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ABSTRACT. We study framed foliations such that the framing of the normal bundle
can be chosen to be invariant under the linear holonomy of each leaf. In codimension one
there is a strong structure theory for such foliations due, e.g., to Novikov, Sacksteder,
Rosenberg, Moussu. An analogous theory is developed here for the case of codimension
two.

Introduction. Let M be a smooth (i.e., C°°) connected manifold, ÍF a smooth
foliation of M of codimension q, Q the normal bundle of % and F(Q) the normal
frame bundle. If 77 C Glq is a Lie subgroup, a transverse 77-structure for ?F will
be a smooth reduction of F(Q) to an 77-bundle which is invariant under the
natural parallelism along the leaves of 9. Such an 77-reduction will be said to be
"compatible" with 9 (more precise definitions appear in §1). A foliation together
with a choice of transverse 77-structure will be called an 77-foliation. In this way,
for instance, the foliated manifolds with bundle-like metric of Reinhart [14] are
interpreted simply as O^-foliations and the Riemannian foliations of Pasternack
[13] as foliations admitting a transverse 0?-structure, while transversally orienta-
ble foliations are those with a transverse G/?+-structure.

It seems reasonable to investigate the topological and geometric consequences
of the existence of transverse 77-structures for the various Lie groups 77. In this
paper we carry out such investigations for the extreme cases in which 77 is
discrete (transversally almost parallelizable foliations) and those in which 77 = e
is trivial (transversally parallelizable or e-foliations). As examples, the standard
foliations of the torus T" induced by parallel (n - ^-planes in R" are transver-
sally parallelizable, while the foliation of an open Mobius strip by the curves
parallel to the center circle is transversally almost parallelizable. We have a
number of general results for such foliations valid in arbitrary codimension (cf.
§§3 and 4), but our strongest theorems are for codimension two and require M
to be compact.

In codimension one, e-foliations of compact manifolds are rather well under-
stood. In this case, our condition is equivalent to the absence of limit cycles, a
situation which has been studied by a variety of authors (e.g., [9], [11], [12]). In
particular, a structure theorem due to Novikov [12] asserts that the universal
cover M oí M will have the form Â X R where Â is the universal cover of the
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typical leaf A of 3F. Furthermore, the inclusion map induces a monomorphism
77,(A) -* wi(AZ) and the quotient nrx(M,A) = irx(M)/irx(A) is a free abelian group
of finite rank > 1. If wx(M,A) = Z, then M is fibered over 5' with the leaves of
¥as fibers. If rank(wx(M,A)) > 2, then each leaf of ÇFis everywhere dense in M.
Much of this theorem remains true without requiring compactness and this is
important for our purposes; hence a detailed treatment will be given in §5.

In higher codimension the absence of limit cycles does not imply any such
result. For example, the Hopf fibration of S3 is a codimension two foliation
without limit cycles for which no analogue of the above result holds. The stronger
assumption of transversal parallelizability, however, yields for codimension two
a theorem quite similar to Novikov's. We state the theorem here and prove it in
§§6 and 7.

Main Theorem. Let M be a compact connected n-manifold, 5 an e-foliation of M
of codimension two. Then the leaves of 9 are mutually diffeomorphic and the universal
cover M of M has the form Â XR2 where À is the universal cover of the typical leaf
A of ?F. Furthermore, the inclusion of the leaf induces a monomorphism irx(A)
—* ttx (M) onto a normal subgroup. The group irx (M, A) = ttx (M)/trx (A) is nontrivial,
contains no elements of finite order, and is not cyclic. In particular, if it is abelian,
irx(M,A) s Zr, r > 2. In this latter case, r = 2 if and only if'S is the foliation of
M by fibers of a smooth bundle M —* T2, while r > 2 implies either that each leaf
A of ÍF is everywhere dense in M or that the closures A are topological (n — 1)-
manifolds which are the fibers of a topological bundle M -* Sx.

We remark that this theorem has no close analogue in codimension > 3. For
instance S3 foliated by points is transversally parallelizable since S3 is paralleli-
zable. A condition sufficient to guarantee the desired sort of result in higher
codimension would be the existence of a Haefliger cocycle [5] {/,g0^} for f such
that dg£ß is the identity of Glq for all a, j8, x A C° version of this condition is
satisfied by e-foliations of codimension two provided that irx(M,A) is abelian (cf.
(10.7)).

The theorem is a bit more surprising than might appear at first sight. For
instance, every nonsingular flow on S3 gives a codimension two foliation with
trivial normal bundle, but, by the first assertion in the theorem, there is no
trivialization of that bundle which is compatible with the foliation. We list other
easy but pleasant corollaries which will be proven in §9.

Corollary A. If M is a compact connected manifold with nrx (M) finite, then M does
not admit a transversally almost parallelizable foliation of codimension < 2.

For this corollary one merely observes (§3) that a transversally almost
parallelizable foliation lifts to a transversally parallelizable one on the universal
cover.

In the remaining corollaries we fix the hypothesis that M is a compact
connected n-manifold with an e-foliation 's of codimension two.
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Corollary B. If n > 5 and trk(M) = 0, 2 < k < n - 3, then either M is
contractible or the foliation is a fiber bundle M -* T2, the fiber having universal
cover a homotopy (n — 2)-sphere.

The next two corollaries are variations on the same theme as Corollary B,
merely incorporating special properties of dimensions 4 and 3.

Corollary C.Ifn = 4, then either M = R4 or the foliation is a fiber bundle over
T2 with fiber S2 or the projective plane P2.

Corollary D.Ifn = 3, then M ss R3.

When mx(M) is abelian we have ttx(M,A) free abelian and there result some
fairly strong structure theorems as exemplified by our last two corollaries (also
cf. (10.7)).

Corollary E. Ifirx (M) is abelian there is an integer k > 2 and, up to homotopy, a
fibration A —> M -* Tk where A -* M is the one-one immersion of a leaf of 9.

Corollary F. lf<nx(M) is abelian and the leaves of 9 are of the form Tr X R""'-2,
0 < r < n — 2, then M has the homotopy type of T".

Notations and conventions. As is customary, R will denote the real number
system, Z the system of integers, and Zp the integers mod p.

If E is a smooth vector bundle, r(7f) will denote the vector space of smooth
cross sections of E.

All manifolds are Hausdorff. Each component of a manifold will be assumed
second countable, hence paracompact. If M is a smooth manifold the tangent
bundle of M will be denoted by 1\M). TX(M) will denote the fiber of 1\M) at
x E M and 9C(M) will denote T(T(M)).

We remark that the smoothness assumptions governing all constructions in this
paper can be relaxed to a class Ck, k > 2.

1. Transverse 77-structures. Given a smooth codimension q foliation 9 of a
smooth connected manifold M, let E be the subbundle of T(M) consisting of the
vectors tangent to the leaves of 9. E is called the tangent bundle to 9 and
Q = T(M)/E is called the normal bundle to 9.

The foliation ogives rise to a collection {Ua,fa}aeA where {Ua}aeA is an open
cover of M and fa : Ua -> Rq is a submersion constant along the connected
components of the intersection of Ua with any leaf of 9 [4]. Clearly

fa.:Q\Ua->T(R<)

is a well-defined bundle map which is an isomorphism on fibers.
If L is a leaf of ff and s: [a,b] ->La path on L, then there is a natural parallel

translation of vectors v E Q^ along j. Indeed, find a subdivision a = t0 < r,
<•••</,"* b and a set a0, a,.af_, £ A such that s¡ = 5 | [t¡, ti+x ] lies on
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a connected component of Z. D Ua¡. Then, if v(t¡) has been defined (v(a) = v(t0)
= v), we choose for t¡ < t < ti+x the unique vector v(t) G Q^ such that

f«Mt)) = fafivit<))
as elements of 1JM,^(Rq). It is elementary that v(b) obtained by this process
depends only on j and v, and not on the above choices of r, and a,. Indeed, it is
evident that this parallelism is locally absolute; hence v(b) depends only on the
homotopy class of s as a path on L from s(a) to s(b). Clearly v i-> v(b) defines a
vector space isomorphism ts : Q^ -» Q^by

The above parallel translation of normal vectors to ÍF along paths lying on a
leaf of iFwill be referred to as the "natural parallelism along the leaves". If F(Q)
is the frame bundle of Q, then this natural parallelism is also defined for frames
(vx,...,vq) EF(Q).

