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Abstract

Background: Serum homocysteine, when studied singly, has been reported to be positively associated both with the
endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine
dimethylaminohydrolase (DDAH) activity] and with symmetric dimethylarginine (SDMA). We investigated combined
associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations
at population level.

Methods: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and
SDMA (LC-MS/MS), and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine;
capillary electrophoresis) were collected from a sample of the Hunter Community Study on human ageing [n = 498, median
age (IQR) = 64 (60–70) years].

Results: Regression analysis showed that: a) age (P = 0.001), gender (P = 0.03), lower estimated glomerular filtration rate
(eGFR, P = 0.08), body mass index (P = 0.008), treatment with beta-blockers (P = 0.03), homocysteine (P = 0.02), and
glutamylcysteine (P = 0.003) were independently associated with higher ADMA concentrations; and b) age (P = 0.001),
absence of diabetes (P = 0.001), lower body mass index (P = 0.01), lower eGFR (P,0.001), cysteine (P = 0.007), and
glutamylcysteine (P,0.001) were independently associated with higher SDMA concentrations. No significant associations
were observed between methylated arginines and either glutathione or taurine concentrations.

Conclusions: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined
assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent
associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA)
and/or cationic amino acid transport requires further investigations.
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Introduction

The methylated forms of the amino acid L-arginine, asymmetric

(ADMA) and symmetric (SDMA) dimethylarginine, are generated

from the proteolysis of proteins containing methylated arginine

residues [1,2]. Both ADMA and, to a lesser extent, SDMA play an

important role in cardiovascular homeostasis. ADMA is a potent

endogenous inhibitor of endothelium nitric oxide synthase [1,2].

Experimental and human studies have convincingly demonstrated

that ADMA facilitates endothelial dysfunction, vascular damage,

and the onset and progression of atherosclerosis and thrombosis

[3]. Recent reports also suggest a potential, albeit indirect, role of

SDMA in inhibiting nitric oxide synthesis and in favouring

inflammation [4,5]. Clinical studies conducted over the last 20

years have provided solid evidence that higher plasma ADMA

and, more recently, SDMA concentrations independently predict

adverse cardiovascular outcomes in several patient groups with

different cardiovascular risk at baseline [6–11].

Cardiovascular disease biomarkers for clinical use should have

several characteristics, i.e. easily measurable in the population,

predictable relationship with cardiovascular risk, and modification

by means of pharmacological and/or non-pharmacological

interventions [12]. Currently, ADMA and SDMA possess the

first two characteristics. Whilst future clinical studies are likely to

address the issue of ADMA and SDMA modulation in relation to

risk modification an important issue remains the identification of

biological processes and pathways influencing methylated arginine

synthesis and metabolism in humans.

The highly reactive sulphur-containing amino acid homocyste-

ine has long been shown to exert negative effects on endothelial

function by inhibiting nitric oxide synthesis [13]. Similarly to

methylated arginines, several clinical studies have shown that
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higher homocysteine concentrations independently predict ad-

verse cardiovascular outcomes and improve risk reclassification

[13–15]. Notably, a number of human studies have shown positive

associations between homocysteine, ADMA, and SDMA concen-

trations [7,16–19]. The synthesis of ADMA and SDMA is

catalyzed by a family of enzymes called protein-arginine-N-

methyltransferases (PRMT). PRMT utilize S-adenosylmethionine,

an intermediate in the methionine-homocysteine pathway, as a

methyl donor [1]. After donating its methyl group, S-adenosyl-

methionine is transformed into S-adenosylhomocysteine, and then

into homocysteine (Figure 1) [20]. In vitro studies have also

demonstrated that homocysteine inhibits the activity of dimethy-

larginine dimethylaminohydrolase (DDAH), the enzyme respon-

sible for ADMA metabolism [21,22]. These findings suggest a

biological and pathophysiological interplay between homocyste-

ine, methylated arginines, and cardiovascular disease [23].

