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Transpressional rupture of an unmapped fault

during the 2010 Haiti earthquake
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On 12 January 2010, a Mw 7.0 earthquake struck the
Port-au-Prince region of Haiti. The disaster killed more
than 200,000 people and caused an estimated $8 billion
in damages, about 100% of the country’s gross domestic
product1. The earthquake was initially thought to have
ruptured the Enriquillo–Plantain Garden fault of the southern
peninsula of Haiti, which is one of two main strike-slip
faults inferred to accommodate the 2 cmyr−1 relative motion
between the Caribbean and North American plates2,3. Here
we use global positioning system and radar interferometry
measurements of ground motion to show that the earthquake
involved a combination of horizontal and contractional slip,
causing transpressional motion. This result is consistent with
the long-term pattern of strain accumulation in Hispaniola.
The unexpected contractional deformation caused by the
earthquake and by the pattern of strain accumulation indicates
present activity on faults other than the Enriquillo–Plantain
Garden fault. We show that the earthquake instead ruptured
an unmapped north-dipping fault, called the Léogâne fault. The
Léogâne fault lies subparallel to—but is different from—the
Enriquillo–Plantain Garden fault. We suggest that the 2010
earthquake may have activated the southernmost front of the
Haitian fold-and-thrust belt4 as it abuts against the Enriquillo–
Plantain Garden fault. As the Enriquillo–Plantain Garden fault
did not release any significant accumulated elastic strain, it
remains a significant seismic threat for Haiti and for Port-au-
Prince in particular.

The Mw 7.0 Haiti earthquake of 12 January 2010 is the largest
event to strike the southern part of Hispaniola since the 15
September 1751, 21 November 1751 and 3 June 1770 events,
which also severely affected Port-au-Prince. Although the location
of these historical events is poorly constrained, they are thought
to have ruptured the Muertos–Enriquillo–Plantain Garden fault
system5 (Fig. 1b). They were followed on 7 May 1842 by a Mw

8.0 event farther north, inferred to occur on the offshore section
of the Septentrional fault along the northern coast of Haiti,
then by a sequence of Mw 7.5–8.1 events between 1946 and
1953 on the subduction fault to the northeast of the Dominican
Republic (Fig. 1b).

These large earthquakes highlight the three main fault systems
that accommodate the Caribbean–North America relative plate
motion in the northeastern Caribbean (Fig. 1a), at the transition
between frontal subduction of the North American plate beneath
the Caribbean plate in the Lesser Antilles and roughly east–
west strike-slip motion along the Cayman trough6–9. Global
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positioning system (GPS) studies show that the interior of the
Caribbean plate moves east-northeastwards (N70 E) at a rate of
18–20mmyr−1 relative to the North American plate3,10, implying
oblique convergence between Hispaniola–Puerto Rico and the
oceanic lithosphere of the North American plate11,12. This oblique
convergence is partitioned in Hispaniola between plate-boundary-
parallel motion on the Septentrional and southern peninsula fault
zones in the overriding plate, and plate-boundary-normal (thrust)
motion at the plate interface along the north Hispaniola fault
zone13,14 (Fig. 2b). In addition, active oblique thrusting has been
mapped along the southern edge of the Chaine des Matheux and
its continuation in the Dominican Republic as the Sierra de Neiba
(Haiti fold-and-thrust belt4, Fig. 2b), which connect farther east,
offshore, with the active Muertos trough.

GPS surveys in the Dominican Republic since 1986 (refs 3,
14) and preliminary results in Haiti since 2003 (ref. 15) may be
modelled with slip rates of 9 ± 2mmyr−1 on the Septentrional
fault, consistent with palaeoseismic data16, and 7± 2mmyr−1 on
the southern peninsula fault zone. From 2006 to 2009, we acquired
new observation epochs at 35 GPS sites in Haiti and completed an
additional survey of the Dominican Republic GPS network (see the
Methods section), providing the first comprehensive velocity field
for Hispaniola (Fig. 2). In a North America-fixed frame, east–west
left-lateral shear and a north–south gradient in velocities are appar-
ent (Fig. 2a), reflecting elastic strain accumulation across the plate
boundary. In a Caribbean-fixed frame, an additional component
of plate-boundary-normal contraction becomes apparent (Fig. 2b).
This also appears on a velocity cross-section throughHaiti (Fig. 2c),
with about 4mmyr−1 of shortening, mostly accommodated across
the southern half of the island.