(1.1) Definition. Let H C Glq be a Lie subgroup. A (Ck) transverse ZZ-structure
for fis a (Ck) reduction P C F(Q) of F\Q) to a principal ZZ-bundle P such that
the natural parallelism along leaves always carries elements of P to elements of
P. Such an ZZ-reduction is also said to be compatible with ÍF.

In this definition we may take 0 < k < oo, but the in the present paper we are
assuming k = oo.

Examples of such transverse ZZ-structures have already been mentioned in the
introduction. In the example of the open Möbius strip foliated by curves parallel
to the center circle we have H = Z2. If H is the trivial group e (the case in which
we say that the foliation is transversally parallelizable), we can find global
sections Zx,..., Z. of Q which are everywhere parallel along leaves (i.e.
independently of choices of paths) and which give a basis of Qx, Vx G M. If we
only ask that Q admit global sections Zx, ...,Zk everywhere parallel along
leaves and everywhere linearly independent, then ÍF admits a transversal Gq-k-
structure, where Gq-k is the subgroup of Glq consisting of all matrices of the form

~Ik   0"
_B   A_

where A E Glq-k.
Closely tied in with these notions is the concept of a basic connection on Q as

formulated by Bott [2, pp. 32-33]. Presuming familiarity with the standard
definition of a connection on a smooth vector bundle (in terms of a Koszul
operator V), we can reformulate Bott's definition as follows.

(1.2) Definition. A connection V on Q is a basic connection if, whenever
f/CJl/is open, X G T(F | U), and Y G T(Q \ U) is parallel along the leaves
off| U,thenVxY= 0.

(1.3) Lemma. If V and V are basic connections on Q, if X G T(E) and
Y E T(Q), then Wx Y - % Y.
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Proof. It is enough to work locally. Thus we obtain a local basis of parallel
sections Yx,...,YqE T(Q\U) and we write Y = 2f-i//î< where/ £ C°°(i/).
Then

v,y « 2/, v,ií + 2 *(.M = 2 *(/,)!/
and, similarly,

%Y = 2X(M.
Q.E.D.

(1.4) Lemma. Tias/c connections exist.

Proof. Use a Riemannian metric to represent

T(M) = E © ß.

Then any X E 9C(M) decomposes uniquely into XE + Xß, the E and ß compo-
nents respectively.

It is well known that connections always exist on smooth paracompact vector
bundles; hence choose a connection V on Q. Define V on ß by

\Y=%QY+[XE,Y]Q.

R-bilinearity in (X, Y) and the property

Vx(fY) = X(f)Y + f\Y
are obvious. Furthermore,

\Y = %J+[fXE,Y]Q

= f%QY+{f[XE,Y]-Y(f)XE)Q

= f%QY+f[XE,Y]Q=fVxY.

Finally, if U c M is open, we can assume that the foliation on U is given by a
submersion/: U -* R*. If Y E T(Q \ U) is parallel along leaves, then/, Y is well
defined as a vector field on an open subset of R?. If X E T(E | U), then
Z.*=/**£^0,SO

U\XE, Y] = [0,/, Y] - 0

and [XE, Y] E T(E \ U). That is,

vxy = [xe,y]q = o.

Q.E.D.
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From these lemmas it follows that a connection V on Q is basic iff for any
X E T(E) and Y E T(Q),

VXY~[X,Y)Q.

This is Bott's definition.

(1.5) Corollary. For any open U C M, Y E T(Q \ U) is parallel along the leaves
iff[X, Y] E T(E | U), VX E T(E | U).

Here, of course, we continue to choose an identification T(M) = E © Q.
From standard connection theory and our basic definition one can prove the

following.

(1.6) Proposition, f admits a transverse H-structure iff Q admits a basic
connection with holonomy group contained in H.

For some purposes it is useful to reformulate (1.1) in a somewhat less concise
fashion. We require a set {UaJtt]aeA as in the second paragraph of this section
and, for each a G A, an ZZ-reduction Pa of the frame bundle F(F(R?)), all such
that each/„.: F(Q) \ Ua -* F(T(Rq)) restricts to a bundle map

+ 4.

Ua   -»R"
fa

The equivalence of this with (1.1) is completely elementary. When we take
H = Oq, this second formulation immediately gives Pasternack's definition of an
Ä-foliation [13].

Using the second formulation one obtains, by analogy with Haefliger's re-
structures [5], [6], [2], the notion of an H restructure and constructs classifying
spaces BHTq.

2. Transverse G^-structures. We recall from §1 that a transverse Gq_x-
structure amounts to a nowhere zero Y E T(Q) which is everywhere parallel
along leaves. Let LY C Q be the line bundle generated by Y. As usual, we have
selected a splitting T(M) = E © Q, so LY is a subbundle of T(M).

(2.1) Proposition. E © Lr is an integrable subbundle of T(M).

Proof. If X E T(E), then [X, Y] E T(E) by (1.5). It follows that T(E © LY) is
a Lie subalgebra of %(M).   Q.E.D.

This proposition provides a foliation "¿Fy of codimension «7—1, each leaf of
which is foliated in codimension one by a collection of the leaves of f. This is not
an arbitrary codimension one foliation but is transversally parallelizable.
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Another useful and elementary consequence of [r(£), Y] C T(7i) is the
following.

(2.2) Proposition. Let Y as above be complete (e.g., this is automatic if M is
compact). Let <p: R X M -* M be the flow generated by Y. Then the foliation 9 is
invariant under tp,, Vi E R.

Indeed, for any p E M and r £ R we must have

(2.3) ?,.(£,) = £*<,,

and (2.2) follows directly from (2.3).

(2.4) Corollary. If Y as above is complete and ifsx, s2 are integral curves to Y such
that sx(0) ands2(0) lie on a common leaf L0 of 9, then sx(t)ands2(t) lie on a common
leaf L, of 9, ̂ t E R.

Thus we can "parallel translate" integral curves to Y along a leaf, the curves
continuing to intersect the same leaves at the same parameter values. Indeed, in
this way we sweep out the leaves of 9Y.

3. Transversally almost parallelizable foliations. We suppose there is an 77-
reduction P C F(Q) compatible with the foliation, where 77 is a discrete
subgroup of Glq. The bundle projection •n: P -* M is then a covering space with
77 as the group of deck transformations. Since P is invariant under the natural
parallelism along leaves, it is practically tautologous to observe that the pull-back
foliation it'1 (9) on P is transversally parallelizable. Indeed, tr~l(F(Q)) C P
X F(Q) is the normal frame bundle of ir~l(9) and the tautologous section

s: P ^ v-l(F(Q)),       s(p) = (p,p),

is parallel along all the leaves of tr~l(9). For the following proposition it will be
enough to take M to be a connected component of P.

(3.1) Proposition. If 9 is transversally almost parallelizable, then there is a
connected covering space it: M —» M such that ir~*(9) is transversally parallelizable.