Homocysteine is the initial step of the transsulfuration pathway

[20]. This biochemical pathway leads to the synthesis of important

cellular and homeostatic thiols such as cysteine, taurine, and the

natural antioxidant glutathione (Figure 1) [24–26]. Little knowl-

edge is currently available on whether there are associations

between transsulfuration pathway thiols and methylated arginines

[27]. Ideally, human studies investigating these associations should

account for a number of clinical, demographic, biochemical, and

pharmacological confounders affecting these pathways

[1,2,13,28,29]. We addressed this issue by examining the

combined associations between transsulfuration pathway thiols

and serum concentrations of ADMA and SDMA at population

level, in an established epidemiological cohort of human ageing.

Methods

Population
The Hunter Community Study (HCS), a collaboration between

the University of Newcastle’s School of Medicine and Public

Health and the Hunter New England Area Health Service, is a

population-based cohort study to assess the impact of clinical,

genetic, biochemical, socioeconomic, and behavioural factors on

human ageing [30]. Participants, a cohort of community-dwelling

subjects aged 55–85 years residing in Newcastle (New South

Wales, Australia), were randomly selected from the electoral roll

and contacted between December 2004 and December 2007.

Invitation letters were sent to 9,784 individuals. Of the 7,575

subjects for whom a response was received, 258 were ineligible

(148 did not speak English, 92 were deceased, and 18 had moved

to an aged-care facility), 3,440 refused, and 3,877 initially agreed

to participate. Of these, a total of 3,253 actually participated

(response rate 44.5%).

After informed, written consent was obtained, subjects were

asked to complete two self-report questionnaires and to return

these when they attended the HCS data collection centre, during

which time a series of clinical and biochemical measures was

obtained. Clinical assessment included a full physical examination

and measurement of blood pressure, heart rate, body mass index,

and waist-to-hip ratio. Routine haematological and biochemical

parameters included full blood count, C-reactive protein (CRP),

fasting lipids, liver and renal function, and fasting blood glucose.

Additional samples were cryopreserved at 286uC and 2196 uC.

Consent to link personal information obtained during the study to

data from Medicare Australia and local health databases was also

sought.

After the clinical assessment a further package of three self-

reporting questionnaires to be returned by reply-paid post was

given to participants to complete at home. The questionnaires

provided details on demographic and socioeconomic character-

istics, nutritional assessment, medical and surgical history,

medication exposure, tobacco use, and alcohol consumption.

Full details of the data collected are described elsewhere [30].

The sample for this investigation (n = 500) was derived from the

initial cohort by simple random sampling. Of the 500 subjects

randomly selected there were complete exposure and outcome

data for 498 subjects. No a priori sample size was determined,

however assuming that at least 10–15 subjects are needed for each

independent variable included in the multivariate analysis the

sample size was more than sufficient to accommodate the number

of co-variables examined in this investigation (see Statistical

analysis paragraph). A comparison of this sample with the entire

cohort showed no significant difference for a range of clinical,

biochemical, socioeconomic, and behavioural factors (data not

shown). The HCS was performed according to the Declaration of

Helsinki. All procedures were approved by the local ethics

committee.

Biochemical Measurements
Blood was collected in EDTA tubes and centrifuged at 4u

and 3000 g for 10 minutes to separate plasma, which was stored

for three years at 280uC before analysis. L-arginine, ADMA,

and SDMA were measured in 0.1 mL serum by hydrophilic-

interaction liquid chromatography and isotope dilution tandem

mass spectrometry [31]. The intra and inter-assay coefficients of

variation (CV) for L-arginine, ADMA, and SDMA were all

,15%. Serum concentrations of the transsulfuration pathway

thiols homocysteine, cysteine, cysteinylglycine, glutamylcysteine,

glutathione, and taurine were measured by laser-induced

fluorescence capillary electrophoresis on 0.05 mL serum for

taurine and 0.2 mL for the other thiols [32,33]. A five-point

calibration curve was used to measure analyte concentrations.

