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Abstract. We completely describe the structure of the connected components of transver-
sals to a collection of n line segments in R3. Generically, the set of transversals to four
segments consists of zero or two lines. We catalog the non-generic cases and show that
n ≥ 3 arbitrary line segments inR3 admit at most n connected components of line transver-
sals, and that this bound can be achieved in certain configurations when the segments are
coplanar, or they all lie on a hyperboloid of one sheet. This implies a tight upper bound of
n on the number of geometric permutations of line segments in R3.

1. Introduction

A k-transversal to a family of convex sets in Rd is an affine subspace of dimension
k (e.g., a point, line, plane, or hyperplane) that intersects every member of the family.
Goodman et al. [13] and Wenger [26] provide two extensive surveys of the rich subject of

∗ A preliminary version appeared in Proc. 15th Canad. Conf. Comput. Geom., pp. 174–177. The research
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geometric transversal theory. In this paper we are interested in 1-transversals (also called
line transversals, or simply transversals) to line segments. InR2 this question was studied
in the 1980s by Edelsbrunner et al. [12]: they proved that the set of transversals to n
line segments has total description complexity O(n) and can be computed in O(n log n)
time; moreover, it follows from their work that the set of transversals consists of up to n
connected components (see Section 3.3). Here we study the subject in R3.

We address the following basic question: What is the cardinality and geometry of the
set of transversals to an arbitrary collection of n line segments inR3? Here a segment may
be open, semi-open, or closed, and it may degenerate to a point; segments may intersect
or even overlap. Since a line in R3 has four degrees of freedom, it can intersect at most
four lines or line segments in generic position. Conversely, it is well known that four
lines or line segments in generic position admit zero or two transversals; moreover, four
arbitrary lines in R3 admit zero, one, two, or infinitely many transversals [14, p. 164]. In
contrast, our work shows that four arbitrary line segments admit up to four or infinitely
many transversals.

Our interest in line transversals to segments inR3 is motivated by visibility problems.
In computer graphics and robotics, scenes are often represented as unions of not neces-
sarily disjoint polygonal or polyhedral objects. The objects that can be seen in a particular
direction from a moving viewpoint may change when the line of sight becomes tangent
to one or more objects in the scene. Since the line of sight then becomes a transversal
to a subset of the edges of the polygons and polyhedra representing the scene, questions
about transversals to segments arise very naturally in this context.

As an example, the visibility complex [9], [21] and its visibility skeleton [8] are
data structures that encode visibility information of a scene; an edge of these structures
corresponds to a set of segments lying in line transversals to some k edges of the scene.
Generically in R3, k is equal to three. In degenerate configurations, however, k can be
arbitrarily large. Such degenerate configurations can arise, for instance, in architectural
scenes, which frequently contain many coplanar edges. It is thus essential for computing
these data structures to characterize and compute the transversals to k segments in R3.
Also, to bound the size of the visibility complex one needs to bound the number of
connected components of transversals to k arbitrary line segments. The present paper
establishes the actual bound.

As mentioned above, in the context of three-dimensional visibility, lines tangent to
objects are more relevant than transversals; lines tangent to a polygon or polyhedron along
an edge happen to be transversals to this edge. (For bounds on the space of transversals
to convex polyhedra inR3 see [20].) The literature related to lines tangent to objects falls
into two categories. The one closest to our work deals with characterizing the degenerate
configurations of curved objects with respect to tangent lines. MacDonald et al. [17]
give a complete description of the set of lines tangent to four unit balls in R3. Megyesi
et al. [19] describe the set of lines meeting two lines and tangent to two spheres inR3, or
tangent to two quadrics in P3. Megyesi and Sottile [18] describe the set of lines meeting
one line and tangent to two or three spheres in R3. A nice survey of these results can be
found in [24]. Very recently, Borcea et al. [5] completed this study by characterizing the
set of lines tangent to four spheres in R3.