In particular, if û: M -* M is the universal covering, w factors into

M -i» $1 -t> M

and so v~l(9) is transversally parallelizable.
One of the aims of this paper is to show that a compact manifold with finite

fundamental group does not admit a codimension two transversally almost
parallelizable foliation. By the above discussion it will be enough to show that a
compact simply connected manifold does not admit a codimension two transver-
sally parallelizable foliation. This, of course, is an immediate corollary of the
Main Theorem as stated in the introduction.
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4. Transversally parallelizable foliations of arbitrary codimension. In the case in
which fis an e-foliation the phenomena of §2 happen in "all directions". More
precisely, let (Yx,..., Yq) be a smooth cross section of F(Q) which is everywhere
parallel along the leaves. This section, which is simply a transverse e-structure for
% spans a ^-dimensional vector subspace V C T(Q) consisting entirely of fields
everywhere parallel along the leaves. Each Z G V will be said to belong to the
given transverse e-structure. Clearly Z G V and Z ¥= 0 implies Zp ^ 0, V/j
G M, hence the theory of §2 gives rise to a foliation f2 of codimension q — 1,
each leaf of which is e-foliated by some of the leaves of f. If Z, identified as a
field on M (via a Riemannian metric), is complete, the foliation f is invariant
under the flow generated by Z and the integral curves to Z parallel translate
"nicely" along leaves of f.

We choose once and for all a Riemannian metric on M relative to which Q is
realized as the orthogonal complement of E in T(M) and such that (Y¡, Y¡} = 8H,
1 < i,j < q.

(4.1) Definition. An e-foliation as above is transversally complete if every
Z G V is complete as a vector field on M.

Recall also the following standard terminology for any foliation f of M. If
p E M, a coordinate neighborhood U of p is called a product neighborhood if
for some a > 0 the coordinates x¡ on U all range over (-a, a) and if the foliation
f | U naturally induced by f has as leaves exactly the level surfaces x¡ =
constant, 1 < / < q. Each leaf of f | U is, of course, a connected component of
L n U, L some leaf of % and is called a local leaf of f. A leaf L of f is called
regular if, for each/) G L, 3 a product neighborhood Uof p such that t/ Pi Z/ is
at most one local leaf, V leaf L of f. L is called proper if, for each p E L, 3 a
product neighborhood U oî p such that £/ D L is exactly one local leaf. We
remark that regular implies proper, but not conversely. Indeed, the foliation of
an open Möbius strip by curves parallel to the center circle has the center circle
as a leaf which is proper but not regular.

Returning to the assumption that f has a transverse e-structure (Yx,.. .,Yq),we
remark on a simple but useful construction. Let x G M, a — (ax,... ,aq) G R?,
and let sa be the integral curve to Z = ^ a¡Y¡ such that sa(0) = x. Then
expx(a) = sa(l) defines a map

expx: R?-*M.

By standard arguments from the theory of ordinary differential equations, expx
is smooth and is regular at 0 G R?, hence defines a small transverse open <?-disk
Dx centered at x. In particular, all leaves passing suitably near x can be reached
by an integral curve to some Z G V starting at x.

With these preliminary remarks out of the way, we are prepared to prove some
propositions of fundamental importance.
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(4.2) Proposition. For any leaf L of a transversally complete e-foliation of M, the
following are equivalent:

(1) L is closed in M;
(2) L is proper;
(3) L is regular.

Proof. (1) => (2) holds for any foliation (cf. [3, pp. 109-110]).
In order to show (2) ■* (3), suppose L not regular and choose p E L. Let U be

any product neighborhood of p and let LQ be the component of p in L n U. By
assumption, for any e > 0 there is a leaf L' such that U n U has at least two
components both within e of L0. Call these components L\ and L'2 respectively.
Let s: [0,1] -» U be a segment of integral curve to suitable Z £ V such that
s(l) = p, s(0) E L\ (such s exists if e is chosen sufficiently small). Parallel
translate s along L' so as to obtain s, also integral to Z with s(0) £ 7^. If e is
sufficiently small we may assume s[0,1] C U. Then if s(\) E L0 we may assume
s(l) = p; hence s = s contradicting L\ ¥= L'2. Thus s(\) lies on a component of
L C\ U other than L0. U being arbitrary, L cannot be proper.

In order to prove (3) =* (1), suppose L not closed in M. Let x E L\L and let
{x„} be a sequence in L with jc„ -» x in Af. Choose a small product neighborhood
U of x and assume {x„} C U. Since x E L, no generality is lost in assuming a
sequence of distinct components L„ of L D U with x„ E Ln, n = 1,2,_Let
7/ be the leaf through x and LÓ the component of x in L' n Í7. Then L„ -» LÓ
uniformly. For any sufficiently small e > 0 find « and an integral curve
5: [0,1] -* U to suitable Z E V such that s has length < e and s(0 ) E Ln,
s(\) E L'0. By having chosen e small enough, we guarantee that i parallel
translates along L to an integral curve î to Z with s[0,1] C U, s(0) E L\.

Since Z = 2 a¡Y¡ has constant norm ||Z|| = yjá¡ + ■■■ + a2, this is the
length of both 5 and i. Since s(l) £ L', it follows that there is a component of
U n U of distance less than e from Lx. e > 0 was arbitrarily small, so L cannot
be regular.   Q.E.D.

(4.3) Proposition. Let 9 be a transversally complete e-foliation of the connected
manifold M. Then any two leaves of 9 are diffeomorphic and if some leaf is closed in
M they all are.

Proof. The flows generated by elements of V provide enough diffeomorphisms
of M, all leaving 9 invariant, to carry any leaf to any other. The desired
consequences are immediate.   Q.E.D.

These results enable us to prove the following proposition which will be of
fundamental importance.

(4.4) Proposition. Let 9 be a transversally complete e-foliation of a connected
manifold M. If 9 admits a closed leaf then there is a fiber bundle p: M -* N where
N is parallelizable and 9 is the foliation of M by the fibers of p.
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(It was pointed out by the referee that this result is closely related to the
theorem of Ehresmann that a submersion of a compact manifold is a fiber
bundle; cf. Rend. Mat. 10 (1951), p. 68.)

Proof. By (4.3), all leaves are closed; hence by (4.2) all leaves are regular. Let
L be a leaf, x E L, and let Dx be the small transverse open a-disk centered at x
which is defined by the map expx : R' -> M. By the regularity of L, Dx can be
assumed to intersect any leaf at most once. Since Dx is the union of radial curves
integral to fields in V, Dx parallel translates along L. If Dy is a translate of Dx,
some y G L, then Dy meets the same leaves as Dx at the same parameter values
(ax,...,aq) E Rq. Also, if z E Dx D Dr there is (ax,...,aq) — a with z
= expx(a) = exp^Xa); hence the curves expx(ta) and expira) are integral to the
same Z = "2, a¡Y¡ and both pass through z at t = 1 ; hence the curves are the
same and x = y. It follows that there is a neighborhood U of L in which the
foliation is difleomorphic to the foliation of Dxx L by leaves of the form
pt. X L. Let L and L' be distinct leaves, x E L. Clearly Dx can so be chosen that
Dx n L' = 0 and Dx is compact. Since L' is closed it lies at a positive distance
r¡ from Dx. Fot y G L', choose Dy so that the radial curves expira) spanning Dy
have lengths \ja\ + • • • + a2 < 17. Thus we obtain neighborhoods of U of L and
U of L as above such that U <1 U' = 0. It follows that the leaf space M/'S is a
smooth HausdorfT a-manifold N and the natural projection p: M -» N a smooth
fiber bundle with fibers the leaves of f. The frame (Yx,..., Yq) consists of normal
fields everywhere parallel along the leaves; hence each p*(Y¡) is a well-defined
field on N and (p*(Yx),... ,p*(Yq)) is a global frame field on N. That is, N is
parallelizable.   Q.E.D.