Only for taurine was homocysteic acid used as internal standard

[33]. The minimum detectable concentration for all analytes

was between 200 and 300 pmol/L, with mean recovery

between 98% and 102%. A good reproducibility of intra-assay

(CV ,3.5%) and inter-assay (CV ,6.4%) tests was obtained

[32,33]. High-sensitivity CRP was measured in serum by latex-

enhanced immunoturbidimetry. Estimated glomerular filtration

rate (eGFR) was calculated using the Modification of Diet in

Renal Disease formula [34].

Statistical Analysis
Results are expressed as means 6 SD, medians and inter-

quartile ranges, or frequencies as appropriate. Variables were

tested for normal distribution by using the Kolmogorov-Smirnov

test. Univariate associations between clinical and demographic

variables, thiols, ADMA, and SDMA were assessed by Spearman’s

rank correlation coefficient, two-way ANOVA, and Mann-

Whitney U test. Non-normally distributed variables were log

transformed. Variables showing associations with either ADMA or

SDMA (P,0.2) were entered in linear stepwise regression analysis

to identify factors independently associated with methylated

arginines. Only log-transformed variables were tested in a single

analysis. Multicollinearity was tested by measuring the tolerance

and the variance inflation factor values for each analysis. A total of

31 variables were identified a priori to be potentially associated with

the outcomes of interest: age, gender, body mass index, smoking,

alcohol consumption, history of hypertension, hypercholesterolae-

mia, rheumatoid arthritis, myocardial infarction, stroke, diabetes,

fasting glucose, total cholesterol, HDL and LDL cholesterol,

triglycerides, eGFR, CRP, homocysteine, cysteine, taurine,

glutamylcysteine, glutathione, cysteinylglycine, and use of anti-
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platelet drugs, beta-blockers, angiotensin converting enzyme

inhibitors, statins, diuretics, calcium channel blockers, and

antidiabetic drugs. Considering at least 15 patients per each

confounding variable a minimum sample size of 465 patients was

required for regression analyses [35]. Analyses were performed

using IBM SPSS Statistics 19.0 for Windows (SPSS Inc, Chicago,

IL, USA). A two-sided P,0.05 indicated statistical significance.

The latter was adjusted, P,0.01, in regression analysis to account

for multiple comparisons.

Results

Clinical, demographic, and biochemical characteristics and

medication use of the study population are described in Table 1.

Folic acid and vitamin B12 supplements were used in a relatively

Figure 1. Relationships between the transsulfuration, demethylation, and remethylation pathways. ADMA: asymmetric dimethylargi-
nine, SDMA: symmetric dimethylarginine, SAM: S-adenosylmethionine, SAH: S-adenosylhomocysteine.
doi:10.1371/journal.pone.0054870.g001
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small proportion of participants, 1.8% and 1.4%, respectively.

There were no significant differences in homocysteine and

cysteine concentrations between those with vs. without folic acid

[9.1 (5.9–9.9) vs. 9.1 (7.9–11.0) mmol/L, P = 0.32; 178.4629.6

vs. 190.3634.1 mmol/L, P = 0.30) and between those with vs.

without vitamin B12 [8.3 (7.7–9.1) vs. 9.1 (7.9–10.9) mmol/L,

P = 0.26; 172.0623.6 vs. 190.4634.1 mmol/L, P = 0.16).

ADMA
Age, body mass index, lower total and HDL cholesterol, lower

eGFR, CRP, and higher concentrations of all thiols were

associated (P,0.2) with higher ADMA concentrations (Table 2

and Figure S1). Associations were also found with gender (female:

0.5560.07 vs. male: 0.5460.08 mmol/L, P = 0.15), regular alcohol

consumption (no: 0.5560.08 vs. yes: 0.5460.07 mmol/L,

P = 0.05), hypertension (no: 0.5360.07 vs. yes: 0.5660.08 mmol/

L, P = 0.001), myocardial infarction (no: 0.5460.08 vs. yes:

Table 1. Clinical, demographic, biochemical characteristics and medication use.

