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Abstract. The following Theorem 1 gives an affirmative answer tai@ydum’s old ques-
tion. LetF be a family of translates of a convex compactiset R?. If every two elements
of F have a common point, then there exist three poitd, C € R? such that every
element ofF contains some of these points.

In the well-known survey paper [4] (see [7] and also Conjecture 6.2 in Chapter 2.1,
p. 407, of [5]) Grinbaum posed the following question: for any family of translates of

a convex compact set in a plane in which any two sets have nonempty intersection does
there exist a 3ransversal i.e., three points such that each set of the family contains

at least one of them? There are some partial solutions: for unit disks [8], triangles [3],
centrally symmetric sets [6], and sets of constant width [2]. In this paper we solve this
problem.

Theorem 1. For afamily F = {K + x : x € X} of translates of a convex compact set
K in R? in which any two sets have a nonempty intersection there existsaasversal

In [4] and [7] there is also some information concerning similar statementRor
n > 3, e.g., an estimate on the order of a transversal for a family of translates of a
convex compact set in which any two sets have a nonempty intersection. Further, from
the statement of Theorem 2 it will be seen that this problem is closely related to the
problem of partitioning a figure into smaller parts (Borsuk’s problem) and covering a
figure with smaller copies (Hadwiger’s problem).
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Consider some auxiliary statements that will be used in the proof of Theorem 1. For
anytwo setfdandBinR"let A+ B = {a+b|a e A, b e B} denote the Minkowski's
sum andA — B = A+ (—B).

The following is another formulation of Theorem 1.

Theorem 2. If X — X € K — K for a set Xe R? and a convex compact set, knen
X may be covered by three translates-df.

Remark. SinceK — K is centrally symmetric, the conditiod— X € K — K does not
change wheiK is replaced by-K and we construct a covering &fby three translates
of K.

Lemma 1. Theoremd and?2 are equivalent

Proof. We show that Theorem 2 implies Theorem 1(K + x;) N (K + X2) # @,
then for anyx;, X, € X there exist point9, yi1, y» € K such thatp = x; + y; and
P = X2+ Y2. Thus,X; — X = yo — y1, so thatX — X € K — K.

By Theorem 2 there exist pointg, X2, X3 such that for anyx € X there exists
i =1,2,3andy € K suchthak = x; —y, or, in other wordsy, € x+ K forallx € X
and some. This is the statement of Theorem 1. O

The converse can be proved by the same reasoning in reverse order.

Definitions. Let X c R" be a bounded set, I&¢ c R" be a convex compact set,
and leta € S"%; S™1is the unit sphere. The ratio(X, K, a) of distances between
parallel supporting hyperplanes ¥fandK with the normal vectoa is called the width

of X relative toK in the direction ofa. It may also be defined as the ratio of lengths
of the images ofX and K under the orthogonal projection onto the line spanned by
a. ltis clear thatw(X, K,a) = 2w(X, K — K, a), w(X — X, K, a) = 2w(X, K, a),
w(X,K,a) = w(X — X,K — K, a), and thatw(X, K, a) is the distance between
supporting hyperplanes &f with the normal vectoa in the sense of the Banach metric
ds (X, y) defined by the unit baB; = K — K. A convex compact seX is called a body

of constant width relative t& if w(X, K, a) = const.

The following simple lemma clarifies the geometric meaninglof X € K — K.

Lemma 2. The following statements are equivalent

(1) X=X S K-K.
(2) X has diametediamX < 1in the Banach metricglx, y), B; = K — K.
(3) w(X, K,a) < 1foreacha

Proof. (1) < (2) Clearly.
(2) = (3) Using (1)< (2), we haveX — X < By. Sincew(X, K,a) = w(X —
X, By, a) it follows thatw (X, K, a) < 1.
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(3) = (1) The setsB; and X — X are both symmetric with the centér B; is
convex and therefore is an intersection of centrally symmetric strips with c@r&erce
w(X, K,a) = w(X — X, By, a) < 1, each such strip contains c@i{/— X) and hence
conM X — X) € ByandX — X C Bs. O

Since condition (3) of Lemma 2 will not change if we replacby conu X), we may
assume seX of Theorem 2 to be convex.

