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TransRate: reference-free quality assessment
of de novo transcriptome assemblies

Richard Smith-Unna,1 Chris Boursnell,1 Rob Patro,2 Julian M. Hibberd,1

and Steven Kelly3

1Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom; 2Department of Computer Science,

Stony Brook University, Stony Brook, New York 11794-4400, USA; 3Department of Plant Sciences, University of Oxford,

Oxford OX1 3RB, United Kingdom

TransRate is a tool for reference-free quality assessment of de novo transcriptome assemblies. Using only the sequenced

reads and the assembly as input, we show that multiple common artifacts of de novo transcriptome assembly can be readily

detected. These include chimeras, structural errors, incomplete assembly, and base errors. TransRate evaluates these errors

to produce a diagnostic quality score for each contig, and these contig scores are integrated to evaluate whole assemblies.

Thus, TransRate can be used for de novo assembly filtering and optimization as well as comparison of assemblies generated

using different methods from the same input reads. Applying the method to a data set of 155 published de novo transcrip-

tome assemblies, we deconstruct the contribution that assembly method, read length, read quantity, and read quality make

to the accuracy of de novo transcriptome assemblies and reveal that variance in the quality of the input data explains 43%of

the variance in the quality of published de novo transcriptome assemblies. Because TransRate is reference-free, it is suitable

for assessment of assemblies of all types of RNA, including assemblies of long noncoding RNA, rRNA, mRNA, and mixed

RNA samples.

[Supplemental material is available for this article.]

High-throughput sequencing of RNA has revolutionized our abili-

ty to assess the genetic and quantitative basis of many complex bi-

ological traits. For organisms that have sequenced and annotated

genomes, short reads can be directly mapped to these resources

and quantitative estimates of gene expression (as well as splice-var-

iants andmutations) can be determined using a variety of different

methods. In the absence of an appropriate reference genome, de

novo transcriptome assembly must be performed. These assem-

blies provide the primary data for gene discovery and evolutionary

analyses, and facilitate quantitative assessment of differential gene

expression. Given the importance of these applications to compar-

ative biological research, several algorithms have been developed

to produce de novo transcriptome assemblies from raw sequence

data. Popular among these algorithms are Trinity (Grabherr et al.

2011), Oases (Schulz et al. 2012), Trans-ABySS (Robertson et al.

2010), IDBA-tran (Peng et al. 2013), and SOAPdenovo-Trans (Xie

et al. 2014), each of which takes a different approach to the prob-

lem of reconstituting a transcriptome from short sequence reads.

Furthermore, theyall provide considerable flexibilitywithmultiple

parameters and heuristics that can bemodified to allow the user to

tailor assembly settings for variations in RNA-seq library construc-

tion, coverage depth, and differences between organisms. These

large parameter spaces mean that the same read data can generate

substantially different assemblies bothwithin and between assem-

blymethods. Likewise, altering parameter combinations can result

in the assembly of contigs with varying properties such that dispa-

rate conclusions relating to gene content and expression level can

be reached from the same input data.

In addition to the considerable algorithmic flexibility, the

data being assembled can be generated from multiple different

RNA types. These can range from specifically amplified subpopula-

tions of particular types of RNA, to total RNA encompassing all

RNA types within the cell. Given the wide range of input data

and assembly methods, there is a need to be able to evaluate the

quality of any de novo transcriptome in the absence of a known

reference and identify the set of parameters or assembly methods

that best reconstruct the transcriptome from which the raw read

data was generated. Moreover, there is a need to be able to identify

within a given assembly the set of contigs that are well-assembled

from those that are not, so that incorrect data do not influence

downstream biological interpretation.

Algorithms to assess the outputs of DNA-directed (e.g., ge-

nome and metagenome) assembly have been developed. These

range in complexity from descriptive metrics (Gurevich et al.

2013) to explicitmodeling of the sequencing and assembly process

to provide a likelihood-based measure of assembly quality (Clark

et al. 2013; Rahman and Pachter 2013). However, the assumptions

used for evaluation of DNA-directed assembly such as uniformity

of coverage (except in repetitive regions) and assembled contig

length are not appropriate for the assembly of transcriptomes

due to the exponentially distributed coverage of different tran-

scripts and log-normally distributed transcript lengths. Therefore

alternative criteria that are tailored for the biological properties

of transcriptomes need to be used for the assessment of de novo as-

sembled transcriptomes.

To date, the majority of de novo transcriptome assessment

methods have exploited comparative approaches in which the as-

sembled transcriptome is compared to a known reference data set
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(O’Neil and Emrich 2013; Lowe et al. 2014). These comparative

methods provide insight into the complement of known proteins

that are represented within a de novo assembly but do not reveal

the extent to which the contigs representing those proteins are

assembled correctly. Furthermore, due to the inherent limitations

of such comparative analyses, they only assess the de novo tran-

scriptome on the subset of contigs that represent conserved

proteins. Highly divergent transcripts, novel transcripts, and non-

coding transcripts are not assessed by these methods, and thus

the assessment measures do not consider all the data. Moreover,

de novo assembly of noncoding RNA or specific subpopulations

of RNAs are poorly evaluated by these comparative methods.

To date, only a single reference-free transcriptome assembly eval-

uation tool has been produced, RSEM-eval (Li et al. 2014). RSEM-

eval provides an assembly likelihood given the read data, allowing

the comparison of assemblies generated from the same input

data. Although RSEM-eval quantifies the relative contribution

that each contig makes to an overall assembly score, it does not

provide descriptive statistics about the quality of contigs within

an assembly.