We model these interseismic velocities as the contribution
of block rotations and elastic strain accumulation on locked,
seismogenic, faults17 (see the Methods section). The resulting
kinematic model (Fig. 1b) shows slip rates of 2±1 to 6±1mmyr−1

on the north Hispaniola reverse fault, 12 ± 2mmyr−1 on the
Septentrional fault zone and 5 to 6± 2mmyr−1 on the southern
peninsula fault zone. The present spatial resolution of our GPS
network is not sufficient to identify smaller subfaults within these
three faults zones, and therefore they are each modelled as a single
strand. Model estimates on the southern peninsula fault zone imply
transpression, combining left-lateral strike-slip (5±1mmyr−1) and
reverse slip (2 ± 1mmyr−1). If we assume that the last major
events in southern Hispaniola in 1751 and 1770, about 250 years
ago, occurred within that fault zone, and that elastic strain has
been accumulating at a constant rate of 6mmyr−1, a total slip
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Figure 1 | Tectonic setting of the northeastern Caribbean and Hispaniola. a, Major active plate-boundary faults (black lines), instrumental seismicity

(National Earthquake Information Center database, 1974–present) and Caribbean–North America relative motion10 (arrow). P.R. = Puerto Rico;

D.R. =Dominican Republic. b, Summary of the present-day tectonic setting of Hispaniola. Estimated historical rupture areas are derived from archives5.

1860, 1953 and 1701 are the dates of smaller magnitude, poorly located events. Vertical strike-slip events are shown as lines; dip-slip events are shown as

projected surface areas. The red arrows show geodetically inferred long-term slip rates (labelled in mmyr−1) of active faults in the region from the block

model discussed here (the arrows show motion of the southern with respect to the northern block).

deficit of 1.5m is implied. No major earthquake has been reported
in southern Haiti since then, although smaller magnitude events,
which are less well located, occurred in 1784, 1860, 1864 and 1953
(Fig. 2b). If entirely released in a single event, this slip deficit would
scale to a Mw 7.1 event18, consistent with previous estimates15 and
with themomentmagnitude of the 12 January event.

We resurveyed the Haiti GPS network between 31 January
and 15 February 2010. Resulting coseismic displacements reach
up to 0.7m and 0.8m at sites DFRT and LEOG, closest to the
earthquake epicentre (Fig. 3a).Measurable coseismic displacements
are observed up to ∼150 km from the epicentre. The spatial
distribution of horizontal coseismic displacements shows a pattern

that combines left-lateral strike-slip and a significant amount
of fault-perpendicular shortening in a pattern similar to the
interseismic strain accumulation (Fig. 2). This is well illustrated
by the baseline between sites DFRT and TROU, with 0.9m of
shortening in a N166 E direction, quasi-perpendicular to the
N85 E general direction of the Enriquillo–Plantain Garden fault
in that area (Fig. 3a).

Coseismic displacements are also well recorded by synthetic
aperture radar interferometry. We used Advanced Land Observing
Satellite/Phased Array type L-band Synthetic Aperture Radar
(ALOS/PALSAR) data to compute three interferograms spanning
12 January 2010 (see the Methods section). We find significant
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Figure 2 | Interseismic GPS velocities. The GPS velocity field is determined from GPS campaigns before the 12 January 2010 earthquake. The ellipses and

error bars are 95% confidence. a, Velocities with respect to the North American plate. b, Velocities with respect to the Caribbean plate. c, Velocity profile

perpendicular to the plate boundary (coloured circles and one-sigma error bars) and best-fit elastic block model (solid lines). Blue = profile-perpendicular

(‘strike-slip’) velocity components; orange = profile-parallel (‘shortening’) velocity components. The profile trace and width are indicated by dashed lines

in a and b.

range change over a ∼50-km-wide region from Greissier in
the east to Petit Goâve in the west (Fig. 4a). Line-of-sight
displacements up to 0.9m for the ascending track and 0.75m for the
descending one coincide with the Léogâne alluvial fan north of the
mappedEnriquillo–PlantainGarden fault. Decreasing range in both
ascending and descending interferograms indicates a significant
amount of vertical motion (uplift), and the larger range change in
the ascending interferograms indicates westward ground motion.
These results are consistent with observations of coastal uplift (up
to 0.6m) from raised coral reefs along the coast from Petit Goâve to
the north of Léogâne19.

