multiple paths would all be treated independently. It

is also interesting to note that with group overlap enabled,

UCT2 converges to the correct answer even more quickly

than before.

Fig. 5. Average Error vs. Number of Iterations with varying group bias
and group overlap

Overall, grouping shows promise with and without over-

lap. However, this is only the case with sufficiently accurate

groupings (for example, groups where a majority of the

moves correlate to winning moves). When groups include

3932008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

mostly good moves, having overlap with other groups may

help.

B. Go

Computer Go has a history dating back to the sixties (see

e.g., [15] for an overview), with some relatively unsuccessful

attempts to use Monte Carlo search as well ([16], [17]).

Recently, with the appearance of the UCT algorithm (and

its variants), Monte Carlo based programs such as MoGo

[2] are dominating the Go tournaments on both sizes, 9x9

and 19x19. Although Monte Carlo search proved to be rather

successful in Go, the best programs are still far from the best

human players, and many improvements are still required to

close this gap.

For our Go experiments we chose to implement the

enhancements in an open source Go library, namely libEGO

(Library of Effective GO routines) available at [18]. While

this implementation is not heavily optimized, we could still

measure the enhancements’ relative effect on the perfor-

mance. We leave it to further work testing them in more

complete Go programs.

In the experiments, we used two versions of libEGO. The

first was the baseline experiment with UCT0. The second

was using UCT2 and a Manhattan distance grouping, similar

to the one used in [9]. For UCT2, rather than completely re-

implementing the UCT algorithm, we kept the tree structure

of libEGO, and added a transposition table to detect duplicate

nodes in the various parts of the tree. For some number of

recently visited board positions, we stored the result of all

Monte Carlo simulations performed from that position. In

this way the UCT2 algorithm could use the statistics based

on board position rather than path through the game tree. The

implementation of the Manhattan distance grouping included

moves within two intersections of the last two moves. This

is slightly different from the Manhattan grouping used in

[9] where they would only consider intersections around the

single previous move. Moreover, the other group included all

legal moves, resulting thus an overlapping grouping scheme.

In [9] the groups were disjoint.

We used the freely available GNU Go [19] program as an

opponent. While not as strong as the best Go programs, it is

one of the standard opponents in computer Go, and due to

the un-optimized nature of our implementation it provided

sufficient challenge for our purposes. We ran experiments

on 9x9 and 13x13 boards. The 9x9 experiments consisted

of 1,000 games for each configuration with 20 seconds per

move, while the 13x13 experiments, 800 games with 40

seconds per move.

In Figure 6 and Figure 7 we show the results of these

experiments along with a 90% confidence interval.

On the 9x9 board, the Manhattan Grouping shows approx-

imately a 14% improvement over the base algorithm bringing

libEgo to almost even footing with GNU Go.

On the 13x13 board the results are quite similar. In fact,

UCT2 and grouping show even larger improvements with a

25% higher win rate than the base algorithm.

!"#$

!"#%$

!"##$

!"#&$

!"#'$

!"($

!"(%$

)*+,$ -*./*0*.12345

!
"#
$%
&
'(
$)
*
+$
,
#
-
,
.
$

Fig. 6. Results of Go Experiment on 9x9 board with 20 second moves

!"6$

!"6%$

!"6#$

!"6&$

!"6'$

!"%$

)*+,$ -*./*0*.12345

!
"#
$%
&
'(
$)
*
+$
,
#
-
,
.
$

Fig. 7. Results of Go Experiment on 13x13 board with 40 second moves

Overall, the computer Go experiments showed significant

gains through the use of grouping and transposition tables.

This confirms the results seen for artificial trees, and also

the usefulness of grouping moves observed in [9]. Using

transposition tables seems a natural choice in Go programs,

although it will be interesting to test UCT3 for programs with

heavy playouts (i.e. when significant amount of knowledge

is used in simulating games). For artificial trees, we noted

that groups of mostly good moves are helping even in the

presence of overlap. It is a challenging task in Go to identify

those groups of moves that correlate to a common fate, yet

simultaneously contain enough promising moves to be worth

consideration as a group.

V. CONCLUSIONS

In this article we discussed two enhancements to the UCT

algorithm.

The first enhancement relates to the possible adjustment

to UCT when the search tree is treated as a graph. We

have outlined three variants (UCT1, UCT2 and UCT3) of

the basic algorithm (UCT0) that share information amongst

transpositions. These variants have varying implementation

complexity and time overhead during the search. In the

394 2008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

artificial tree experiments, all three variants had improved

performance compared to the basic algorithm. Out of the

two ‘simpler’ variants (UCT1 and UCT2), UCT2 seems to

be slightly better. The performance of the more complex

UCT3 was slightly better than that of UCT2, and therefore

appears as an interesting candidate when the time required

for simulating the games dominates the time required for

updating the statistics collected in the nodes.