(4.5) Corollary. Let M be a compact connected 3-manifold, itx (M ) finite. If M
admits an e-foliation by curves, then no leaf is a circle.

Proof. By compactness the e-foliation is automatically transversally complete.
By (4.4), if some leaf is a circle then all are circles and we have a fibration
Sx -* M -*■ T2 (since T2 is the only compact connected paralellizable 2-mani-
fold). By the exact homotopy sequence we contradict ttx(M) finite.   Q.E.D.

Remark. By (4.5) any e-foliation of S3 by curves would provide a C°
counterexample to the Seifert conjecture (for a C counterexample, cf. [17]). We
will see, however, that no such e-foliation exists.

5. e-foliations of codimension one. Although our principal interest in this paper
is the codimension two case, much of what is already known about e-foliations
of codimension one can be obtained quite easily using our present methods.
Since these results have important applications to the codimension two case, it
seems worthwhile to develop them carefully here.

(5.1) Proposition. Let M be connected, fa transversally complete e-foliation of
codimension one. If S does not have a closed leaf, then each leaf is everywhere dense
in M.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRANSVERSALLY PARALLELIZABLE FOLIATIONS 89

Proof. Suppose the leaves are not closed and that L is a leaf which is not
everywhere dense. Then W = M\L is a nonempty open set. W cannot also be
closed since M is connected. Let x £ W\W and let U be a product neighbor-
hood of x. U meets both W and L. Let y E WO U and let j be a transversal in
U with s(0) — y. L is a union of leaves, hence so is W, and the codimension one
hypothesis allows us to assume that s meets both W and L. Let í0 > 0 be the
smallest parameter value such that j(/0) £ L. Let 7/ be the leaf through s(t0). U
is not closed; hence by (4.2) it is not proper, so L' n U has a countable infinity
of components. Let L'0 be the component of s(t0) in L n U. We claim that the
other components must lie on both sides of L'0. Indeed, if {L'„) is a sequence of
components approaching L'0 from one side, consider an integral curve to Z £ V
from some L'n to L'Q lying in U. It must properly cross some L'm; hence parallel
translation along 7/ will move it to an integral curve of Z properly crossing L'0;
hence its two ends lie on opposite sides of L'0 and both lie on L' n U. Thus we
find r, E (0,/0) such that s(tx) E L' C Z, contradicting the minimality of t0.
Q.ED.

The following well-known consequence is usually proven using number theory.

(5.2) Corollary. Foliate T" by foliating R" with parallel (n — \)-planes. Suppose
that the plane through 0 does not meet the integer lattice of R" in any other point.
Then each leaf is everywhere dense in T".

Proof. The foliation is clearly an e-foliation of T" of codimension one and is
transversally complete. By the hypothesis, at least one leaf is not compact, hence
is not closed. The conclusion follows by (4.3) and (5.1).   Q.E.D.

(5.3) Proposition. If 9 is a codimension one transversally complete e-foliation of a
connected and simply connected manifold M, then M = AxR where the leaves of
9 become identified with the manifolds A X pt.

Proof. Let L be a leaf of 9. If L is not closed, then by (4.2) it is not proper.
Thus there is a product neighborhood U such that L C\ U has more than one
component. Construct a closed piecewise C°° curve on M consisting of a
transverse segment in U joining two components of L n U and a segment lying
on L. By a standard technique (cf. [12, p. 269]) modify this closed curve to obtain
a closed C°° transversal a to 9. Since M is simply connected, a is homo topic to a
constant; hence Haefliger's lemma [4, Proposition 4.2] shows that some leaf of 9
has nontrivial holonomy [4, §2]. This contradicts the assumption that 9 is an ex-
foliation (cf. (2.4)), so it follows that every leaf of 9 is closed in M. By (4.4) it
follows that the foliation is a fiber bundle over Sl or R. Since w,(M) = 0, it must
be a bundle over R. Since R is contractible, the fibration is a product.   Q.E.D.

Before coming to the main theorem of this section, we cite a deep result of
Sacksteder [16, Theorem 6]. He shows that a codimension one foliation of
compact M such that each leaf has finite holonomy admits a transverse 0(1)-
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structure, at least after the introduction of a possibly new smooth structure on M
(relative to which the foliation remains smooth). If the foliation is transversally
orientable it is clear that one obtains a transverse 50(l)-structure.

(5.4) Theorem (Sacksteder). Let M be a compact manifold, fa codimension one
foliation without limit cycles (i.e., such that each leaf has trivial holonomy). Then, in
a possibly new differentiable structure for M, 'Sis a transversally complete e-foliation.

By (5.4) the hypotheses of the following theorem are verified when M is
compact and fis a codimension one foliation without limit cycles. These are the
hypotheses in [12, Theorem 5.1], so the following is a mild generalization of that
theorem. We will need the more general result for the proof of our Main
Theorem. (It should be remarked that the essentials of a very elegant proof of
(5.5) using differential forms will be found in [15, pp. 171-172] and in [9]. The
point of view taken in our proof, however, continues to be fruitful in codimension
two, as does not seem true of the differential forms approach.)

(5.5) Theorem. Let 'S be a codimension one transversally complete e-foliation of a
connected manifold M. Then the universal cover of M has the form M = Â X R
where Â is the universal cover of the typical leaf A ofS. The inclusion of a leaf induces
a monomorphism ^(A) —* trx(M) onto a normal subgroup and, if M is compact,
7TX(M,A) = irx(M)/"nx(A) = TI, r > 1. Furthermore, r = 1 implies that the folia-
tion is a smooth bundle over Sx, while r > 1 implies that each leaf of Sis everywhere
dense in M.

Proof. Clearly the lifted foliation f of M is also a transversally complete e-
foliation, so (5.3) shows that M = ixR where the leaves of f are of the form
Â X t. Since Â must be simply connected it is the universal cover of the typical
leaf A of f It follows immediately that trx(A) -» irx(M) is one-one.

Realize irx (M ) as the group of covering transformations on M. The e-structure
of f defines a transverse flow <p and the lifted flow <p leaves f invariant. Evidently
9> commutes with the elements of irx(M) and can be used to reparametrize
M — Â X R so that (p,(ÂxO) = Â X r, V/ G R. Thus we obtain a representa-
tion p: irx(M) -» Diff+(R), the image of which is a group of translations. For
a E irx(M),p(a) has a fixed point if and only if p(a) is the identity; hence the
image of irx(A) in irx(M) is the normal subgroup Ker(p). If M is compact, itx(M)
is finitely generated as is wx(M,A) = iti(M)/itx(A), so this latter group is
Zr, r > 0. But r — 0 would imply M ^ AxR contradicting compactness.
Evidently the leaves of f are closed in M if and only if r = 1, so the final
assertions of the theorem follow from (4.4) and (5.1).   Q.E.D.

6. The universal cover of codimension two e-foliations.Throughout this section
and the next we assume M compact and connected and we let f be a
codimension two e-foliation of M (necessarily transversally complete by the
compactness of M) with (Yx, Y2) the transverse e-structure. As usual, V denotes
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spanR{JÍ, Y2) and, for each nonzero Z E V, 9Z denotes the codimension one
foliation generated by 9 and Z.

We recall Novikov's concept of "cycles which are limitwise homotopic to zero
on the right or left" [12, pp. 277-278]. This concept is defined for codimension
one foliations and refers to a closed loop on a leaf, homotopically nontrivial on
that leaf, which determines trivial holonomy on at least one side of the leaf
("right" or "left") and so can be displaced to all nearby leaves on that side, which
displaced loops, finally, are all nullhomotopic on their leaves. Following a
prevalent trend (cf. [10], [11]) we will call these "vanishing cycles".