Variable Study population (n = 498)

Age [years, median (IQR)] 64 (60–70)

Females (%) 49.4

Current smoker (%) 6.6

Current alcohol use (%) 69.7

Body mass index [Kg/m2, median (IQR)] 28.0 (25.7–31.2)

Systolic blood pressure (mmHg, mean6SD) 137618

Diastolic blood pressure (mmHg, mean6SD) 80610

Heart rate (b/min, mean6SD) 66611

Hypertension (%) 49.3

Rheumatoid arthritis (%) 5.5

Diabetes (%) 10.8

Hypercholesterolaemia (%) 40.8

Myocardial infarction (%) 5.7

Stroke (%) 2.6

Antiplatelet drugs (%) 2.5

Beta-blockers (%) 21.4

Angiotensin converting enzyme inhibitors (%) 47.4

Calcium-channel blockers (%) 34.9

Statins (%) 13.0

Diuretics (%) 9.7

Antidiabetic drugs (%) 6.5

Folic acid supplements (%) 1.8

Vitamin B12 supplements (%) 1.4

Fasting serum glucose [mmol/L, median (IQR)] 4.8 (4.4–5.4)

Total cholesterol [mmol/L, median (IQR)] 4.9 (4.3–5.8)

HDL-cholesterol [mmol/L, median (IQR)] 1.3 (1.1–1.5)

LDL-cholesterol (mmol/L, mean6SD) 3.160.9

Triglycerides [mmol/L, median (IQR)] 1.1 (0.8–1.6)

eGFRa (mL/min, mean6SD) 79616

C-reactive protein [mg/L, median (IQR)] 2.0 (1.2–3.7)

Homocysteine [mmol/L, median (IQR)] 9.1 (7.9–10.8)

Cysteine (mmol/L, mean6SD) 187.8637.6

Taurine [mmol/L, median (IQR)] 63.3 (52.3–89.7)

Glutamylcysteine (mmol/L, mean6SD) 4.461.2

Glutathione [mmol/L, median (IQR)] 3.9 (3.0–5.3)

Cysteinylglycine [mmol/L, median (IQR)] 29.1 (25.4–33.4)

L-arginine (mmol/L, mean6SD) 55.3618.7

Asymmetric dimethylarginine (mmol/L, mean6SD) 0.5460.08

Symmetric dimethylarginine [mmol/L, median (IQR)] 0.69 (0.61–0.82)

acalculated using the Modification of Diet in Renal Disease formula.
doi:10.1371/journal.pone.0054870.t001
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0.5960.07 mmol/L, P = 0.004), stroke (no: 0.5460.08 vs. yes:

0.5860.07 mmol/L, P = 0.12), antiplatelet drugs (no: 0.5560.08

vs. yes: 0.5860.08 mmol/L, P = 0.16), beta-blockers (no:

0.5460.07 vs. yes: 0.5860.08 mmol/L, P,0.001), angiotensin

converting enzyme inhibitors (no: 0.5460.07 vs. yes:

0.5660.08 mmol/L, P = 0.04), statins (no: 0.5460.08 vs. yes:

0.5660.08 mmol/L, P = 0.15), and diuretics (no: 0.5460.07 vs.

yes: 0.5960.09 mmol/L, P,0.001).

On regression analysis age, female gender, lower eGFR, body

mass index, treatment with beta-blockers, and the thiols homo-

cysteine and glutamylcysteine were independently associated with

higher serum ADMA concentrations. Glutamylcysteine showed

stronger associations with ADMA concentrations vs. homocysteine

(Table 3).