Here, we present TransRate, a novel method for evaluation

of the accuracy and completeness of de novo transcriptome as-

semblies. TransRate assesses these features through two novel

reference-free statistics: the TransRate contig score and the

TransRate assembly score. The TransRate contig score provides

a quantitative measure of the accuracy

of assembly for each individual contig,

and the TransRate assembly score pro-

vides a quantitative measure of the accu-

racy and completeness of the assembly.

Results

Problem definition and approach

The aim of de novo transcriptome as-

sembly is to accurately reconstruct the

complete set of transcripts that are repre-

sented in the read data in the absence of

a reference genome. There are several

contributing factors that negatively af-

fect the accuracy of this reconstruction

process. These factors include error in

the sequencing process, incomplete cov-

erage of transcripts (due to insufficient

sequencing depth), and real biological

variability (such as variation in exon/

intron retention, variation in exon boun-

dary usage, and variation in nucleotide

sequence between alleles). Moreover,

assembly errors can originate from algo-

rithmic simplifications (such as repre-

senting the information contained in

the reads as shorter words) and allowanc-

es (e.g., permitting assemblyof fragments

containing mismatches) that are used to

mitigate the computational complexity

of the assembly problem. Together, these

factors cause several common assembly

artifacts, including hybrid assembly of

gene families, transcript fusion (chime-

rism), spurious insertions in contigs,

and structural abnormalities such as incompleteness, fragmenta-

tion, and local misassembly of contigs (Fig. 1).

TransRate is focused on a clear problem definition, i.e., to as-

sess the accuracy and completeness of a de novo assembled tran-

scriptome using only the input reads. TransRate proceeds by

mapping the reads to the assembled contigs, proportionally as-

signingmultimapping reads in a probabilisticmanner to their con-

tig of origin, analyzing the alignments, calculating contig-level

metrics (Table 1), integrating these contig-level metrics to provide

a contig score, and then combining the completeness of the as-

sembly with the score of each contig to produce an overall assem-

bly score (Fig. 2). TransRate also provides an abundance weighted

assembly score whichweights each constituent contig score by the

relative abundance level of each contig.

Contig assessment criteria

To calculate the TransRate contig score, a correctly assembled con-

tig is assumed to have the following four properties: (1) The iden-

tity of the nucleotides in the contig will accurately represent the

nucleotides of the true transcript; (2) the number of nucleotides

in the contig (i.e., the assembled transcript length) will accurately

represent the number in the true transcript; (3) the order of the nu-

cleotides in the contig will accurately represent the order in the

true transcript; and (4) the contig will represent a single transcript.

Figure 1. Common errors in de novo transcriptome assembly, and how they can be detected using
read mapping data. Family collapse occurs when multiple members of a gene family are assembled
into a single hybrid contig. This error can be detected by measuring the extent that the nucleotides in
the contig are supported by the mapped reads. Chimerism occurs when two or more transcripts (that
may or may not be related) are concatenated together in a single contig during assembly. This can be
detected when the expression levels of the transcripts differ, leading to a change-point in the read cov-
erage along the contig. Unsupported insertions can be detected as bases in a contig that are unsupport-
ed by the read evidence. Incompleteness can be detected when reads or fragments align off the end of
the contig. Fragmentation is caused by low coverage and is detectable when read pairs bridge two con-
tigs. Local misassembly encompasses various structural errors that can occur during assembly, such as
inversions, usually as a result of assembler heuristics. These are detectable when both members of a
read pair align to a single contig, but in a manner inconsistent with the sequencing protocol.
Redundancy occurs when a single transcript is represented by multiple overlapping contigs in an assem-
bly. This is detectable when reads align tomultiple contigs but the assignment process assigns them all to
the contig that best represents the original transcript.
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We propose that each of these four statements can be approximat-

ed through analysis of the reads thatmap to the assembled contigs

and are encapsulated by the fourmetrics presented in Table 1. For a

detailed description of these metrics and how they are calculated,

see the “TransRate contig scores” section in Methods.

To determine whether these four contig-level metrics were

discrete, and thus captured different properties of each assembled

contig, their performance was evaluated on a range of assemblies

generated using different algorithms from multiple different spe-

cies (Fig. 3A). For each contig-level metric, the distributions of ob-

served scoreswas broadly similar irrespective of species or assembly

algorithm (Fig. 3A). One notable exception to this observation is

that the distribution of s(Ccov) (Table 1) observed for rice and

mouse contigs generated using SOAPdenovo-Trans was markedly

different to that observed for Oases and Trinity for the same spe-

cies. This reveals that the contigs generated using SOAPdenovo-

Trans on this rice data contained fewer regions that had zero cov-

erage after read mapping.

Visual inspection of the global behavior of the contig-level

metrics suggested that the four scores could be classified into

two groups based on the density function of the observed score

values. Both s(Cord) and s(Cseg) (Table 1) produced approximately

uniform distributions spanning the entire score range (Fig. 3A),

whereas s(Ccov) and s(Cnuc) (Table 1) produced distributions

whose density increased toward higher values (Fig. 3A). To deter-

mine whether these visually similar distributions were correlated,

and thus measured features of the assembled contigs that were

interdependent, we analyzed the pairwise Spearman’s rank corre-

lation between the score components. This revealed that the

metrics were poorly correlated (Fig. 3B), and thus each provided

discrete assessment of the assembled contigs to which they were

applied.

Manual inspection of reference-based results for the 30 low-

est-scoring contigs according to each score component was con-

sistent with the individual score components capturing their

target properties (Supplemental Fig. S1). The Bayesian segmenta-

tion of coverage depth, s(Cseg), was also evaluated by inspection

of coverage depth profiles (Supplemental Fig. S2) and simulation

of artificial transcript chimeras. The latter was done by in silico fu-

sion of randomly selected transcripts from the yeast transcriptome

and assessment of s(Cseg) scores as a function of the difference

in abundance between the fused transcripts (Supplemental Fig.

