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Abstract. The following Theorem 1 gives an affirmative answer to Gr¨unbaum’s old ques-
tion. LetF be a family of translates of a convex compact setK ⊂ R2. If every two elements
of F have a common point, then there exist three pointsA, B,C ∈ R2 such that every
element ofF contains some of these points.

In the well-known survey paper [4] (see [7] and also Conjecture 6.2 in Chapter 2.1,
p. 407, of [5]) Grünbaum posed the following question: for any family of translates of
a convex compact set in a plane in which any two sets have nonempty intersection does
there exist a 3-transversal, i.e., three points such that each set of the family contains
at least one of them? There are some partial solutions: for unit disks [8], triangles [3],
centrally symmetric sets [6], and sets of constant width [2]. In this paper we solve this
problem.

Theorem 1. For a family F= {K + x : x ∈ X} of translates of a convex compact set
K inR2 in which any two sets have a nonempty intersection there exists a3-transversal.

In [4] and [7] there is also some information concerning similar statements forRn,
n ≥ 3, e.g., an estimate on the order of a transversal for a family of translates of a
convex compact set in which any two sets have a nonempty intersection. Further, from
the statement of Theorem 2 it will be seen that this problem is closely related to the
problem of partitioning a figure into smaller parts (Borsuk’s problem) and covering a
figure with smaller copies (Hadwiger’s problem).
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Consider some auxiliary statements that will be used in the proof of Theorem 1. For
any two setsA andB inRn let A+ B = {a+b | a ∈ A,b ∈ B} denote the Minkowski’s
sum andA− B = A+ (−B).

The following is another formulation of Theorem 1:

Theorem 2. If X − X ⊆ K − K for a set X∈ R2 and a convex compact set K, then
X may be covered by three translates of−K .

Remark. SinceK −K is centrally symmetric, the conditionX−X ⊆ K −K does not
change whenK is replaced by−K and we construct a covering ofX by three translates
of K .

Lemma 1. Theorems1 and2 are equivalent.

Proof. We show that Theorem 2 implies Theorem 1. If(K + x1) ∩ (K + x2) 6= ∅,
then for anyx1, x2 ∈ X there exist pointsp, y1, y2 ∈ K such thatp = x1 + y1 and
p = x2+ y2. Thus,x1− x2 = y2− y1, so thatX − X ⊆ K − K .

By Theorem 2 there exist pointsx1, x2, x3 such that for anyx ∈ X there exists
i = 1,2,3 andy ∈ K such thatx = xi − y, or, in other words,xi ∈ x+ K for all x ∈ X
and somei . This is the statement of Theorem 1.

The converse can be proved by the same reasoning in reverse order.

Definitions. Let X ⊂ Rn be a bounded set, letK ⊂ Rn be a convex compact set,
and leta ∈ Sn−1; Sn−1 is the unit sphere. The ratiow(X, K ,a) of distances between
parallel supporting hyperplanes ofX andK with the normal vectora is called the width
of X relative toK in the direction ofa. It may also be defined as the ratio of lengths
of the images ofX and K under the orthogonal projection onto the line spanned by
a. It is clear thatw(X, K ,a) = 2w(X, K − K ,a), w(X − X, K ,a) = 2w(X, K ,a),
w(X, K ,a) = w(X − X, K − K ,a), and thatw(X, K ,a) is the distance between
supporting hyperplanes ofX with the normal vectora in the sense of the Banach metric
dB(x, y) defined by the unit ballB1 = K − K . A convex compact setX is called a body
of constant width relative toK if w(X, K ,a) = const.

The following simple lemma clarifies the geometric meaning ofX − X ⊆ K − K .

Lemma 2. The following statements are equivalent:

(1) X − X ⊆ K − K .
(2) X has diameterdiamX ≤ 1 in the Banach metric dB(x, y), B1 = K − K .
(3) w(X, K ,a) ≤ 1 for each a.

Proof. (1)⇔ (2) Clearly.
(2) ⇒ (3) Using (1)⇔ (2), we haveX − X ⊆ B1. Sincew(X, K ,a) = w(X −

X, B1,a) it follows thatw(X, K ,a) ≤ 1.
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(3) ⇒ (1) The setsB1 and X − X are both symmetric with the center0; B1 is
convex and therefore is an intersection of centrally symmetric strips with center0. Since
w(X, K ,a) = w(X − X, B1,a) ≤ 1, each such strip contains conv(X − X) and hence
conv(X − X) ⊆ B1 andX − X ⊆ B1.

Since condition (3) of Lemma 2 will not change if we replaceX by conv(X), we may
assume setX of Theorem 2 to be convex.

Lemma 3. Let B be a two-dimensional Banach space, B1 being the unit ball. If X ⊂ B
and diamB X ≤ 1, then there exists a convex compact set F such that X⊆ F and
w(F, B,a) = 1

2 for all a ∈ S1.