The other category of results deals with lines tangent to k among n objects in R3. For
polyhedral objects, de Berg et al. [3] showed an�(n3) lower bound on the number of free
(i.e., non-occluded by the interior of any object) lines tangent to four among n disjoint
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homothetic convex polyhedra. Brönnimann et al. [4] showed that, under a certain general
position assumption, the number of lines tangent to four among k bounded disjoint convex
polyhedra of total complexity n is O(n2k2). For curved objects, Devillers et al. [7]
presented a simple�(n2) lower bound on the number of free maximal segments tangent
to four among n unit balls, and give a bound of �(n3) (due to Devillers and Ramos)
for n arbitrarily sized balls. Agarwal et al. [1] showed an upper bound of O(n3+ε)
on the complexity of the space of line transversals to n balls; recently, with Koltun,
they showed that the same upper bound holds for the complexity of the set of lines
that do not intersect n balls [2]. Durand et al. [9] showed an upper bound of O(n8/3)

on the expected number of possibly occluded lines tangent to four among n uniformly
distributed unit balls. Under the same model, Devillers et al. [7] recently showed a bound
of �(n) on the expected number of maximal free line segments tangent to four among
n balls.

A topic closely related to line transversals is that of geometric permutations. A geo-
metric permutation of pairwise disjoint convex objects inRd is an ordering of the objects
(or its reverse) such that the objects are met in that order by a line transversal. Worst-case
bounds for general convex objects are known: 2n − 2 is tight in two dimensions [11],
while in any dimension the best known bounds are �(nd−1) [15] and O(n2d−2) [25].
The gap was closed for spheres by Smorodinsky et al. [23], who showed that n spheres
inRd admit up to�(nd−1) geometric permutations, and the same bound was also shown
true for “fat” objects [16]. Recently, Cheong et al. [6] improved the known bounds for
congruent balls, by showing that n balls in Rd of the same radius admit at most two
geometric permutations if n ≥ 9, and at most three otherwise.

2. Our Results

We say that two transversals to a collection of line segments are in the same connected
component if and only if one of the transversals can be continuously moved into the
other while remaining a transversal in R3 to the collection of line segments. (For the
sets of line transversals considered here, the notions of connected and path-connected
components are equivalent since all sets are semi-algebraic.) Equivalently, the two points
in line space (e.g., in Plücker space [22]) corresponding to the two transversals are in
the same connected component of the set of points corresponding to all the transversals
in R3 to the collection of line segments.

Our main result is the following theorem.

Theorem 1. A collection of n ≥ 3 arbitrary line segments in R3 admits any number
from zero to n of connected components of line transversals. More precisely, the set of
line transversals consists of at most two isolated lines unless the segments lie in one of
the following three configurations:

1. the n segments are all contained in lines of one ruling of (a) a hyperbolic paraboloid
or (b) a hyperboloid of one sheet, or

2. they are all concurrent, or
3. they all lie in a plane, with the possible exception of a group of one or more

segments that all meet that plane at the same point.
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Fig. 1. Two views of a hyperboloid of one sheet containing four line segments and their four connected
components of transversals (corresponding to the shaded regions). The four segments are symmetric under
rotation about the axis of the hyperboloid.

In cases 1(a) and 2 the transversals form at most one connected component. In cases 1(b)
and 3 the transversals can have any number from zero to n of connected components.
Moreover, in case 3, if all segments are not coplanar, this number is at most n − 1.

In cases 1–3 each connected component can consist of infinitely many lines or reduce
to an isolated line. For example, three segments forming a triangle and a fourth seg-
ment intersecting the interior of the triangle in one point have exactly three transversals
(Fig. 2(b) shows a similar example with infinitely many transversals). Also, the four seg-
ments in Fig. 1 can be shortened so that the four connected components of transversals
reduce to four isolated transversals.

A simple consequence of our theorem is the following bound on the number of
geometric permutations of n segments in R3.

Corollary 2. A set of n ≥ 3 pairwise disjoint segments in R3 admits up to n geometric
permutations and this bound is tight.

Proof. By the theorem above, n segments in R3 admit up to n connected components
of line transversals. Within a connected component, the lines transversals must intersect
the segments in the same order. Otherwise by continuity there would exist a line in that
component where two objects would intersect somewhere on that line, a contradiction.
Hence the upper bound. The lower bound is proved by the configuration of Fig. 1
generalized to n segments: the n geometric permutations are all the permutations of the
form (i, i + 1, . . . , n, 1, . . . , i − 1) for 1 ≤ i ≤ n.

Finally, as discussed in the conclusion, an O(n log n)-time algorithm for computing
the transversals to n segments follows directly from the proof of Theorem 1.