S3). Here, the segmentation method was unable to distinguish

chimeras between transcripts whose abundance differed by less

than twofold (Supplemental Fig. S3). The individual score compo-

nents are provided in the TransRate program output so that end

users can gain insight into the common sources of error in their

assembly.

Evaluation of the TransRate contig score

As the contig-level metrics provided discrete evaluation of assem-

bled contigs, we sought to determine whether the geometric

mean of these metrics (see Methods, equation 1) was informative

of the accuracy of assembly. To assess this, 4 million read pairs

were simulated from each of the four test species (rice, mouse, hu-

man, and yeast; see Methods, “Independence of score compo-

nents”) and assembled using SOAPdenovo-Trans with default

Table 1. The contig score components

Score
component Description

s(Cnuc) The proportion of nucleotides in the mapped reads
that are the same as those in the assembled contig

s(Ccov) The proportion of nucleotides in the contig that have
no supporting read data

s(Cord) The extent to which the order of the bases in the
contig are correct by analyzing the pairing
information in the mapped reads

s(Cseg) The probability that the coverage depth of the
transcript is univariate

Figure 2. The TransRate workflow. (1) TransRate takes as input one or
more de novo transcriptome assemblies and the paired-end reads used
to generate them. (2) The reads are aligned to the contigs. (3)
Multimapping reads are proportionally assigned to contigs based on the
posterior probability that each contig was the true origin of the read. (4)
The alignments are evaluated using four discrete score components. (5)
The four score components are integrated to generate the TransRate con-
tig score. (6) The TransRate assembly score is calculated from analysis of all
contig scores.
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settings. Simulated reads were used here so that the true set of tran-

scripts was known and hence the accuracy of the assembled con-

tigs could be assessed. The resultant assemblies were subjected to

TransRate assessment, and the utility of the TransRate contig

scores was assessed by comparing them to a conventional measure

of contig accuracy calculated by alignment of the assembled con-

tigs to the transcripts used to simulate the reads (see Methods,

“Calculation of contig accuracy”). Comparison of these measures

revealed that there was a strong monotonic relationship between

contig accuracy andTransRate contig score (Fig. 4A). Across all sim-

ulated data sets, the TransRate contig score exhibited a Spearman’s

rank correlation with contig accuracy of ρ = 0.71 (Fig. 4A; Supple-

mental Table S1). For comparison, we also applied RSEM-eval to

the same data set (Fig. 4B). Here, the contig impact score from

RSEM-eval, whichmeasures the relative contribution of every con-

tig to the assembly score, also showed a positive correlation with

contig accuracy; however, the Spearman’s rank correlation with

accuracy was lower than that observed for TransRate (ρ = 0.36)

(Supplemental Table S1). Nonparametric correlation measures

were used here to enable unbiased comparison of TransRate and

RSEM-eval scores because their score distributions differ in type,

location, scale and shape.

Analysis of the interrelationship between contig scores and

contig accuracy revealed that both assessment methods exhibited

minimum value inflation (Fig. 4A,B).

Although some of these minimum value

contigs comprise accurately assembled

transcript sequences, they are assigned

minimum score values as they fail to ac-

quire mapped reads during the read-

mapping process. This occurs due to the

presence of contigs within the assembly

that better represent the true contig

than the contig in question and thus

preferentially obtain all of the mapped

reads during the probabilistic read as-

signment stage. This phenomenon com-

monly occurs when the contig in

question is a substring of a longer contig

in the assembly. As these contigs are re-

dundant and they would be quantified

as “not expressed” in downstream ex-

pression analyses of the assemblies,

both TransRate and RSEM-eval are justi-

fied in the assignment of minimum val-

ue scores to these contigs. In the absence of these minimum

value contigs, the Spearman’s correlation coefficients for both

TransRate and RSEM-eval are ρ = 0.70 and ρ = 0.77, respectively.

Application of TransRate for relative evaluation of de novo

assemblies from the same read data

Because the TransRate contig score is strongly related to contig ac-

curacy, we sought to develop an assembly-level score that summa-

rized the information captured by assessment of the individual

contigs (Fig. 4A). Here, the geometric mean of all contig scores

was selected such that each contig contributed equally to the final

assembly assessment (see Methods, equation 2). Analysis of the

TransRate contig score distributions for assemblies generated using

different assembly algorithms from different species revealed

that most assemblers produced contigs that obtained a wide range

of scores (Fig. 5A). Some distributions also appeared to be multi-

modal with overlapping populations of low and high scoring con-

tigs (Fig. 5A).

Comparison of the geometric mean of the contig scores re-

vealed that on different data sets, different assemblers tended to

producemore accurate assemblies (Fig. 5B). On average, Oases (ver-

sion 0.2.06with Velvet version 1.2.07) produced the highestmean

contig scores for mouse and rice, whereas Trinity (version Trinity-

Figure 4. TransRate contig score is related to assembly accuracy. Contigs from assemblies of simulated
reads from four species (rice, mouse, yeast, and human) were evaluated using TransRate and RSEM-eval.
Reciprocal best-BLAST against the true set of transcripts was used to determine the F-score, or reference-
based accuracy, of the assembled contig. Each point is a contig in an assembly, with all four assemblies on
the same plot. (A) Comparison between TransRate contig score and contig F-score. (B) Comparison be-
tween RSEM-eval contig impact score and contig F-score, with contig impact scores below 0 set to the
smallest positive value in the data to enable plotting.