(6.1) Proposition. Let 0 ¥= Z £ V. Then 9Z admits no vanishing cycles.

Proof. Let L be a leaf of 9Z, x E L, o a closed loop on L based at x, [o] the
corresponding element of irx (L, x).

Suppose that o is smooth and transversal to the foliation 9 \ L of L by leaves
of 9. 91 L is an e-foliation of L, necessarily transversally complete since 9 is
transversally complete. Thus by (5.5) the universal cover L of L has the form
Â XR where Â is the universal cover of the typical leaf A of 9 \ L. o lifts to a
curve â transversal to the leaves Â X pt. It follows that ô(0) and ô(l) lie on
different leaves so that â(0) ¥= â(l); hence [o] ¥= 0. A small displacement (if it
exists) of such a to a nearby leaf 7/ will again be transversal to 9 \ L', hence will
not be homotopically trivial on L'.

Suppose, then, that a is not base point homotopic on L to a transversal to 9 \ L.
Then â must begin and end on the same Â X pt, so à is fixed endpoint homotopic
to a path in Â X pt. Assuming, therefore, that o lies entirely on a leaf A of 91 L,
we see that a small displacement to a nearby leaf L' of 9Z can be produced by
the flow associated to a suitable X E V and the displaced curve o' lies on a leaf
A' of 9\ 11. By (5.5), mx(A) -* 77,(7.) is one-one as is irx(A') -* irx(L'), so, if [o] is
non trivial in ttx(L), [a'] is also non trivial in irx(L').

Thus we have shown in all cases that there is no vanishing cycle on any L.
Q.E.D.

(6.2) Corollary. Let Z E V, L a leaf of 9Z, x £ L. Then the inclusion of L
induces a monomorphism trx (L, x) -* itx (M, x).

Proof. By [12, Theorem 6.1], the existence of a leaf L such that <nx(L) -* irx(M)
has nontrivial kernel would imply the existence of a vanishing cycle on some leaf
of 9Z. This contradicts the above proposition.   Q.E.D.

(6.3) Corollary. If A is a leaf of 9, a £ A, then the leaf inclusion induces a
monomorphism irx(A,a) -* irx(M,a).

Proof. ACL where L is a leaf oï9z,0 ¥= Z E V. By (5.5), trx (A, a) -» irx (L, a)
is one-one, and, by (6.2), irx (L, a) -* mx (M, a) is one-one. The composition of these
monomorphisms is trx(A,a) -* w,(M,a).   Q.E.D.

Let it: M —» M be the universal covering. M is e-foliated by 9, the pull-back
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of f by ir, and f is transversally complete. By (6.3), each leaf À of f is the
universal cover of a leaf A = n(Â) of f. Let (fx, ?2) be the transverse e-structure
forf, F = spanR{/i,f2}.

(6.4) Proposition. Each leaf of S is closed in M.

Proof. Let Â be a leaf of f. If J is not closed in M, it is not proper (by (4.2)).
Thus there is 0 # X E Fand an integral curve a: [0,1]-+ M lo X such that a(0)
and o(\) both G Â If X = irt(X) E V, consider <SX. By the above remarks, there
is a leaf L of Sx and a covering leaf Z, of f? such that i C £ C M and
Im (a) C L. But £ s Â X R by (5.5) and (6.2) and a is a transversal to f | £, so
it is impossible that a(0) and o(\) lie on the same leaf Â of f. This contradiction
shows that Â is closed in M.   Q.E.D.

(6.5) Corollary. MsixR2 where Â is the universal cover of the typical leaf of
Sand the leaves of S become identified with the sets Â X pt.

Proof. By (4.4) and (6.4), there is a fibration M -* N with fibers the leaves of
f and TV a parallelizable 2-manifold. Since M is simply connected, the exact
homotopy sequence shows that N is also simply connected. By the standard
classification of compact surfaces, the triangulability of separable surfaces (open
or closed), and the remark at the bottom of p. 104 of [1], the only simply
connected 2-manifolds are S2 and R2, of which only R2 is parallelizable. Since R2
is contractible, the fibration must be a product.   Q.E.D.

7. The covering transformations of M. As usual, let irx (M ) denote the group of
covering transformations ofMsixR2. irx (M ) maps leaves of f to leaves of f
and preserves the e-structure. In particular, this defines a representation -

p: irx(M) -* Diff+(R2).

(7.1) Proposition. Let a G itx(M). Then p(a) has a fixed point in R2 if and only
if p(a) = identity.

Proof. Let p E R2 with p(a)(p) = p. Let Âp be the leaf of f over p, let
0 j= Z E V, and let Lp be the leaf of f ¿ containing Âp. a leaves f ¿ invariant;
hence a(Lp) = Lp, so a restricts to a covering transformation for the universal
cover £, -> Lp = ir(Lp). As in the proof of (5.5), the fact that a(Âp) = Âp implies
that a maps each leaf of f | Lp to itself. Since 0 # Z G V was arbitrary, it
follows that p(a) leaves a whole neighborhood of p in R2 pointwise fixed, so the
fixed point set of p(a) is open and nonempty. On the other hand, the fixed point
set of p(a) must be closed, so this set is all of R2.   Q.E.D.

Let [o] G 7T,(A,a) C irx(M,a) for some leaf A of 'S, a E A. Let Â be a leaf of
f covering A, â E Â such that a = ir(â). Let â be the unique lift of a such that
â(0) = â. Then ô(l) = a(â) for some covering transformation a of M. Since
a(A) = A, we see that a E Ker(p) by (7.1). Conversely, if a G Ker(p), then a
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leaves Â invariant and any curve on Â from â to a(â) projects under tt to a
representative of an element of itx(A,d) C 7r,(Af,a). We have proven the follow-
ing fact.

(7.2) Proposition. Under the identification (via the choice of a) of ^(14,0) with the
group of covering transformations irx (M ), irx (A, a) C mx (M, a) is exactly the subgroup
identified with Ker(p).

Thus we will designate Ker(p) by ttx(A) where A denotes the generic leaf of 9.
One sees, therefore, that there is little need to distinguish irx(M) from wx(M,a)
and irx(A) from irx(A,a).

(7.3) Corollary. ttx(A) is a normal subgroup ofirx(M).

Our next object of study will be the group ttx(M)/itx(A). We remark that this
group identifies naturally with the relative homotopy set irx(M,A) because of the
exact sequence

0 -* ti\(A,a) -» 7Tx(M,a) -* irx(M,A,a) -* ir0(A,a) = 0.

We also remark that there is an intermediate covering space M -» M with
itx(M,A) as group of covering transformations. M is obtained from Ñ by dividing
out the action of ttx(A); hence M =s A X R2.

(7.4) Lemma. ttx(M,A) # 0.

Proof. Otherwise M = M = A X R2, contradicting the fact that M is compact.
Q.E.D.

(7.5) Lemma. irx(M,A) contains no element of finite order.

Proof. The representation p: irx(M) -* Diff+(R2) defines a faithful representa-
tion of irx(M,A) in Diff+(R2), each non trivial element determining a fixed point
free diffeomorphism of R2. If irx(M,A) contains an element of finite order, then
there is a £ irx(M,A) with prime order p. a generates a cyclic subgroup
Zp C Diff+(R2) acting freely on R2, so the orbit space W of this action is a 2-
manifold with R2 as universal cover. W must be an Eilenberg-Mac Lane space
7C(Zp, 1) and so, by the standard homology theory of Eilenberg-Mac Lane spaces,
Hq(W;Zp) at Zp, V<7 > 0. This, however, contradicts the fact that If is a 2-
manifold.   Q.E.D.