Lemma 3 is well known (see p. 62 of [1]).
Now Theorem 2 may be deduced using Lemma 3 from the following special case:

Theorem 3. If X, K ⊂ R2 are convex compact sets and X− X = K − K , then X may
be covered by three translates of K.

Remark. The conditionX − X = K − K means thatX andK have the same width
in every direction (see Lemma 2).

To prove Theorem 3, we need the next lemma:

Lemma 4. Let4A1B1C1 be formed by the midpoints of the sides of4ABC. If a line l
does not intersect4A1B1C1 and is not parallel to any of its sides, then l together with
the two lines containing sides of4ABC, form a triangle of greater area than that of
4ABC.

Proof of Lemma4. We consider two essentially different cases (see Figs. 1 and 2):

Case1: line l does not intersect4ABC and A has the greatest distance from l. Then,
obviously, linesl , AB, andAC form a triangle of greater area than4ABC.

Case2: line l intersects the sides AB and AC and the line BC in F, E, and D, respectively,
and C lies between B and D. By the assumption of Lemma 4,AE< EC. It is clear to see
that the triangle symmetric to4DEC with respect toE contains4AFE and therefore
S4AFE < S4DEC. Thus,S4BFD > S4ABC.

Other cases reduce to ones studied above by reordering vertices of4ABC.

We introduce some notation (see Fig. 3).
Let a ∈ S1 and letX be a convex compact set. Denote byl+(a, X) andl−(a, X) the

supporting lines ofX perpendicular toa such thatλ1a ∈ l−(a, X), λ2a ∈ l+(a, X) and
λ2 > λ1. In other words,(a, x) > 0 for all x ∈ l+(a, X) − l−(a, X) (where(a, x) is
the scalar product). Note that Minkowski’s sum of two parallel lines is a line parallel to
them both. We denote

m(a, X) = 1/2(l+(a, X)+ l−(a, X)) and l (a) = l+(a, X)− l+(a, K ).
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Fig. 1

Fig. 2

Fig. 3
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Fig. 4

It is clear thatm(a, X) is the equidistant line betweenl+(a, X) andl−(a, X).

Proof of Theorem3. We first construct explicitly three translates ofK and then prove
that they coverX. Sincew(X, K ,a) = 1, it easily follows that

l (a) = l−(a, X)− l−(a, K ) = m(a, X − K )

and hencel (a) = l (−a) (see Fig. 4).
Obviously, l (a) is a continuous function ofa ∈ S1. For any three mutually non-

collinear vectorsa1,a2,a3 ∈ S1, let S(a1,a2,a3) be the area of the triangleT(a1,a2,a3)

formed by l (a1), l (a2), l (a3). If a1, a2 are noncollinear, thenx = m(a1, X − K ) ∩
m(a2, X−K ) is the center of the parallelogram formed by the supporting linesl+(a1, X−
K ), andl−(a1, X−K ), l+(a2, X−K ), andl−(a2, X−K )of X−K . Thereforex ∈ X−K .
Hence,

S(a1,a2,a3) ≤ 1/2(diam(X − K ))2 sinϕ,

whereϕ is the angle betweenl (a1) andl (a2). ThereforeS(a1,a2,a3) tends to zero when
the directions of any twol (ai ) tend to each other. This implies thatS(a1,a2,a3)may be
regarded as a continuous function of arbitrary three unit vectorsa1, a2 anda3. Thus,S is
a continuous function on the compact setS1× S1× S1, and hence attains its maximum
valueM at a certain(a1,a2,a3) ∈ S1× S1× S1.

Now we consider two cases.

Case1: M = 0. Then any three, and therefore all ofl (a), have the common pointt . We
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Fig. 5

claim thatX = K + t . Indeed, we have

t ∈ l+(a, X)− l+(a, K ) ⇒ 0 ∈ l+(a, X)− l+(a, K )− t,

i.e.,

0 ∈ l+(a, X)− l+(a, K + t) and l+(a, K + t) = l+(a, X).

Therefore,X andK + t have the same supporting lines in all directions and we obtain
X = K + t .

Case2:Assume that M= S(a1,a2,a3) > 0. Lett1, t2, andt3 be the midpoints of the sides
of the triangleT(a1,a2,a3). Consider the translatesKi = K + ti . Sincel (a) = l (−a),
we may assume that(ai , ti − tj ) > 0 (i 6= j ), changing signs ofai where needed (see
Fig. 5). For anyi = 1,2,3 we take some pointsyi ∈ l−(ai , K ) on the boundary ofK .
Now we prove thatyi + ti − tj ∈ K or, equivalently,yi + ti ∈ Kj , i, j = 1,2,3 (see
Fig. 6). It is sufficient to prove this assertion fory1 + t1 − t2, y1 + t1 − t3, since the
argument does not depend oni .