To infer the geometry of the earthquake rupture and estimate
the associated coseismic slip distribution, we modelled surface
deformation as the result of fault dislocations in an elastic half-
space in a two-step process (see the Methods section). Given the
limited information on active faults in the epicentral area, we
modelled the simplest possible geometry of a single and planar
fault rupture. A full description of the event may require more
complex geometries. The solution to a planar, uniform slip, rupture
requires that the fault dips to the north at an angle of ∼60◦, with its
upper edge at ∼5 km depth and a surface area of 32.5× 10.5 km
(Fig. 4a). This upper edge roughly coincides with the surface trace
of the Enriquillo–Plantain Garden fault but is located below the
topographic surface, so that the intersection of the model fault
with the surface is about 2.5 km south of the Enriquillo–Plantain
Garden fault trace. We find 2.6m and 1.8m of strike-slip and
reverse dip-slip displacement, respectively, corresponding to a Mw

7.0 event (assuming a rigidity of 30GPa). Best-fit fault strike is

N78 E, slightly more north-directed than the Enriquillo–Plantain
Garden fault (N85 E). This rupture geometry is generally consistent
with aftershock locations from near-field seismic stations20, which
cluster to the north of the Enriquillo–Plantain Garden fault trace
(Fig. 4a). The discrepancies in geometry between the mapped
Enriquillo–Plantain Garden fault and the best-fit rupture model
suggest that part or all of the earthquake slip occurred on a fault
other than the Enriquillo–Plantain Garden fault.

In a second step we fix the fault geometry to the best-fit
uniform slip solution described above and use the GPS and
interferometric synthetic aperture radar (InSAR) data to estimate
variable slip distribution on the rupture plane (Supplementary
Fig. S1). Our preferred solution (Fig. 4b) shows up to 5.5m
of slip with a distribution in two main lobes, from depths of
about 18 to 3 km. The rupture did not reach the surface in
the model, consistent with the lack of surface rupture associated
with the event reported from field geological observations21. The
total model moment release is 5.04 × 1019 Nm−1 (Mw = 7.1),
slightly larger than computed from teleseismic data shortly after
the earthquake22,23. Our model implies that 62% of the moment
release occurred by strike-slip motion and 38% by reverse dip-
slip motion (Supplementary Fig. S2). The Haiti earthquake bears
similarities with the 1989 Loma Prieta earthquake in California24

where a well-known seismic gap on the San Andreas seemed to
have produced the Mw 7.1 event, but later analysis indicated that
the earthquake ruptured a dipping 70◦ fault, different from the
San Andreas, with no associated surface rupture and a significant
component of reverse slip.
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The north-dipping geometry of the 12 January earthquake
rupture and the fact that it did not reach the surface are two
robust features of our source model. They are difficult to reconcile
with the Enriquillo–Plantain Garden fault, as field observations

along its trace near the epicentre show a vertical to high-angle
(>60◦) south-dipping structure with evidence of left-lateral surface
offsets during large earthquakes21 (Fig. 4c). In addition, offset
geological features and the prominent trace of the fault in the
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morphology both indicate that the Enriquillo–Plantain Garden
fault is a long-lived feature. Repeated earthquakes similar to the
12 January event on the Enriquillo–Plantain Garden fault would
have resulted in elevated topography in the hanging-wall to the
north of the fault, and lower elevations to the south, opposite to
the basic observation that elevated topography lies to the south
of the Enriquillo–Plantain Garden fault in the epicentral area.
We therefore infer that the fault responsible for the 12 January
earthquake was probably not the Enriquillo–Plantain Garden fault,
but rather a previously unmapped structure, possibly a blind thrust
underlying the Léogâne delta, whichwename the ‘Léogâne fault’19,21

(Fig. 4c). Much uncertainty remains concerning the role of this
fault in the active tectonics of the region. It could be part of the
southern peninsula fault zone or, alternatively, may merge at depth
with the southernmost extension of the Haitian fold-and-thrust
belt4, a south-propagating system with an active frontal thrust that
reaches as far south as the 1,500-m-deep basin between the southern
peninsula and the Gonâve island25.