Figure 3. Distribution and interrelationship of contig score components. (A) Distribution of contig score components in 10 different assemblies spanning
four species and three different assemblers. s(Cnuc) is the fraction of nucleotides in a contig whose sequence identity agrees with the aligned reads. s(Ccov) is
the fraction of nucleotides in a contig that have one or more mapped reads. s(Cord) is the fraction of reads that map to the contig in the correct orientation.
s(Cseg) is the probability that the read coverage along the length of the contig is best explained by a single Dirichlet distribution, as opposed to two or more
distributions. (B) The Spearman’s rank correlation coefficient between the contig score components, averaged across all species and assemblers.
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r2013-02-25) produced the highest mean contig scores for human

and yeast (Fig. 5B). The percentage of the input that could be

mapped to these assemblies ranged from65%to85%, and thus, sig-

nificant amounts of read data failed to be assembled by eachmeth-

od (Fig. 5C). To provide a single assembly assessment score that

combined the proportion of read data containedwithin the assem-

bly and the mean accuracy of the constituent contigs, we took the

product of the geometric mean contig score and the proportion of

readsmapping to the assembly (Fig. 5D). This assembly score places

equal importance on the accuracy of each of the assembled contigs

and the proportion of the input read data that is captured by the de

novo assembly. In an ideal scenario, in which all of the input reads

map back to the assembled contigs with no disagreement between

the reads and the assembly, the assembly score will be 1. Errors in

the sequencing or assembly process that cause reads to be omitted

from the assembly or reads to disagree

with the assembled contigs will cause

the assembly score to tend toward 0.

TransRate also provides an abun-

dance-weighted contig score (see

Methods, equation 3), in which tran-

scripts with assembly errors are penalized

in proportion to their abundance. That

is, highly abundant transcripts with er-

rors are penalized more heavily than low

abundance transcripts with the same

errors. Using these abundance-weighted

contig scores, an abundance-weighted

assembly score can also be evaluated

(see Methods, equation 4). The results

from using these abundance-weighted

scores exhibit the same trend as for the

TransRate contig and assembly scores

(Supplemental Fig. S4). However, the

additional penalty due to abundance

weighting causes the overall scores to

be much lower (Supplemental Fig. S4).

Caution should be exercised by the user

when using the abundance-weighted

contig scores because theyarenot compa-

rable between contigs. That is, a highly

abundant transcript with an assembly

error will have a lower score than a tran-

script with the same error that is ex-

pressed to a lower level.

Further comparison of de novo

assemblies using BLAST and TransRate

To demonstrate additional ways in

which TransRate can be combined with

BLAST-based assessment of de novo

transcriptome assemblies, the de novo

assemblies were annotated using recipro-

cal best BLAST (bidirectional best BLAST

hit) against the appropriate Ensembl

reference data set for each species. The

TransRate scores for these contigs were

compared, and the proportion of tran-

scripts that had the highest TransRate

score for each assembly was recorded

(Fig. 5E). No one method consistently

outperformed the others; rather, the different assemblers produced

the best assembly for >25% of transcripts (Fig. 5E). Analysis of the

total number of reference transcripts that were assembled by the

different methods revealed that, although there was significant

agreement between the methods, each method uniquely assem-

bled a large number of bona fide transcripts not assembled by

the other methods (Fig. 5F). Taken together, these analyses lend

support to the idea that combining contigs from multiple assem-

bly methods is an effective way to increase the completeness of a

de novo assembled transcriptome.

Filtration of contigs using TransRate contig scores

Figures 4, A and B, and 5A show many contigs within a given as-

sembly can achieve low or minimum value scores, and thus users

may desire to remove them from the assembly. Although

Figure 5. Calculation of TransRate assembly scores. (A) Distribution of TransRate contig scores for the
10 representative assemblies from real data. (B) Geometric mean of TransRate contig scores for all assem-
blies. (C) Proportion of reads that map to each assembly. (D) Final TransRate assembly scores for the 10
representative assemblies. (E) The proportion of reference transcripts that are best assembled by individ-
ual assembly methods. (F) The number of reference transcripts (identified by reciprocal best BLAST) that
are assembled by each assembler.
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TransRate allows the user to specify any contig score cut-off

between 0 and 1 for filtration of assembled contigs, it also

provides an alternative option whereby a specific contig

score cut-off can be learned for any given assembly. To do

this, TransRate uses a global optimization method to find

the contig score cut-off value such that the TransRate as-

sembly score function is maximized (Supplemental Fig.

S5). This automated cut-off method is consistent with the

problem definition and overall aim of TransRate (to assess

the accuracy and completeness of a de novo assembled tran-

scriptome using only the input reads) as it automatically se-

lects the subset of contigs that maximizes both accuracy

and completeness. It should be noted that filtering contigs

in this way may remove some accurately assembled low

abundance transcripts that have incomplete coverage.

To provide an example of the results obtained from the

application of the automated TransRate contig filtering, the

10 assemblies analyzed in Figure 5 were subject to filtering.

Those de novo assembled contigs that contained regions

with >95% identity to predicted genes in the genomes of

the source species were selected for further analysis. On

average, 20% of genes that had contigs matching at least

part of a predicted gene were filtered out by TransRate

(Supplemental Fig. S6). Of the genes whose entire length

was encompassed in a single transcript, ∼12%were discard-

ed by TransRate (Supplemental Fig. S6). Although Trans-

Rate has identified these transcripts as poorly assembled,

and caution should be exercised against using abundance

level estimates for these contigs, they may contain regions

that have utility in certain analyses (e.g., phylogenetic

analysis).