(7.6) Lemma. trx(M,A) is not cyclic.

Proof. If w, (M, A) is cyclic, then (7.4) and (7.5) imply tt, (M,A) = Z. Let Z E V
and consider the foliation 9Z. We have two cases according to whether 9Z admits
a compact leaf or not.

Suppose that L is a compact leaf of 9Z. By (5.5), irx (L,A) is free abelian of finite
rank > 1. Since ttx(L,A) C ttx(M,A) = Z, we conclude that ttx(L,A) = Z. Then,
again by (5.5), L is fibered over Sl with A as fiber; hence A is compact. By (4.4)
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it follows that M is fibered over a compact parallelizable 2-manifold, hence over
T2, with à as fiber. The exact homotopy sequence

0 -> irx(A) -» trx(M) -* irx(T2) -h> ir0(A) = 0

then shows irx(M,A) =ë nx(T2) = Z © Z, a contradiction.
Suppose, then, that fz admits no compact leaf. Then no leaf L is closed, so in

a neighborhood of x G L\L a transversal curve can be constructed which starts
and ends on L. As usual, this shows the existence of a closed transversal 5 to fz.
By (6.1) together with [12, Theorem 6.1], the lift of s to s on M cannot be closed.
Indeed, s cannot even begin and end on the same leaf of fz (nor, a fortiori, on
the same leaf of f ) since this would imply the existence of a closed nullhomotopic
transversal to fz on M, hence of such a transversal to fz on M, again
contradicting (6.1) and [12, Theorem 6.1]. Thus s represents a nontrivial element
a E irx(M,A). Furthermore, p(a) E Diff+(R2) cannot leave invariant any inte-
gral curve to Z = p*(Z) (where p: M -* R2 is the projection defined by
M s Â X R2 and Z is well defined since Z is parallel along leaves of f). Since
irx(M,A) = Z, the generator also fails to leave invariant any integral curve to Z,
hence 0 = nx(L,A) C irx(M,A) for any leaf L of fz, so L s¿ A X R. It follows
that any loop on L is homotopic in L to a loop on A, hence cannot be a limit
cycle (since A is a leaf of an e-foliation). By (5.4) and (5.5), M = L X R. But
0 -* irx(A) -* irx(L) -* 0 is exact by the above, so irx(M,L) st mx(M,A) St Z,
hence by (5.5) M is a fiber bundle over Sx with L as fiber. This contradicts the
assumption that L is noncompact.

Thus, in all cases we have shown that irx(M,A) cannot be cyclic.   Q.E.D.

(7.7) Proposition. Ifirx(M,A) is abelian, then it is free abelian of finite rank > 2.

Proof. Since M is compact, irx(M) is finitely generated. Thus irx(M,A)
= itx(M)/itx(A) is also finitely generated. By (7.5) this group must be free abelian
(of finite rank), by (7.4) it is nontrivial; hence by (7.6) the rank of irx(M,A) is >
2.   Q.E.D.

8. Proof of the Main Theorem completed. Throughout this section we assume
that irx(M,A) is abelian, hence that irx(M,A) = TI, r > 2. Our principal aim will
be to recoordinatize R2 continuously so that the action of irx(M,A) will represent
that group as a group of translations in R2. The final assertions of the Main
Theorem will then follow readily.

The following is proven in [11, Théorème 2].

(8.1) Theorem (Moussu and Roussarie). Let S be a smooth transversally
orientable foliation of codimension one. Suppose that f admits no vanishing cycles
and that the image ofirx(L) -* irx(M) contains the commutator subgroup ofirx(M),
V leaf L of f. If S has no compact leaf, then S admits no limit cycles (i.e., the
holonomy of every leaf is trivial).
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This theorem, together with (6.1), gives the following.

(8.2) Corollary. If itx(M,A) is abelian and 9Z has no compact leaf, some
Z £ V — {0}, then 9Z admits no limit cycles.

(8.3) Corollary. Let YE V — {0} and suppose trx(M,A) abelian. If either all
leaves or no leaves of9Y are compact, there is a C°flow <p: R X M —* M under which
9Y is invariant. Indeed, given X E V — (0} linearly independent of Y, <p can so be
chosen that the lines of flow are continuous reparametrizations of the integral curves
toX.

Proof. If no leaves are compact, 9Y has no limit cycles by (8.2). If all are
compact, then the holonomy of each leaf is finite and transverse orientablity
implies no limit cycles. By [16, Theorem 6] the orthogonal trajectories to 9Y
relative to any Riemannian metric on M can be reparametrized so as to be the
lines of flow for the desired <p. Actually, [16] supposes one of these trajectories to
be a circle, but the fact that this circle is a trajectory for the metric in question is
not really used. In particular, given X E V linearly independent of Y, a metric
can be defined on M such that X is the unit normal to the leaves of 9Y and the
corresponding tp is as desired.   Q.E.D.

(8.4) Lemma. 77ie e-structure (Yx, Y2) of 9can so be chosen that both 9Yl and 9Yl
verify the hypotheses of (8.3).

Proof. We consider two cases.
Case 1. Some leaf of 9 is compact By (4.4) every leaf is compact and these

leaves are the fibers of a bundle it: M -* T2. Let X¡ = d/d0¡, i = 1, 2, be the
basic fields on T2 corresponding to the usual coordinates. Then the unique
normal fields Y'¡ such that tT*(Y'¡) = X¡, i = 1, 2, give an e-structure in which all
leaves of 9r¡ are compact.

Case 2. No leaf of 9is compact. If the same is true of 9Y¡, i = 1, 2, we are done.
Otherwise, suppose some leaf L E 9Y¡ is compact. Let A be a leaf of 9 with
ACL. Since 9 \ L is an e-foliation of codimension one and A is not closed in L,
(5.1) says that A is everywhere dense in L. Since L is compact, L = A = closure
of A in M. If A' is any other leaf of 9, then a sequence of flows corresponding to
fields Xj E V provide a diffeomorphism <p: M -* M leaving 9 invariant with
cp(A) = A'. Thus the closure of each leaf A of fis a smooth codimension one
submanifold A of M which is a union of leaves of 9, 9 \ A being an e-foliation.
If two of these submanifolds intersect, some A belongs to both, hence both
coincide with A. Applying the flow \L, generated by Y2 to L, we see that ^(TL) is
one of these manifolds, Vr, and since Y2 \ L is transverse to L, a normal
neighborhood of L is smoothly foliated by these manifolds. Again moving this
neighborhood about by a sequence of flows generated by fields Xj E V, we see
that M is smoothly foliated by the leaves Ä. Call this foliation 9. Clearly 9 is
without holonomy, hence is transversally orientable. Choose a tranverse orienta-
tion.
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The original e-structure of S defines a bundle-like metric. Using this metric,
define a normal field Y\ to f by requiring Y\ _L leaves of f, Y\ tangent to the
leaves of f ||y',|| ■ 1, and, if X E %(M) is transverse to f and positively
oriented, (Y'X,X) should determine the same transverse orientation of fas
iYu Y2).

If U is a local product neighborhood for S, f: U -* R2 a distinguished map (cf.
[4, 1.2]), the local leaves of f | U are carried by/to smooth curves in R2 and
f*xiY'ix) is tangent to the curve through f(x), \f x E U. If f(x) = f(y), then
ffxiY'ix) and f*yiY'iy) are positive multiples of each other. Since \\Y'Xx\\ = 1
= ||y'iy|| in a bundle-like metric, we have f*x(Y'Xx) — f*y(Y'Xy). Thus/^i) is a
well-defined field and Y\ is everywhere parallel along leaves of f. Define Y'2
normal to f by requiring that || Y'2 || = 1, Y'2 J. Y\ everywhere, and that (Y\, Y'2)
determines the same transversal orientation as (YX,Y2). Then (Y\,Y'2) is an e-
structure for f.