Although the Mw 7, 12 January, Haiti earthquake did not come
as a surprise given the historical seismicity and the present rate of
strain accumulation in southern Haiti, several of its characteristics
were unexpected. In particular, the rupture did not reach the surface
and its dip angle and mechanism, well constrained by geodetic
and geological data, suggest that a fault other than the Enriquillo–
Plantain Garden fault has ruptured. The source mechanism, which
combines left-lateral strike-slip and reverse slip on a north-dipping
plane, is consistent with the secular strain accumulation pattern
derived from interseismic GPS measurements. The 12 January
2010 earthquake is causing us to revise the classic thinking that
present deformation in southern Haiti is accommodated by the
single subvertical Enriquillo–Plantain Garden fault strike-slip fault.
The significant component of contractional deformation reported
here, both in the interseismic and coseismic observations, suggests
that faults other than the Enriquillo–Plantain Garden fault are
active, consistent with previous on-land and offshore geological
mapping4,25. The hazard level in the greater Port-au-Prince region
depends greatly on the geometry and sense of slip on these faults,
both the Enriquillo–Plantain Garden fault21 and compressional
or oblique-slip structures such as the Léogâne fault. Much work
remains to be done to identify and quantify potential earthquake
sources in and around Hispaniola, an island where vulnerability to
earthquake shakingwill probably remain high in the near future.

Methods
GPS data and processing. The interseismic GPS velocity field is derived from
data collected at campaign and continuous GPS sites from 1994 to 2009 in the
Dominican Republic and 2003 to 2009 in Haiti. We resurveyed the Haiti GPS
network between 31 January and 15 February 2010. All but one of the sites were
still in place, even though most were located on buildings. We calculated coseismic
displacements by projecting the site position to the date of the earthquake by fitting
a straight line to the observed pre-earthquake time series for sites surveyed at least
twice (30 out of 35, Fig. 3b), or using the pre-earthquake site position and the
interseismic velocity as predicted by the block model (5 sites out of 35). Further
details are provided in the Supplementary Information.

Block modelling. The modelling procedure divides the crust into predetermined
blocks bounded by active faults locked to a certain depth and along which elastic
strain accumulates. We used the elastic block modelling program ‘DEFNODE’
(ref. 17). DEFNODE allows for laterally variable fault coupling—in the absence of
any information indicative of aseismic fault slip we imposed full coupling on all
faults. DEFNODE uses GPS velocities, earthquake slip vectors and fault-specific
slip rates and azimuths (where applicable) to solve for the angular velocities of the
crustal blocks using a downhill simplex minimization method. Further details are
provided in the Supplementary Information.

InSAR data and analysis. We used ALOS/PALSAR data from the Japan Aerospace
Exploration Agency and Ministry of Economy, Trade and Industry of Japan to
compute three interferograms. One interferogram from a descending orbit (satellite
travelling south, track 447) was constructed from data acquired on 9 March 2009
and 25 January 2010. Two interferograms from ascending orbits (satellite travelling

north) were constructed from data acquired on 8 February 2009 and 14 February
2010 (track 138), and on 28 February 2009 and 16 January 2010 (track 137). The
interferograms measure ground displacement in the radar line-of-sight direction,
which is about 34.5◦ from the vertical with a component towards the east for
descending and towards the west for ascending tracks, respectively. The topographic
phase was removed using a 3-arcsec (90-m)-resolution digital elevation model
generated by the National Aeronautics and Space Administration Shuttle Radar
Topography Mission26, resampled to 30m ground spacing. We used a quad-tree
scheme27 to subsample the interferograms to 232, 258 and 166 data points for
descending track 447 and ascending tracks 137 and 138, respectively.

Inversion for coseismic slip. We use the coseismic GPS displacements together
with three interferograms in a two-step process. We first iteratively solve for the
best-fit earthquake rupture location and dip angle assuming uniform fault slip
on a single planar surface. Although more complex (but poorly constrained)
geometries are likely to provide a better fit to the data, we used a single fault plane
because no external data (such as surface rupture or precisely relocated aftershocks)
allow us to independently identify the actual rupture trace and segmentation.
We solve this nonlinear inverse problem using a Monte Carlo approach that
fully explores the model space, followed by a gradient method28. We then fix
the fault geometry to the previously obtained solution and discretize the fault
plane with rectangular patches of dimensions ∼2×2 km. We use the same data
set to solve for spatially variable slip along the fault plane (further details in the
Supplementary Information).
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