SDMA
Age, lower body mass index, lower serum glucose, lower total

and LDL cholesterol, lower triglycerides, lower CRP and eGFR,

and higher concentrations of all thiols except taurine were

associated (P,0.2) with higher SDMA concentrations (Table 2

and Figure S2). Associations were also found with regular alcohol

consumption (no: 0.7560.20 vs. yes: 0.7260.17 mmol/L,

P = 0.04), diabetes (no: 0.7360.18 vs. yes: 0.6860.17 mmol/L,

P = 0.04), myocardial infarction (no: 0.7360.18 vs. yes:

0.7960.20 mmol/L, P = 0.05), stroke (no: 0.7260.18 vs. yes:

0.8760.20 mmol/L, P = 0.003), antiplatelet drugs (no: 0.7360.18

vs. yes: 0.8460.13 mmol/L, P = 0.08), angiotensin converting

enzyme inhibitors (no: 0.7160.16 vs. yes: 0.7660.21 mmol/L,

P = 0.007), beta-blockers (no: 0.7260.18 vs. yes: 0.7860.20 mmol/

L, P = 0.008), and diuretics (no: 0.7260.17 vs. yes:

0.8260.27 mmol/L, P = 0.001).

On regression analysis age, absence of diabetes, lower body

mass index, lower eGFR, and the thiols cysteine and glutamylcys-

teine were independently associated with higher serum SDMA

concentrations (Table 4).

Discussion

Three transsulfuration pathway thiols showed significant,

independent, and positive associations with serum concentrations

of methylated arginines in an established epidemiological cohort of

human ageing. After adjusting for clinical, demographic, bio-

chemical, and pharmacological confounders, homocysteine and

glutamylcysteine were both associated with higher ADMA

concentrations whereas cysteine and glutamylcysteine were both

associated with higher SDMA concentrations. Of note, no

independent associations were observed with the antioxidant

thiols glutathione and taurine.

The transsulfuration pathway regulates important physiological

and homeostatic processes, including detoxification of xenobiotics

or their metabolites, maintenance of intracellular redox balance

and thiol status of proteins, and ensuring cysteine storage within

the c-glutamyl cycle [24–26,36]. Our results confirm previous

reports demonstrating associations between serum homocysteine,

Table 2. Correlations between ADMA and SDMA
concentrations, clinical and demographic factors, and
biochemical variables.

Variable ADMA SDMA

Age r = +0.24, P,0.00001 r = +0.31, P,0.00001

Body mass index r = +0.10, P = 0.02 r = 20.18,
P = 0.00007

Fasting serum glucose r = 20.003, P = 0.95 r = 20.16, P = 0.001

Total cholesterol r = 20.11, P = 0.01 r = 20.13, P = 0.004

HDL-cholesterol r = 20.05, P = 0.24 r = +0.03, P = 0.48

LDL-cholesterol r = 20.09, P = 0.06 r = 20.06, P = 0.17

Triglycerides r = +0.01, P = 0.79 r = 20.20,
P = 0.00001

eGFR r = 20.24, P,0.00001 r = 20.47,
P,0.00001

C-reactive protein r = +0.08, P = 0.09 r = 20.06, P = 0.16

Homocysteine r = +0.24, P,0.00001 r = +0.24, P,0.00001

Cysteine r = +0.21, P = 0.00001 r = +0.27, P,0.00001

Taurine r = +0.10, P = 0.03 r = +0.01, P = 0.79

Glutamylcysteine r = +0.30, P,0.00001 r = +0.35, P,0.00001

Glutathione r = +0.10, P = 0.03 r = +0.16, P = 0.0004

Cysteinylglycine r = +0.14, P = 0.002 r = +0.12, P = 0.007

doi:10.1371/journal.pone.0054870.t002

Table 3. Forward stepwise regression of serum ADMA
concentrations.

Variables B coefficient (95% CI) P-value

Log age 0.130 (0.054 to 0.205) 0.001

Gender (0 = female,
1 = male)

20.017 (20.033 to 20.002) 0.03*

Log body mass index 0.066 (0.018 to 0.114) 0.008

eGFR 20.00047 (20.00101 to 0.00006) 0.08*

Beta blockers (0 = no,
1 = yes)

0.022 (0.002 to 0.041) 0.03*

Log homocysteine 0.035 (0.005 to 0.064) 0.02*

Glutamylcysteine 0.011 (0.004 to 0.018) 0.003

Variables entered in the model: age, gender, body mass index, current alcohol
use, hypertension, myocardial infarction, stroke, eGFR, C-reactive protein, total
cholesterol, LDL-cholesterol, antiplatelet drugs, angiotensin converting enzyme
inhibitors, statins, diuretics, beta-blockers, homocysteine, glutamylcysteine,
cysteinylglycine, cysteine, glutathione, taurine.
*not significant after adjusting level of significance (P,0.01).
doi:10.1371/journal.pone.0054870.t003

Table 4. Forward stepwise regression of serum SDMA
concentrations.