Comparative analysis of 155 published assemblies

provides a reference for calibration and relative

assessment of assembly quality

To provide a reference distribution of TransRate assembly

scores that end users can use to assess the relative merit

of their own assemblies, TransRate was applied to a set of

155 published de novo assembled transcriptomes (Supple-

mental Table S2). All assembled transcriptomes were down-

loaded from the NCBI Transcriptome Shotgun Archive

(http://www.ncbi.nlm.nih.gov/genbank/tsa) andwere cho-

sen for analysis if theymet the following criteria: (1) The as-

sembly program was listed; (2) the reads were Illumina

paired-end reads; and (3) the published assembly contained

at least 5000 contigs. TransRate assembly scores for this set

of published assemblies ranged from 0.001 to 0.52 (Fig. 6A,

Figure 6. Application of TransRate to 155 published assemblies
from the NCBI Transcriptome Shotgun Archive. One hundred fif-
ty-five assemblies from the Transcriptome Shotgun Archive were
analyzed using TransRate. The quality of the reads used to generate
the assemblies were also analyzed using FastQC. (A) Cumulative
distribution of TransRate raw and optimized assembly scores for
each of the 155 assemblies. (B) Comparison between raw and op-
timized assembly score. (C) Distribution of TransRate optimized as-
sembly scores partitioned by taxonomic group. (D) Distribution of
TransRate optimized assembly scores partitioned by assembly
method. (E–J) TransRate optimized assembly scores compared to
various summary statistics of the input reads: (E) read length; (F)
read GC%; (G) mean read per-base Phred score; (H) percent of
reads that were PCR duplicates; (I) number of read pairs; and (J)
read bases per assembled base.
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light gray line). Each assembly was also subject to automated as-

sembly score optimization producing optimized assembly scores

that ranged from 0.001 to 0.6 (Fig. 6A, black line). Although

some assembly scores showed little or no change following remov-

al of low scoring transcripts, most improved when contigs below

the learned cut-off were discarded (Fig. 6B).

It has been suggested that the transcriptomes from certain

groups of organismsmay bemore difficult to assemble than others

(Martin andWang 2011). To investigatewhether TransRate assem-

bly scores varied for different taxa, the results were analyzed ac-

cording to their major phylogenetic groups (Fig. 6C). For clades

with more than 10 representative assemblies, no association be-

tween assembly quality and taxonomic group was found (Fig. 6C).

To determine whether any assembler consistently produced

higher TransRate assembly scores on end user data sets, the perfor-

mance of methods that had at least 10 assemblies was compared

(Fig. 6D). In this test, Trinity, Oases, and SOAPdenovo-Trans all

produced assemblies that spanned similar score ranges, with the

highest mean score exhibited by Trinity (Fig. 6D). In contrast,

Newbler, Agalma, and Trans-ABySS assemblies produced lower

TransRate scores (Fig. 6D). However, caution should be exercised

when interpreting these results as the user-modifiable settings

and post-assembly processing steps were not reported for these

published assemblies. Thus, the extent to which the TransRate as-

sembly scores were influenced by changes in user-modifiable as-

sembly parameters or post-assembly processing is unknown.

Because neither assembly method nor taxonomic group pro-

duced a major effect on the TransRate score of an assembly, we

sought to determine whether the quality of the input read data

was responsible for some of the variation in TransRate assembly

scores. The read data for each assembly was analyzed using

FastQC, and the resulting read-level metrics compared to the

TransRate assembly scores of the assemblies generated using those

reads. This revealed that neither the read lengthnor the percentage

GC of the read data set exhibited any correlation with TransRate

assembly score (Fig. 6E,F). However, significant associations were

observed for both read quality (r2 = 0.27) (Fig. 6G) and the level

of read-duplication in the data set (r2 = 0.1) (Fig. 6H). In Illumina

sequencing, low read qualities are predominantly caused by errors

in the sequencing process; common sources include over-cluster-

ing of the flow cell and phasing. In contrast, increases in read-

duplication are caused by errors in the sample preparation stage.

It occurs during the PCR amplification stage of the read library

preparation, and is generally caused by either conducting the li-

brary preparation from too little starting material or by having a

large variance in the fragment size such that smaller fragments be-

come overrepresented during the limited cycle PCR. Although

there is little correlation between the number of sequenced reads

and the TransRate score of the assembled transcriptome (Fig. 6I),

there is a clear association between the relative coverage implied

by those reads and the TransRate score (r2 = 0.16) (Fig. 6J). In sum-

mary, the quality of the sequence reads, the number of reads per

gene, and the quality of the input cDNA library (in order of relative

contribution) explain 43% of the variance in de novo assembly

quality. Thus, the quality of the input data is more important in

determining the quality of a de novo assembly than the choice

of assembly method that is used.

Discussion

Here, we present TransRate a novel method for reference-free as-

sessment and filtering of de novo assembled transcriptomes. Our

method is focused on a clear definition of an optimal de novo as-

sembled transcriptome, that it should be a complete and accurate

representation of the transcripts encompassed in the raw readdata.

TransRate avoids conflating assessment of de novo assembly

quality with other criteria (such as coverage of expected reference

transcript subsets) that are not equivalent to correct or complete

assembly of the input reads. Moreover, the method is not biased

by expression level of the transcripts, and each transcript is weight-

ed equally in the overall transcriptome assessment (unless the

alternative abundance weighted metric is used). As the majority

of published de novo assembled transcriptomes use Illumina

paired-end sequencing, our analysis of the efficacy of TransRate

is focused on this data type. However, the method is suitable for

the analysis of other types of sequencing and thus is not restricted

to use in the analysis of Illumina data.

TransRate is specifically designed to provide detailed insight

into the quality of any de novo assembled transcriptome and

each of its constituent contigs such that comparative analysis be-

tween assembly methods and post-assembly filtering of good

and bad contigs can be performed. As TransRate does not use ref-

erence data sets in the evaluation of assemblies it is equally suitable

for the assessment of assemblies of all types of RNA, including long

noncoding RNA,mRNA, ribosomal RNA, andmixed RNA samples.