Sincetk − tj ‖ l−(ai , K ) (i 6= j 6= k), it follows that

l−(ai , K )+ ti − tj = l−(ai , K )+ ti − tk (see Fig. 6).

Also sinceti ∈ l (ai ) = l−(ai , X)− l−(ai , K ), we havel−(ai , K )+ ti = l−(ai , X).
First we prove thatl+(a2, K ) andl+(a3, K ) cannot intersectK strictly between the

lines l−(a1, K ) and l−(a1, K ) + t1 − t2. Show, e.g., thatl+(a3, K ) ∩ K does not lie
betweenl−(a1, K ) andl−(a1, K ) + t1 − t2. We make a translation of all objects byt2.
ThenK becomesK2. Now we have to prove thatl+(a3, K2) ∩ K2 does not lie between
l−(a1, K2) andl−(a1, K2)+ t1− t2 = l−(a1, K )+ t1 = l−(a1, X).

Assume the contrary and takea ∈ S1 which becomesa3 after a sufficiently small
rotation towarda1. If the rotation was small enough, then the linesl+(a3, K2) and
l+(a, K2) will intersect betweenl−(a1, K2) andl−(a1, X) (see Fig. 7).

Now consider the linesl+(a3, X) andl+(a, X). The linel+(a3, X) is obtained from
l+(a3, K2) by a translation byt3 − t2. Sincet3 ∈ l+(a3, X) − l+(a3, K ), it follows that
t3− t2 ∈ l+(a3, X)− l+(a3, K2).
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Fig. 6

Lemma 4 asserts thatl (a) intersects4t1t2t3 and, in this case, intersects the sidet2t3.
Since

l (a) = l+(a, X)− l+(a, K ) = l+(a, X)− l+(a, K2)+ t2,

l+(a, X) is obtained froml+(a, K2) by translation by a vector collinear tot3 − t2 of
smaller length. This means that the pointl+(a3, X) ∩ l+(a, X), as well asl+(a3, K2) ∩
l+(a, K2), lies on the other side ofl−(a1, X) relative toX (see Fig. 7, the translations
of l+(a3, K2) andl+(a, K2)move its intersection point within the same open half-plane
relative tol−(a1, X)).

Fig. 7
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Fig. 8

Figure 7 also shows that in such an arrangement all three linesl+(a, X), l+(a3, X),
andl−(a1, X) cannot be supporting lines forX. A contradiction.

We proved thatl+(a2, K ) andl+(a3, K ) cannot intersectK strictly between the lines
l−(a1, K ) andl−(a1, K )+ t1− t2 = l−(a1, K )+ t1− t3 (the latter containsy1+ t1− t2
and y1 + t1 − t3). It follows that the convex hull of the intersections ofl+(a2, K ) and
l+(a3, K ) with K andy1 containsy1, y1 + t1 − t2, andy1 + t1 − t3 and lies inK (see
Fig. 6).

Thus,yi + ti ∈
⋂

j K j .
Denote byTi the triangle with vertices atyi + tj ( j = 1,2,3, see Fig. 8). Let

C = conv
⋃

i Ki . We show that

C =
⋃

i

Ki ∪ Ti (see Fig. 8).

Indeed, the linel i = l−(ai , K )+ tj = l−(ai , K )+ tk (i 6= j 6= k) is the supporting line
of K + tj , K + tk at yi + tj , yi + tk, respectively. The setsK + ti , K + tj , K + tk lie in
the same half-plane relative tol i . Thereforel i is the supporting line ofC, and we obtain

C =
⋃

i

Ki ∪ Ti .

We prove thatX ⊆ C. Assume the contrary and take a line separating some part ofX
from C (it exists, since the latter is convex). Leta be its normal vector. Then the origin
does not lie between any two lines froml+(a, X)− l+(a, Ki )which means that theti are
on the same side froml (a). A contradiction to Lemma 4. Sincel (ai , K )+ ti = l(ai , X),
we see that the triangleTi is separated fromX by l−(ai , X) and therefore

X ⊆ C \
(⋃

i

Ti ∪ {y1+ t1, y2+ t2, y3+ t3, }
)
⊆
⋃

i

Ki .

Theorem 3 is proved.
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7. Grünbaum, B., Borsuk’s problem and and related questions, inConvexity, pp. 271–284, Proc. of Symposia

in Pure Mathematics, Vol. 7, American Mathematical Society, Providence, RI, 1963.
8. Hadwiger, H., Debrunner, H., and Klee, V.,Combinatorial Geometry in the Plane, Holt, Rinehart, and

Winston, New York, 1964.

Received December28, 1998,and in revised form October20, 1999.Online publication May8, 2000.