3. Proof of Theorem 1

Every non-degenerate line segment is contained in its supporting line. We define the
supporting line of a point to be the vertical line through that point. We prove Theo-
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rem 1 by considering the following three cases which cover all possibilities but are not
exclusive:

1. Three supporting lines are pairwise skew.
2. Two supporting lines are coplanar.
3. All the segments are coplanar.

We can assume in what follows that the supporting lines are pairwise distinct. Indeed,
if disjoint segments have the same supporting line 	, then 	 is the only transversal to
those segments, and so the set of transversals is either empty or consists of 	 and the
theorem is satisfied. If some non-disjoint segments have the same supporting line, then
any transversal must meet the intersection of the segments. In that case we can replace
these overlapping segments by their common intersection and the theorem for the smaller
collection will imply the result for the original collection.

3.1. Three Supporting Lines Are Pairwise Skew

Three pairwise skew lines lie on a unique doubly ruled hyperboloid, namely, a hyperbolic
paraboloid or a hyperboloid of one sheet (see the discussion in Section 3 of [22]).
Furthermore, they are members of one ruling, say the “first” ruling, and their transversals
are the lines in the “second” ruling that are not parallel to any of the three given skew
lines.

Consider first the case where there exists a fourth segment whose supporting line 	
does not lie in the first ruling. Either 	 is not contained in the hyperboloid or it lies in
the second ruling. In both cases there are at most two transversals to the four supporting
lines, which are lines of the second ruling that meet or coincide with 	 [14, p. 164]. Thus
there are at most two transversals to the n line segments.

Now suppose that all the n ≥ 3 supporting lines of the segments si lie in the first
ruling of a hyperbolic paraboloid. The lines in the second ruling can be parameterized
by their intersection points with any line r of the first ruling. Thus the set of lines in
the second ruling that meet a segment si corresponds to an interval on line r . Hence
the set of transversals to the n segments corresponds to the intersection of n intervals
on r , that is, to one interval on this line, and so the transversals form one connected
component.

Consider finally the case where the n ≥ 3 supporting lines lie in the first ruling of
a hyperboloid of one sheet (see Fig. 1). The lines in the second ruling can be param-
eterized by points on a circle, for instance, by their intersection points with a circle
lying on the hyperboloid of one sheet. Thus the set of transversals to the n segments
corresponds to the intersection of n intervals on this circle. This intersection can have
any number of connected components from zero up to n, and any of these connected
components may consist of an isolated point on the circle. The set of transversals can
thus have any number of connected components from zero up to n, and any of these
connected components may consist of an isolated transversal. Figure 1 shows two views
of a configuration with n = 4 line segments having four connected components of
transversals.
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3.2. Two Supporting Lines Are Coplanar

Let 	1 and 	2 be two (distinct) coplanar supporting lines in a plane H . First consider the
case where 	1 and 	2 are parallel. Then the transversals to the n segments all lie in H .
If some segment does not intersect H then there are no transversals; otherwise, we can
replace each segment by its intersection with H to obtain a set of coplanar segments, a
configuration treated in Section 3.3.

Now suppose that 	1 and 	2 intersect at point p. Consider all the supporting lines
not in H . If no such line exists then all segments are coplanar; see Section 3.3. If such
lines exist and any one of them is parallel to H then all transversals to the n segments
lie in the plane containing p and that line. We can again replace each segment by its
intersection with that plane to obtain a set of coplanar segments, a configuration treated
in Section 3.3.

We can now assume that there exists a supporting line not in H . Suppose that all the
supporting lines not in H go through p. If all the segments lying in these supporting
lines contain p then we may replace all these segments by the point p without changing
the set of transversals to the n segments. Then all resulting segments are coplanar, a
configuration treated in Section 3.3. Now if some segment s does not contain p then the
only possible transversal to the n segments is the line containing s and p.

We can now assume that there exists a supporting line 	3 intersecting H in exactly
one point q distinct from p (see Fig. 2(a)). Let K be the plane containing p and 	3. Any
transversal to the lines 	1, 	2, and 	3 lies in K and goes through p, or lies in H and goes
through q .

If there exists a segment s that lies neither in H nor in K and goes through neither
p nor q , then there are at most two transversals to the n segments, namely, at most one
line in K through p and s and at most one line in H through q and s.