Moreover, given multiple assemblies generated using the same in-

put reads, TransRate can also be used to determine the assembly

that best represents the input read data. Thus, TransRate could

be used to help improve the performance of multiple different

de novo transcriptome assembly algorithms. TransRate can also

be used to filter out low scoring contigs; however, caution should

be exercised here as application of filtering may result in removal

of transcripts that have some utility. For example, transcripts

with very low coverage are more likely to have low contig scores

because of fragmentation and encapsulated bases in gapped re-

gions; these transcripts, while incompletely assembled, may

have utility in pathway reconstruction, quantitative expression

analysis, or phylogenetic analysis. Similarly, transcripts with low

s(Cseg) scores are likely to represent chimeric transcripts. Here, al-

though the transcript itselfmay be incorrectly assembled, the com-

ponent segments of the transcript may themselves be correctly

assembled and of utility if separated. To help users identify and

diagnose likely assembly errors affecting low scoring contigs,

TransRate provides each of the separate contig scores (in addition

to the overall contig score). This information can be used to help

resolve assembly errors on a contig-by-contig basis. Further inves-

tigation by systematically exploring a large range of read mapping

parameters across a large range of readmapping algorithms and as-

sembly tools may yield new ways to improve the performance of

TransRate. This may improve the s(Cord) and s(Ccov) measures

that are affected by read coherency (Myers 2005), which may, in

turn, suggest how the assemblies could be improved.

To help end users to interpret the TransRate scores that they

obtain for their own assemblies and place them in context of pre-

viously published assemblies, we provide a meta-analysis of 155

published de novo assemblies. Here, a user generated de novo as-

sembly with a TransRate score of 0.22 (optimized score of 0.35)

would be better than 50% of published de novo assembled tran-

scriptomes that have been deposited in theNCBI TSA. Through de-

tailed analysis of these 155 published assemblies, we reveal that

the quality of the input read data is the major factor determining

the quality of any de novo transcriptome assembly, explaining

more of the variance in quality between assemblies than the as-

sembly method that is used.
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Methods

Algorithm overview

TransRate is a reference-free qualitative assessment tool for the

analysis of de novo transcriptome assemblies. TransRate requires

one ormore transcriptome assemblies and the reads used to gener-

ate those assemblies. TransRate aligns the reads to the assembly,

processes those read alignments, and calculates contig scores using

the full set of processed read alignments. TransRate classifies con-

tigs into those that are well assembled and those that are poorly as-

sembled, by learning a score cut-off from the data that maximizes

the overall assembly score.

Read alignment

Reads are aligned to a given assembly using SNAP v1.0.0 (Zaharia

et al. 2011). Alignments are reported up to a maximum edit dis-

tance of 30. Up to 10 multiple alignments are reported per read

where available (-omax 10), up to a maximum edit distance of 5

from the best-scoring alignment (-om 5). Exploration within an

edit distance of 5 from each alignment is allowed for the calcula-

tion of MAPQ scores (-D 5). BAM-format alignments produced

by SNAP are processed by Salmon (Patro et al. 2015). Separate strat-

egies are used for abundance estimation and posterior read assign-

ment. For abundance estimation, each mapped read is fractionally

assigned to each potential contig of origin using Salmon (Patro

et al. 2015) in a process that is analogous to the proportional

assignment of the EM procedure used in RSEM (Li et al. 2010).

For contig score evaluation, a different approach was taken in

which a single assignment was produced for each read. Here,

each read was assigned entirely to a single contig, but the prob-

ability of assignment for multimapping reads was sampled from

the distribution of relative transcript abundances. Thus, during

contig evaluation, each read is given an all-or-nothing assign-

ment, with assignments sampled in proportion to the estimated

abundances.

Simulation of chimeric transcripts

The complete set of transcripts (n = 5917) for the Saccharomyces cer-

evisiae genome were downloaded from http://www.yeastgenome.

org/. The transcripts were quantified and mRNA abundances re-

corded using Salmon, and the same set of reads used in the de

novo assembly evaluation is described in “Analysis of assemblies

generated from real reads.” To simulate transcript chimeras, 1000

transcripts were selected at random without replacement from

the complete set of transcripts. Pairs of transcripts (n = 500) were

fused in silico by concatenation of two of the randomly selected

full-length transcript sequences head-to-tail. These 500 transcript

chimeras were placed back into the reference transcriptome file

(replacing both of their constituent transcripts) such that the

transcriptome submitted to TransRate contained the 500 chimeric

transcripts and the 4917 transcripts that were not chimeric (n =

5417). The transcriptome was subject to assessment with Trans-

Rate using the same set of RNA-seq reads. This processwas repeated

20 times to obtain the results for the analysis of 10,000 chimeras.

The s(Cseg) score for each transcript chimera was compared to the

difference in the relative abundance of the constituent transcripts

in the chimera.

TransRate contig scores

TransRate outputs scores for every contig. Here, an assembly con-

sists of a set of contigs C derived from a set of reads, R̂. Reads are

aligned and assigned to contigs such that Ri is the set of reads as-

signed to Ci. We propose that a correctly assembled contig derived

from a de novo transcriptome assembly will have the following

four intuitive properties:

The identity of the nucleotides in the contig will accurately repre-

sent the nucleotides of the true transcript s(Cnuc). This score

measures the extent to which the nucleotides in the mapped

reads are the same as those in the assembled contig. If the

mapped reads do not support the nucleotides of the contig,

then this is likely because either the nonsupportive reads should

map to a different contig or to a contig that is not represented in

the assembly (a similar gene family variant, alternative allele, or

other similarly encoded gene), or the assembled sequence is in-

correct. In the case of the former, a missing contig (i.e., one that

is not assembled) will negatively affect the score of the contig to

which its reads incorrectly map. Although the contig to which

they map may be correctly assembled, the negative score for

this contig can be justified because the incorrectlymapped reads

will render the abundance estimate of the assembled contig in-

valid. In the case of the latter, disagreement between the reads

and the contig must be due to misassembly. To ensure that sto-

chastic read errors that result in disagreement between a read

and a contig do not affect the overall score for that contig, sup-

port for an alternative nucleotide sequence needs to be provided

by multiple reads (see below).