Lemma 3. Let B be atwo-dimensional Banach spaBgbeing the unit balllf X c B
and diamg X < 1, then there exists a convex compact set F such that X and
w(F,B,a) = Jforalla e S~

Lemma 3 is well known (see p. 62 of [1]).
Now Theorem 2 may be deduced using Lemma 3 from the following special case:

Theorem 3. If X, K c R? are convex compact sets and-XX = K — K, then X may
be covered by three translates of K

Remark. The conditionX — X = K — K means thaX andK have the same width
in every direction (see Lemma 2).

To prove Theorem 3, we need the next lemma:

Lemma4. LetAA;B;C; be formed by the midpoints of the sidex\0&BC. If a line |
does not intersech A; B1C; and is not parallel to any of its sidethen | together with
the two lines containing sides af ABC, form a triangle of greater area than that of
AABC.

Proof of Lemmat. We consider two essentially different cases (see Figs. 1 and 2):

Casel: line | does not intersech ABC and A has the greatest distance franthen,
obviously, lined, AB, andAC form a triangle of greater area thamABC.

Case2:line | intersects the sides AB and AC and the line BC jiefFand D, respectively
and C lies between B and.By the assumption of LemmaAE < EC. Itis clear to see
that the triangle symmetric ta DEC with respect toE containsA AFE and therefore
Saare < Sapec. Thus,Sagrp > Saagc.

Other cases reduce to ones studied above by reordering verticesSRIE. O

We introduce some notation (see Fig. 3).

Leta € S' and letX be a convex compact set. Denotelhya, X) andl_(a, X) the
supporting lines oX perpendicular t@ such that,a € |1_(a, X), »,a € |, (a, X) and
A2 > A1. In other words(a, x) > O for all x € I (a, X) —1_(a, X) (where(a, x) is
the scalar product). Note that Minkowski’'s sum of two parallel lines is a line parallel to
them both. We denote

m(a, X) = 1/2(.(a, X) +1_(a, X)) and l@) =I1,.(a X) —l,(a, K).
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Fig. 1

Fig. 3
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Fig. 4

Itis clear thaim(a, X) is the equidistant line betweén(a, X) andl_(a, X).

Proof of Theoren8. We first construct explicitly three translateskofand then prove
that they coveiX. Sincew(X, K, a) = 1, it easily follows that

l@=I_(a X)—Il_(a, K)=m(a, X — K)

and hencé(a) = |1 (—a) (see Fig. 4).

Obviously,|(a) is a continuous function oi € S'. For any three mutually non-
collinear vectorsy, ap, az € St let S(ay, ay, as) be the area of the triang®(ay, a,, az)
formed byl (ay), | (&), | (a3). If a1, a; are noncollinear, thewm = m(a;, X — K) N
m(az, X—K) isthe center of the parallelogram formed by the supporting lings, X —
K),and_(a;, X—K),l (@, X—K),and _(ap, X—K) of X— K. Thereforex ¢ X—K.
Hence,

S(ay, &, ag) < 1/2(diam(X — K))?sing,

whereg is the angle betwedria;) andl (ay). ThereforeS(a;, a;, ag) tends to zero when
the directions of any twb(a; ) tend to each other. This implies thata,, ap, ag) may be
regarded as a continuous function of arbitrary three unit veeoes andag. Thus,Sis
a continuous function on the compact §&tx S' x St, and hence attains its maximum
valueM at a certaina, ay, ag) € St x St x St

Now we consider two cases.

Casel: M = 0. Then any three, and therefore all &), have the common poimt We
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claim thatX = K +t. Indeed, we have

tely@@ X)—1,(a,K) = 0ely(a X)—-1,(a,K)—t,
ie.,

Oely(@ X)—Il,(a,K+t) and I, (@ K+1t)=1,(a, X).

Therefore,X andK + t have the same supporting lines in all directions and we obtain
X=K+t.