Variables B coefficient (95% CI) P-value

Log age 0.142 (0.057 to 0.227) 0.001

Log body mass index 20.070 (20.124 to 20.016) 0.012*

Diabetes 20.043 (20.069 to 20.017) 0.001

eGFR 20.00260 (20.00317 to 20.00203) ,0.00001

Cysteine 0.00034 (0.00009 to 0.00059) 0.007

Glutamylcysteine 0.015 (0.007 to 0.023) 0.00009

Variables entered in the model: age, body mass index, current alcohol use,
myocardial infarction, stroke, eGFR, C-reactive protein, total cholesterol, LDL-
cholesterol, antiplatelet drugs, angiotensin converting enzyme inhibitors,
diuretics, beta-blockers, homocysteine, glutamylcysteine, cysteinylglycine,
cysteine, glutathione.
*not significant after adjusting level of significance (P,0.01).
doi:10.1371/journal.pone.0054870.t004
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the first step of the transsulfuration pathway, and ADMA

concentrations [7,16–19]. Possible mechanisms for the increased

ADMA concentrations include the involvement of the methionine-

homocysteine pathway in the biosynthesis of ADMA and the

homocysteine-mediated inhibition of ADMA metabolism by the

enzyme DDAH [21,22]. This might explain the co-existence of

elevated homocysteine and ADMA concentrations, vascular

damage, and adverse outcomes reported in several studies

[7,37–39]. By contrast, no independent associations were observed

between homocysteine and SDMA concentrations. Significant

independent associations between homocysteine and SDMA have

been previously reported [7,19,40]. Although clinical and demo-

graphic factors were considered in these studies, a possible reason

for the different results in our study is the combined assessment of

several transsulfuration pathway thiols, some showing stronger

independent associations with SDMA.

The thiol glutamylcysteine showed the strongest independent

associations with higher ADMA and SDMA concentrations.

Glutamylcysteine, the immediate precursor of glutathione, is

synthesised by the enzyme glutamylcysteine synthetase. The

catalytic activity of glutamylcysteine synthetase depends on the

availability of cysteine and is inhibited by glutathione [41]. There

is increasing evidence that glutamylcysteine plays an important

role in modulating oxidative stress and cardiovascular risk.

Nakamura et al have recently reported a significant dose-

dependent reduction in markers of oxidative stress in human

endothelial cells exposed to glutamylcysteine [42]. Although

intracellular concentrations might differ from serum glutamylcys-

teine concentrations the effects on oxidative stress were observed

at concentrations, i.e. $50 mmol/L, significantly higher than those

reported in our study. Moreover, polymorphisms of the enzyme

glutamylcysteine synthetase are associated with reduced endothe-

lial function and increased risk of myocardial infarction [43].

There are at least two possible mechanisms by which glutamyl-

cysteine might modulate ADMA and SDMA concentrations: 1) a

direct inhibitory effect of glutamylcysteine on DDAH expression

and/or activity, with a consequent increase in ADMA concentra-

tions, similarly to that reported with homocysteine [21,22]; 2) the

role of glutamylcysteine as part of the c-glutamyl cycle. The latter

has been shown to modulate the trans-membrane transport of

several amino acids, including arginine [44]. A similar phenom-

enon might involve the methylated forms ADMA and SDMA.

Further in vitro research is necessary to corroborate these findings

and to provide mechanistic insights.