The number of nucleotides in the contig will accurately represent

the number in the true transcript, s(Ccov). This score measures

the proportion of nucleotides in the contig that have zero

coverage, and thus have no supporting read data. If there are

nucleotides in the contig that are not covered by any reads

(regardless of the agreement between the reads and the se-

quence of the contig), then this should negatively affect the

contig score.

The order of the nucleotides in the contig will accurately represent

the order in the true transcript, s(Cord). This score measures the

extent to which the order of the bases in contig are correct by

analyzing the pairing information in the mapped reads. Here,

if the orientation of the mapped reads does not conform to an

expected mapping estimated from an analysis of a subsample

of mapped read pairs, then these incorrectly mapping reads

will negatively affect the contig score. Similarly, if the contig

could have been extended, i.e., there are read pairs that map

such that one read is present near a terminus of the contig and

its pair is not mapped and would be expected to map beyond

the scope of the contig, then such cases indicate that the contig

does not use all of the available reads, and thus is incompletely

assembled. This metric is informative for the identification of

partially assembled transcripts.

The contigwill represent a single transcript, s(Cseg). This scoremea-

sures the probability that the coverage depth of the transcript is

univariate, i.e., that it represents an assembly of a single tran-

script and not a hybrid/chimeric assembly of multiple tran-

scripts expressed at different expression levels. Here, the per-

nucleotide coverage depth of the contig must be best modeled

by a single Dirichlet distribution (described below). If the contig

is better modeled by the product of two or more Dirichlet distri-

butions, then this indicates that two ormore contigs with differ-

ent transcript abundances have been erroneously assembled

together.

The TransRate contig score is the product of the scores for each of

these properties using the aligned reads as evidence. These four

properties are evaluated next.
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Calculation of s(Cnuc)

The alignment edit distance is used to quantify the extent towhich

the contig sequence is correct. The alignment edit distance is the

number of changes that must be made to the sequence of a read

in order for it to perfectly match the contig sequence. Here, the

edit distance of an aligned read rij [ Ri is denoted as erij , and the

set of reads that cover nucleotide k(k [ 1,n[ ]) as @k. Themaximum

possible edit distance for an alignment is limited by the read align-

ment algorithm (described in “Read alignment”) and is denoted as

ê. Support for the contig provided by the reads is then evaluated

as 1− erij/ê for each ri [ @k, and the mean of all support values is

used to calculate s(Cnuc).

Calculation of s(Ccov)

This score is evaluated as the fraction of nucleotides in the contig

that receive at least onemapped read irrespective of the agreement

between the read and the contig.

Calculation of s(Cord)

The pairing information of the mapped reads is used to evaluate

this score. To determine the parameters of the read library prepara-

tion, a randomly selected subsample of 1%of allmapped read pairs

are analyzed. From these alignments, the orientation of the paired-

end reads is determined, and the mean and standard deviation of

the fragment size is inferred. All read pair alignments are then clas-

sified according to whether they are plausible given the estimated

parameters of the library preparation and assuming that the as-

sembled contig is correct. A read pair is considered correct if the

following criteria are met: (1) Both reads in the pair align to the

same contig; (2) the relative orientation of the reads in the pair is

consistent with the inferred library preparation parameters; and

(3) the relative position of the reads is consistent with the mean

and standard deviation of the inferred fragment size. s(Cord) is

then evaluated as the proportion of all mapped read pairs that

are correct.

Calculation of s(Cseg)

The per-nucleotide read coverage data is used to evaluate this score.

To evaluate the probability that the contig originates from a single

transcript (i.e., it is not chimeric), a Bayesian segmentation analy-

sis of the per-nucleotide coverage depth is performed. For a correct-

ly assembled contig, it is assumed that the distribution of per-

nucleotide coverage values in that contig is best described by a sin-

gleDirichlet distribution, i.e., all nucleotides in the same transcript

should have the same expression level, and thus should be best

modeled as a stochastic sample from a single distribution. In con-

trast, a contig that is a chimera derived from concatenation of two

or more transcripts will have per-nucleotide coverage values that

are best described by two or more different Dirichlet distributions.

The probability that the distribution of per-nucleotide read cover-

age values comes from a single Dirichlet distribution is evaluated

using a Bayesian segmentation algorithm previously developed

for analysis of changes in nucleotide composition (Liu and

Lawrence 1999). To facilitate the use of thismethod, the per-nucle-

otide coverage along the contig is encoded as a sequence of sym-

bols in an unordered alphabet by taking log2 of the read depth

rounded to the nearest integer. As the probability will be a value

between 0 and 1, this probability is used directly as s(Cseg).

TransRate assembly score

The aim of the TransRate assembly score is to provide insight into

the accuracy and completeness of any given assembly. Thus, the

assembly score weights equally a summary statistic of the

TransRate contig scores and the proportion of the input reads

that are containedwithin this assembly.Wenote here that alterna-

tive methods for summarizing contig scores that weight contig

scores by their expression level would produce different results.