Case2: Assumethat M= S(ay, az, ag) > 0. Letty, tp, andt; be the midpoints of the sides
of the triangleT (az, a2, ag). Consider the translaté§ = K + t;. Sincel(a) = | (—a),
we may assume thas;, t —tj) > 0 (i # j), changing signs o& where needed (see
Fig. 5). For any = 1, 2, 3 we take some pointg € |_(a;, K) on the boundary oK.
Now we prove tha; +t —t; € K or, equivalentlyy; +t € K;,i,j = 1,2, 3 (see
Fig. 6). It is sufficient to prove this assertion fgr + t; — t5, y1 + t1 — t3, since the
argument does not dependion

Sincet, — tj || 1-(a;, K) (i # j # k), it follows that

(@, K)+ti—t=1_(&a, K)+t —t (see Fig. 6)

Also sincet; € l(g) =1_(a, X) —I_(a, K), we havd_(a;, K) +t = |_(&, X).

First we prove thak, (ay, K) andl . (ag, K) cannot intersecK strictly between the
linesl_(a;, K) andl_(a;, K) + t; — t,. Show, e.g., thak, (as, K) N K does not lie
betweer _(a;, K) andl_(a;, K) + t; — to. We make a translation of all objects by
ThenK becomesK,. Now we have to prove that (ag, K2) N K, does not lie between
I_(al, K2) andl_(al, Kz) +t1—th= I_(al, K) +t = |_(a;|_, X)

Assume the contrary and takee S' which becomesy after a sufficiently small
rotation towarda;. If the rotation was small enough, then the lidegas, K») and
I, (a, Ky) will intersect betweeh_(a;, K2) andl_(a;, X) (see Fig. 7).

Now consider the linek, (ag, X) andl (a, X). The linel, (ag, X) is obtained from
I, (a3, K2) by a translation bys — t,. Sincet; € |, (ag, X) — 1. (ag, K), it follows that
t3 -t el (a3, X) — 1, (a3, Ky).
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Lemma 4 asserts thhta) intersectsAt;tot; and, in this case, intersects the sigle.

Since

(@ =1y X) =@ K) =l X) -l (a Kz) +to,

I, (a, X) is obtained fronl . (a, K,) by translation by a vector collinear tg — t, of
smaller length. This means that the pdintas, X) N1, (a, X), as well ad (a3, K2) N
I, (a, Ky), lies on the other side df (a;, X) relative toX (see Fig. 7, the translations
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of I, (a3, K2) andl (a, Kz) move its intersection point within the same open half-plane

relative tol _(az, X)).
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Fig. 8

Figure 7 also shows that in such an arrangement all threellifas X), 11 (as, X),
andl_(a;, X) cannot be supporting lines fot. A contradiction.

We proved thak, (ap, K) andl, (az, K) cannotintersed strictly between the lines
I_(a1, K)andl_(a;, K) +t; —t, =1_(as, K) +t; — t3 (the latter containg; +t; —t,
andy; + t; — tg). It follows that the convex hull of the intersectionslqofa,, K) and
I+ (a3, K) with K andy; containsys, y1 + t; — tp, andy; + t; — t3 and lies inK (see
Fig. 6).

Thus,y; +t € ﬂj Kj.

Denote byT; the triangle with vertices ay; +tj (j = 1,2, 3, see Fig. 8). Let
C = convl; Ki. We show that

C=JKiuT  (seeFig.8)
i
Indeed, the lingy = 1_(&, K) +tj =1_(&, K) +t (i # j # K) is the supporting line

of K +tj, K +tx aty; +tj, yi + t, respectively. The sets +t;, K +tj, K 4t lie in
the same half-plane relative io Thereford; is the supporting line of, and we obtain

Cc=JKiuT.
i
We prove thalX € C. Assume the contrary and take a line separating some pxrt of
from C (it exists, since the latter is convex). Labe its normal vector. Then the origin
does not lie between any two lines frdma, X) —1, (a, Kj) which means that thig are

on the same side frohga). A contradiction to Lemma 4. Sindéa;, K) +t =1 &, X),
we see that the trianglg is separated fronX by |_(a, X) and therefore

XCC\(UTI U{yr+1t, Y2 + o, 3+t3,) UK|

Theorem 3 is proved. O
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