The second enhancement consists of grouping moves, and

thus reducing the effective branching factor. Grouping moves

without overlap has shown promising results in Go by [9].

Improved performance was also visible in the experiments

with artificial trees, and additionally we observed that if most

moves in a group have winning scores, then overlap amongst

groups do not appear to worsen the performance obtained

by grouping. However, having groups of poor moves with

overlapping groups appear to result in worse performance

than without grouping. This result may offer a better insight

of how to design groups in games like Go. The enhancements

were also incorporated in a publicly available Go library, and

it resulted in a significant performance increase compared to

the original version.

Although both enhancements look promising in the arti-

ficial tree and the Go experiments, further work is needed

to validate and benchmark these results in full-strength Go

programs. It is also interesting how these adjustments to

the UCT algorithm could be adapted for other Monte Carlo

search algorithms, for instance to BAST [4].

Another possible application would be in parameter opti-

mization (see also [4]). In this case, the parameter space is

partitioned hierarchically, and a move in the tree corresponds

to selecting a subpartition of the current interval. When

splitting an interval, a difficult question is which parameter

to split, and where to split. If different partitionings are per-

formed simultaneously, we could be obtaining overlapping

intervals that resemble the overlapping move groups; and,

it may be possible to similarly share information amongst

these interval groups, in a similar way as it is done with

transpositions.

REFERENCES

[1] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Proceedings of ECML-06, LNCS/LNAI 4212, 2006, pp. 282–293.

[2] S. Gelly and D. Silver, “Achieving master level play in 9 x 9 computer
go,” in Proceedings of the Twenty-Third AAAI Conference on Artificial

Intelligence, 2008, pp. 1537–1540.
[3] H. Finnsson and Y. Björnsson, “Simulation-based approach to general

game playing,” in Proceedings of the Twenty-Third AAAI Conference

on Artificial Intelligence, 2008, pp. 259–264.
[4] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,” in

Proc. 23rd Conference on Uncertainty in Artificial Intelligence (UAI),
2007, pp. 67–74.

[5] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The non-
stochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, pp. 48–77, 2002.

[6] D. Breuker, J. W. H. M. Uiterwijk, and H. J. van den Herik, “Replace-
ment schemes for transposition tables,” ICCA Journal, vol. 17, no. 4,
pp. 183–193, 1994.

[7] B. Bouzy, “Old-fashioned computer Go vs Monte-Carlo Go,” in
Invited tutorial, IEEE 2007 Symposium on Computational Intelligence

in Games, CIG 07, 2007. [Online]. Available: http://www.math-
info.univ-paris5.fr/˜bouzy/publications/CIG07-tutorial-1avril2007.ppt

[8] P. Drake, “Proposed uct / transposition table implementation.” [On-
line]. Available: http://computer-go.org/pipermail/computer-go/2006-
December/007305.html

[9] J.-T. Saito, M. H. Winands, J. W. H. M. Uiterwijk, and H. J. van den
Herik, “Grouping nodes for Monte-Carlo tree search,” in BNAIC 2007,
2007, pp. 276–283.

[10] D. M. Breuker, H. J. V. D. Herik, J. W. H. M. Uiterwijk, and L. V.
Allis, “A solution to the ghi problem for best-first search,” Theoretical

Computer Science, vol. 252, no. 1–2, pp. 121–149, 2001.
[11] A. Kishimoto and M. Müller, “A general solution to the graph history

interaction problem,” in Nineteenth National Conference on Artificial

Intelligence (AAAI’04), 2004, pp. 644–649.
[12] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, ser.

Bradford Book. MIT Press, 1998.
[13] J. Kloetzer, H. Iida, and B. Bouzy, “The Monte-Carlo approach in

Amazons,” in Proceedings of the Computer Games Workshop, 2007,
pp. 185–192.

[14] S. Smith and D. Nau, “An analysis of forward pruning,” in AAAI,
1994, pp. 1386–1391.

[15] M. Müller, “Computer Go,” Artificial Intelligence, vol. 134, no. 1–2,
pp. 145–179, 2002.

[16] B. Bruegmann, “Monte Carlo Go,” 1993. [Online]. Available:
ftp://ftp-igs.joyjoy.net/go/computer/mcgo.tex.Z

[17] B. Bouzy and B. Helmstetter, “Monte-Carlo Go developments,” in Ad-

vances in Computer Games conference (ACG-10). Kluwer Academic,
2003, pp. 159–174.

[18] L. Lew, “Library for effective go routines.” [Online]. Available:
http://www.mimuw.edu.pl/˜lew/hg/libego

[19] “GNU Go.” [Online]. Available:
http://www.gnu.org/software/gnugo/gnugo.html

3952008 IEEE Symposium on Computational Intelligence and Games (CIG'08)