However, such schemes would not be consistent with the problem

definition and aim of TransRate: to assess the accuracy and com-

pleteness of a de novo assembled transcriptome using only the in-

put reads. This score assumes that an ideal assembly will contain a

set of contigs that represent unique and complete transcripts to

which all of the reads used to assemble those transcripts can be

mapped. The TransRate assembly score (T) is evaluated as the geo-

metric mean of the mean contig score and the proportion of read

pairs that map to the assembly such that

T =

��������������������

∏

n

c=1

s(C)

( )

1

n
Rvalid

√

√

√

√

√

√ , (1)

where

s(C) = s(Cnuc)s(Ccov)s(Cord)s(Cseg). (2)

The abundance-weighted TransRate score

An abundance-weighted contig and assembly score are also pro-

vided by TransRate. The contig score is evaluated as

sw(C) = s(C)1+logn(TPM+1), (3)

where s(C) is as defined in equation 2; and TPM is the transcripts

per million transcripts value assigned to that contig by Salmon.

Under this framework; highly abundant transcripts that have as-

sembly errors are penalized more heavily than low abundance

transcripts with the same errors. The abundance-weighted assem-

bly score (Tw) is thus evaluated as

Tw =

����������������������

∏

n

c=1

sw(C)

( )

1

n
Rvalid

√

√

√

√

√

√ . (4)

Analysis of assemblies generated from real reads

To demonstrate the utility TransRate contig and assembly scores

using real data, TransRate was applied to publicly available bench-

mark assemblies from two previous analyses (Davidson and

Oshlack 2014; Xie et al. 2014). One set comprised different assem-

blies generated for rice (Oryza sativa) and mouse (Mus musculus)

using the Oases, Trinity, and SOAPdenovo-Trans assemblers (Xie

et al. 2014). The other set comprised assemblies for human

(Homo sapiens) and yeast (Saccharomyces cerevisiae) that had been

assembled with Oases and Trinity (Davidson and Oshlack 2014).

These assemblies were chosen as they have previously been inde-

pendently used in benchmark comparisons, and each of the spe-

cies has a completed annotated reference genome available. In

all cases, TransRate was run with the published reads and the pub-

lished assembly as input.

Independence of score components

Correlation between the contig score components was measured

for the assemblies from real data. To prevent larger assemblies

from biasing the results, 5000 contigs were sampled at random

from each assembly. These contigs were used to calculate a

Spearman’s rank correlation coefficient using R version 3.1.1

(RCoreTeam2014). Thecorrelationbetweenany twoscore compo-

nents was taken as the mean of the correlation across all data sets.

Smith-Unna et al.

1142 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 29, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Identification of reconstructed reference transcripts

The full set of coding and noncoding transcripts for each species

was downloaded from Ensembl Genomes version 25 (ftp://ftp.

ensemblgenomes.org/pub/release-25/). Assembled contigs were

then identified by BLAST searching the reference data set for the

corresponding species using bidirectional blastn local align-

ment with an e-value cut-off of 10−5 (BLAST+ version 2.2.29)

(Camacho et al. 2009). Only reciprocal best hits were retained for

further analysis.

Assembly from simulated read data

For each species, a total of 10 millionmRNAmolecules were simu-

lated from the full set of annotated mRNAs from the Ensembl ref-

erence with exponentially distributed expression values using the

flux simulator v1.2.1 (Griebel et al. 2012). mRNA molecules were

uniform-randomly fragmented and then size-selected to a mean

of 400 nt and standard deviation of 50 nt. From the resulting frag-

ments, 4million pairs of 100-bp reads were simulated using the de-

fault error profile included in flux-simulator. An assembly was

generated from these simulated reads using SOAPdenovo-Trans

with default parameters.

Calculation of contig accuracy

Accuracy was calculated by comparing contigs assembled from

simulated data to the set of transcripts from which the read data

were simulated. Reciprocal best BLAST hits were identified, and

the accuracy of each contig assembled from simulated read data

was evaluated as the contig F-score where

Contig precision =
Number of correct nucleotides in contig

Number of nucleotides in contig
,

(5)

Contig recall =
Number of correct nucleotides in contig

Number of nucleotides in reference transcript
,

(6)

Contig F-score = 2
contig precision
( )

contig recall
( )

contig precision+ contig recall
( )

( )

. (7)

Spearman’s rank correlation coefficient between the contig F-score

and the TransRate contig scorewas calculated using R version 3.1.1

(R Core Team2014). The same contigs were also subject to analysis

using RSEM-eval, and the relationship between contig impact

score and contig F-score was analyzed using the same method.

Constructing a benchmark data set of TransRate scores

A survey of the range of assembly scores for published de novo

transcriptome assemblies was conducted by analyzing a subset

of transcriptome assemblies from the Transcriptome Shotgun

Archive (http://www.ncbi.nlm.nih.gov/genbank/tsa). De novo as-

sembled transcriptomes were used in this analysis only if paired-

end reads were provided, the assembler and species were named

in the metadata, and the assembly contained at least 5000 contigs

(TransRate has no minimum or maximum contig requirements,

but a minimum number of 5000 was imposed to ensure sufficient

raw data was available for analysis). For each of these test data sets,

the assembly and readswere downloaded. TransRatewas run on all

assemblies, and FastQC version 2.3 (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc) was used to evaluate the quality

of the read data sets.

Software availability

TransRate is written in Ruby and C++ and makes use of the

BioRuby (Goto et al. 2010) and BAMtools (Barnett et al. 2011) li-

braries. The source code is available in a compressed archive in

Supplemental File S1 and at http://github.com/Blahah/transrate

and is released under the open source MIT license. Binary down-

loads and full documentation are available at http://hibberdlab.

com/transrate. The software is operated via a command line inter-

face and can be used onOSX and Linux. TransRate can also be used

programmatically as a Ruby gem.
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