An independent and positive association, not previously

reported, was also demonstrated between the thiol cysteine and

SDMA concentrations. Whether this reflects the role of cysteine in

the c-glutamyl cycle, similarly to glutamylcysteine, and potentially

in SDMA transport requires further studies. Glutathione and

taurine have been shown to modulate DDAH activity in vitro. It

has been speculated that the effects on DDAH activity are largely

mediated by the antioxidant effects of these thiols [45–47].

However, no associations were observed between glutathione,

taurine, and methylated arginines.

The association between several clinical and demographic

characteristics, e.g. age, renal function, and body mass index, and

methylated arginine concentrations is in line with previous reports

[1,2,48]. Although the independent negative association between

body mass index and serum SDMA concentrations is apparently

counterintuitive, our results are in line with a recently published

study. Schwedhelm et al observed negative associations between

body mass index and SDMA concentrations both in univariate

(r = 20.13, P,0.001) and regression analyses (B coefficient

20.0031, P,0.01) [19]. Two further studies have demonstrated

independent negative associations between SDMA and insulin

resistance, commonly associated with higher body mass index

[49,50]. Similarly, we observed a negative association between

fasting serum glucose and SDMA (Table 2). It has been speculated

that insulin resistance might selectively promote cellular uptake of

SDMA through increased expression of the y+ transporter [51].

However, further research is warranted to clarify this issue.

Although female gender was associated with higher ADMA

concentrations in our study, previous reports on the impact of

gender on ADMA have provided conflicting results. This might be

secondary to differences in study population, e.g. age, and

statistical approach [52–54]. The use of beta-blockers as a class

was associated with higher ADMA concentrations. Previous

studies have shown contrasting effects of beta-blockers on ADMA

concentrations. It is possible that the discrepancy in the results of

these reports depends, at least partly, on the use of specific beta-

blockers [55–57]. Of note, a history of diabetes was independently

associated with lower SDMA concentrations. As diabetes is

frequently associated with the presence of kidney disease, hence

a reduced SDMA clearance, this finding is also apparently

counterintuitive. However, a recent study has demonstrated that

SDMA concentrations in patients with type 2 diabetes depend on

glycaemic control. Can et al observed that patients with relatively

poor glycaemic control had lower SDMA concentrations vs.

patients with good control and healthy subjects [58]. The presence

of a negative correlation between SDMA and both HbA1c and

fructosamine suggests an interaction between protein methylation

and glucose homeostasis [58]. Moreover, as previously discussed,

there is evidence that SDMA is inversely associated with insulin

resistance [49,50]. In line with these findings our study demon-

strated negative correlations between fasting serum glucose

concentrations and SDMA concentrations (Table 2).

A limitation of our study is its cross-sectional nature, which does

not allow the assessment of cause-effect relationship between

transsulfuration thiols and methylated arginines. Moreover,

similarly to most population studies on methylated arginines, the

measurement of transsulfuration thiols, ADMA, and SDMA from

blood does not necessarily reflect intracellular concentrations of

these compounds. Another important issue is the risk of falsely

positive associations due to multiple comparisons in regression

analysis. Adjustment of the level of significance according to

established approaches, e.g. Bonferroni correction, might be too

conservative in this context [59]. Although the level of significance

was lowered to P,0.01 in regression analysis, the possibility of

data over-interpretation cannot be ruled out. On the other hand,

strengths of this study are the combined assessment of transsul-

furation thiols and the adjustment for several clinical, demograph-

ic, biochemical, and pharmacologic confounders in regression

analysis.

Conclusions
This study has shown significant associations between three

transsulfuration pathway thiols, particularly glutamylcysteine, and

methylated arginines at population level. Further in vitro studies are

necessary to clarify the mechanism responsible for these associa-

tions, e.g. direct effects on ADMA metabolism and/or interactions

between the c-glutamyl cycle and amino acid transmembrane

transport.

Supporting Information

Figure S1 Scatter plots between individual serum thiols
and ADMA concentrations.

(PPTX)
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Figure S2 Scatter plots between individual serum thiols
and SDMA concentrations.
(PPTX)
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