SY\ = S and has all its leaves compact. If L' E fVi, L E fri, then L is
transversal to U, so L n L' is an at most countable union of leaves of f. Since
the connected components of L n U are not compact, although L is compact,
we see that no L can be compact.   Q.E.D.

Combining (8.4) and (8.3), we obtain the following.

(8.5) Corollary. Let (Yx, Y2) be an e-structure for Sas in (8.4). Then there are C°
flows <p and \p on M such that q> leaves invariant each leaf of f Y¡ and permutes the
leaves ofSYi, while \p leaves invariant each leaf of SYl and permutes those ofSY[. Thus
<p and \p also permute the leaves of f.

On M let ç), i|< be the flows obtained by lifting <p and i¡/ of (8.5). cp and \p permute
the leaves of f ; hence they define C° flows ç> and ip on R2.

(8.6) Lemma. Each flow line ofcp intersects each flow line of\¡/ in exactly one point.
Furthermore, <p, ° 4 = 4 ° <pt, Vr, s G R. Consequently, (p,\ps(A) = </i"Pf04)> V
leaf A ofS.

Proof. Observe that each leaf of fp projects (under the canonical map
Â X R2 -* R2) onto the trajectory of a flow line of <p and similarly for f Y and tp.
Since fy2 admits no limit cycles, it follows as in [15, pp. 171-172] that each <p flow
line meets each L E f ? once and only once. The assertion about the flow lines
of <p and \p follows immediately.

From these considerations it also follows that each leaf L of f Y intersects each
leaf L of SY in exactly one leaf of A of f. Thus for all r, j G R,

<p,Ua) = Mal n L') = ¿,(z/) n 4(l)
= ¿<p,(z, n L') - foM)-

It follows that <j>, ° 4 = 4 o ç)(.   Q.E.D.
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Thus we obtain a continuous faithful simply transitive action of the topological
group R2 on the topological space R2. Applying the group element (t, s) to the
origin (0, 0) defines a homeomorphism 0: R2 -» R2, 6(t,s) = q>,^s(0,0) =
4<P,(0> 0). We interpret 0~l as a continuous reparametrization of 7?2. Under this
repárametrization, the action of ttx(M,A) on R2 takes a pleasantly simple form.

(8.7) Proposition. Lei a E 7Tx(M,A)andset(a,b) = 0-'a0(O,O). Then0~laO: R2
-» R2 w translation by the vector (a, b).

Proof. Remark that a commutes with the flows <p, îp since <p, ̂ are lifted from
M. Also, a(0,0) = a0(O,O) = 0(a,b) = «0,^(0,0). Thus, for all (t,s) £ R2,
a6(t,s) = a9,</i(0,0) = u&a(0,0) = q>AvAb(P, 0) = &+Ji+&(0- °) =
d(t +a, s+b), so Q-lcê(t, s) = (r +a, s +b). Q.E.D.

We can now complete the proof of the Main Theorem. Remark first that the
covering space M -* M obtained from M by dividing out the action of irx(A) has
the form A? = A X R2 with ttx(M,A) as the group of deck transformations. Since
ttx(M,A) = Zr is also represented as a group of translations of R2, it sits as an
additive subgroup Zr C R2, r > 2. Let G C R2 be the closure of this subgroup;
hence G is a Lie subgroup of R2 and we consider three cases.

For case 1, let dim(G) = 0. Then r = 2 and G = Z2 is a lattice group in R2,
so each leaf of 9 is closed in M. By (4.4), 9 must foliate M by the fibers of a
smooth bundle M -* T2.

For case 2, take dim(G) = 1. Then G is a discrete family of parallel lines. It
follows that M has a C° foliation of codimension one with leaves the closure of
the leaves of 9. Indeed, at least one of the flows <p or if of (8.5), say <p, has the
property that for any A E 9 and some e > 0, the map h: Ax (-e,e) -» M
defined by h(x,t) = <p,(x) is a homeomorphism onto an open neighborhood of
A . Thus M is fibered by the leaves A over a compact connected one dimensional
manifold. This is the desired topological bundle M -* S1.

The third case has dim(G) = 2. Thus Zr is everywhere dense in R2, so each
A E 9 is everywhere dense in M. This completes the proof of the Main Theorem.

9. Proofs of the corollaries. We consider Corollaries A through F as formulated
in the introduction.

The Main Theorem together with (3.1) and the remark immediately following
(3.1) give Corollary A for codimension two. Indeed, M compact with ttx(M) finite
implies M compact. If 9 is transversally almost parallelizable, then 9 is
transversally parallelizable and the Main Theorem is contradicted. Similarly, in
codimension one (5.5) is contradicted.

We prove Corollary B. Here M is a compact connected n-manifold, n > 5, and
Tik(M) = 0, 2 < k < n - 3. If 9 is a codimension two e-foliation of M, then
M s Â X R2 and

TTk(A) = Vk(Â) = TTk(M) = wk(M) = 0
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for 2 < k < n — 3. If irn-2(Â) = 0, then, by the Hurewicz theorem [7], H„_2(Â)
= 0. Since A is a simply connected (n — 2)-manifold, it has vanishing homology
in all positive dimensions; hence irk(Â) = 0, VA; > 0, by Hurewicz. Â is a CW-
complex; hence by a theorem of J. H. C. Whitehead [8, p. 125], Â is contractible.
Thus M is contractible. If, on the other hand, n„-2(Â) # 0, the same holds for
H„_2(Â), so Â is a compact simply connected integral homology sphere. In
particular, irn-.2(Â) — Z and the generator

/: S"'2 -» Â

is a homotopy equivalence. Furthermore, A = n(Â) is compact; hence our
standard application of (4.4) shows that the foliation of M is a fiber bundle over
T2. Corollary B is completely proven.

The proof of Corollary C is simply a refinement of the proof of Corollary B.
Here Â is a contractible 2-manifold if ir2(Ä) = 0; hence Â = R2 and M s R4.
If ir2(Â) ¥= 0, then Â is a homotopy 2-sphere, hence Â = S2. The only 2-
manifolds A with S2 as universal cover are S2 and P2, so Corollary C is proven.

Corollary D is completely trivial. Â is a simply connected 1-manifold; hence
i^RandMs R3.

For Corollary E we have the hypothesis that irx(M) is abelian; hence
irx(M,A) = Zk, k > 2. Dividing out the action of irx(A) on M yields the covering
space M = A X R2 —* M with Zk = irx(M,A) as the group of covering transfor-
mations. Consider this group as acting from the right and also consider its
standard (left) action on R* as the group of covering transformations over Tk.
Form the twisted product

X = MXZ*R*.

This is the total space of two fiber bundles

R* ̂  X -j* M,      M^X-;?Tk,

where, for definiteness, we take i(y) = [y,0], Vy E M. The first of these
fibrations shows that a is a homotopy equivalence, so we let r: M -> X be a
homotopy inverse. Also let /': A -» M = A X R2 be the homotopy equivalence
defined byy'(a) = (a,0), Va G A. Let/: A -» M be the leaf inclusion covered by
j. The diagram

A-*M

i Q

M->X i
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is commutative; hence

A-*M

i r

M-;->X i

is homotopy commutative. Defining t: M -> Tk by t = p ° r gives a homotopy
commutative diagram

A--.->M-> 7*

/ r id

M-> X-* Tk
i p

in which the vertical arrows are homotopy equivalences and the bottom row is a
fiber bundle. Since / is the immersion of a leaf, the proof of Corollary E is
complete.

It remains to prove Corollary F. Under the hypotheses of that corollary,
ttx(A) = Zr, 0 < r < n - 2, <nx(M,A) = Zk, k > 2, and, irx(M) being abelian,
the exact sequence

0 -» irx(A) -h> ttx(M) -* ttx(M,A) -h> 0

shows that ttx (M ) = Zm, m = r + k. Since Â = R"~2, the Main Theorem shows
that M = R", so M is an Eilenberg-Mac Lane space K(Zm, 1). Since Tm is also a
K(Zm, 1), we see that M has the homotopy type of Tm. Since these are both
compact manifolds of respective dimensions n and m, it follows that m = n and
Corollary F is proved.

10. Strong transverse e-structures. In this section we assume some familiarity
with the Haefliger cocycles associated to a codimension q foliation [5], [2, p. 40].
Recall that these consist of an open cover {Ua} of M, submersions/: Ua -» Rq,
and, for each x £ Ua n Uß, the germ g£ß of a diffeomorphism of a neighborhood
of fa(x) onto a neighborhood of fp(x). The germs fax andfBx are related by

fß   =8^°fa-
The tangent spaces to R? all identify canonically with R?, hence dg£ß E Glq is
well defined.

(10.1) Definition. Let 77 C Glq be a Lie subgroup. Let 9 be a codimension q
foliation of M. A strong transverse 77-structure for 9 is a Haefliger cocycle
{Ua,fa,gaß] for 9such that dg£ß E 77, Va, /i and Vx E Ua D Uß.9together with
a choice of such a cocycle is called a strong 77-foliation.
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Since yaß: (/, il Uß -* Glq defined by yaß(x) = dg£ß is constant along local
leaves and gives a system of transition functions for the normal bundle Q, the
next proposition is elementary.

(10.2) Proposition. A strong transverse H-structure for S implies the existence of
a transverse H-structure for S.

The converse of (10.2) is generally false, as we shall see.
Let Wa>fa>Saß) De a strong transverse e-structure for a codimension a foliation

f, (Yx,...,Yq) the corresponding transverse e-structure such that all fat(Y¡ \ Ua)
= d/dx,: on fa(Ua), i: = 1, ..., a. As usual, let V be the span of the Í7S over R-

(10.3) Lemma. For Sas above and 0 ¥= Z E V,$zis a strong e-foliation.

Proof. Since [3/9*,-, 9/9*,-] = Ó in Rq, our above definitions imply that
[Y¡, Yj] E T(E) (E the tangent bundle to f), Vi,j; hence that [Z, W] E T(E),
VZ,rVEV.LetV' = {WEV:W±Z}. Then by (1.5) it follows that each
W G V is parallel along all the leaves of fz. Furthermore, a choice of basis
Wx, ..., Wq_x in V and a once and for all linear recoordinatization of R? with
coordinates yx, ... ,yq gives

fAwi\ua) = d/dyt,    i = \,...,q-\,
fAZ | Ua) = d/dyq,

for all a. Thus, if p: Rq -» R»-1 is projection along the ^,-axis, the maps
p o fa = fa: Ua -* Rq~x are submersions defining fz and related by g£ß such that
dgaß = identity.   Q.E.D.

(10.4) Theorem. Let M be a compact connected manifold with a strong e-foliation
'S of codimension a. Then the universal cover M = Â X Rq where À is the universal
cover of the typical leaf A ofS. The homomorphism irxiA) -* irx(M) is a monomor-
phism onto a normal subgroup ofirx(M) and the group itx(M,A) = irx(M)/irx(A) is
free abelian of finite rank > q. If the rank is q, then the foliation is a fiber bundle
over Tq.

Proof. Sx = f j¡ is a strong e-foliation by (10.3); hence we can form the strong
e-foliation f2 = (fj¡)r2- Proceeding in this way, we obtain a sequence f = f0, Sx,
f2, ..., f?_, of strong e-foliations, codim(f,) = a - i, each f, (/ > 1) having its
leaves e-foliated by leaves of f,_i. Each of these e-foliations of a leaf of S¡ is
transversally complete by the compactness of M. Thus, repeated application of
(5.5) gives M s Â X Rq as desired. As usual, this implies irx(A) -» irx(M) one-
one. If p: M -> Rq is the corresponding projection, the fields Y¡ = p*(Y¡) are
complete and all [Y¡, Yj] = 0, so R? can so be coordinatized that Y¡ = 9/9y,, /
= 1, ...,a. Thus, the image of the natural homomorphism p: itx(M)
-* Diff+(R?) consists of diffeomorphisms leaving all 9/9.y, invariant, hence of
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translations in R9. Thus p(irx(M)) is free abelian, finitely generated since M is
compact, and p(a) has a fixed point in R? only if p(a) = identity. Thus
Ker(p) = ttx(A) and irx(M,A) is free abelian of finite rank. If the rank were < q
the translation vectors for elements of Im(p) would span a proper subspace of Rq
and it would follow that M could not be compact. Similarly, if the rank were q
but 7TX(M,A) did not act as a full ^-dimensional lattice group on Rq, M could not
be compact. Thus, if the covering space A X Rq -* M has covering transforma-
tions ttx(M,A) = Zq, the foliation 9will be a fiber bundle over Tq.   Q.E.D.

As remarked in the introduction, the foliation of Sl X S3 by leaves S1 X pt. is
an e-foliation not satisfying the conclusion of (10.4). Thus the converse of (10.2)
is false.

Since Tq admits a global frame field (Xx,. ..,Xq) with all [X„Xj\ m 0, it is
immediate that any fibration M -* Tq is a strong e-foliation. Since T2 is the only
compact connected parallelizable 2-manifold, (4.4) gives the following result.

(10.5) Proposition. If 9 is a codimension two e-foliation of compact M, and if 9
admits a closed leaf, then 9 admits a strong transversal e-structure.

The general philosophy of this subject seems to be that the leaf space of an e-
foliation is "trying to be" a parallelizable manifold, while that of a strong e-
foliation is trying to admit the additional structure of a flat Riemannian
manifold. Since all parallelizable 2-manifolds admit flat Riemannian metrics, the
following conjecture, supported by (10.5), seems reasonable.

(10.6) Conjecture. Any codimension two e-foliation of compact M admits a strong
transversal e-structure.

Comparing (10.4) with the Main Theorem we find that the possibility that
w, (M, A) is not abelian is an obstruction to (10.6). We do not know whether this
ever happens. Noticing that a strong e-structure {Ua,fa,y*ß} is precisely a cocycle
for which every y£ß is the germ of a translation in R', we offer the following
partial verification of (10.6).

(10.7) Theorem. Let 9 be a codimension two e-foliation of compact connected M.
If itx(M,A) is abelian, then there is a class C° Haefliger cocycle {Ua,fa,y£ß} for 9
such that each y£ß is the germ of a translation in R2.

Proof. Cover M = Â X R2 by product neighborhoods VaxWa,Vaa coordinate
neighborhood in Â, Wa open in R2, such that the covering mapp: M -* M carries
each Va X Wtt homeomorphically onto an open set Ua C M. Let pa = p \ Va X Wa.
By (8.7), our willingness to sacrifice differentiability allows us to assume that the
covering transformations y £ ttx(M) have the form y(x,t,s) = (y(x,t,s),t + a,s
+ b) for suitable continuous y: M -> Â and constants a and b. It follows that
WaJa) with/(/?„(*, r,.s)) = (t,s) defines a C° cocycle {Ua,fa,yfß} in which y¿ is
always the germ of a translation.   Q.E.D.
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