We can thus assume that all segments lie in H or K or go through p or q. If there
exists a segment s that goes through neither p nor q, it lies in H or K . If it lies in H
then all the transversals to the n segments lie in H (see Fig. 2(b)). Indeed, no line in K
through p intersects s except possibly the line pq which also lies in H . We can again
replace each segment by its intersection with H to obtain a set of coplanar segments;
see Section 3.3. The case where s lies in K is similar.
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Fig. 2. (a) Lines 	1 and 	2 intersect at point p, and line 	3 intersects plane H in a point q distinct from p.
(b) Four segments having three connected components of transversals.
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We can now assume that all segments go through p or q (or both). Let np be the number
of segments not containing p, and let nq be the number of segments not containing q.
Note that np + nq ≤ n.

Among the lines in H through q, the transversals to the n segments are the transver-
sals to the nq segments not containing q. We can replace these nq segments by their
intersections with H to obtain a set of nq coplanar segments in H . The transversals to
these segments in H through q can form up to nq connected components. Indeed, the
lines in H through q can be parameterized by a point on a circle, for instance, by their
polar angle in R/πZ. Thus the set of lines in H through q and through a segment in H
corresponds to an interval ofR/πZ. Hence the set of transversals to the nq segments cor-
responds to the intersection of nq intervals in R/πZ which can have up to nq connected
components.

Similarly, the lines in K through p that are transversals to the n segments can form
up to np connected components. Note furthermore that the line pq is a transversal to all
segments and that the connected component of transversals that contains the line pq is
counted twice. Hence there are at most np + nq − 1 ≤ n − 1 connected components of
transversals to the n segments.

To see that the bound of n− 1 connected components is reached, first consider 	n/2

lines in H through p, but not through q. Their transversals through q are all the lines in
H through q , except for the lines that are parallel to any of the 	n/2
 given lines. This
gives 	n/2
 connected components. Shrinking the 	n/2
 lines to sufficiently long seg-
ments still gives 	n/2
 connected components of transversals in H through q. The same
construction with �n/2� line segments in plane K gives �n/2� connected components
of transversals in K through p. This gives n − 1 connected components of transver-
sals to the n segments since the component containing the line pq is counted twice.
Figure 3(a) shows an example of four segments having three connected components of
transversals.
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Fig. 3. (a) Four segments having three connected components of transversals. (b) Four coplanar segments
having four connected components of transversals.
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3.3. All the Segments Are Coplanar

Let H be the plane containing all the n segments. There exists a transversal not in H if
and only if all segments are concurrent at a point p. In this case the transversals consist
of the lines through p together with the transversals lying in H . To see that they form
only one connected component, notice that any transversal in H can be translated to
p while remaining a transversal throughout the translation. We thus can assume in the
following that all transversals lie in H , and we consider the problem in R2.

We consider the usual geometric transform (see, e.g., [12]) where a line in R2 with
equation y = ax + b is mapped to the point (a, b) in the dual space. The transversals
to a segment are transformed to a double wedge; the double wedge degenerates to a
line when the segment is a point. The apex of the double wedge is the dual of the line
containing the segment.

A transversal to the n segments is represented in the dual by a point in the intersection
of all the double wedges. There are at most n + 1 connected components of such points
[12] (see also Lemma 15.3 of [10]). Indeed, each double wedge consists of two wedges
separated by the vertical line through the apex. The intersection of all the double wedges
thus consists of at most n + 1 convex regions whose interiors are separated by at most
n vertical lines.

Notice that if there are exactly n + 1 convex regions then two of these regions are
connected at infinity by the dual of some vertical line, in which case the segments have
a vertical transversal. Thus the number of connected components of transversals is at
most n.

To see that this bound is sharp consider the configuration in Fig. 3(b) of four segments
having four components of transversals. Three of the components consist of isolated lines
and one consists of a connected set of lines through p (shaded in the figure). Observe
that the line segment ab meets the three isolated lines. Thus the set of transversals to
the four initial segments and segment ab consists of the three previously mentioned
isolated transversals, the line pb which is isolated, and a connected set of lines through
p. This may be repeated for any number of additional segments, giving configurations
of n coplanar line segments with n connected components of transversals.

4. Algorithmic Considerations and Conclusion

While algorithmic issues have not been the main concern of the paper, we note that the
proof of Theorem 1 leads to an O(n log n)-time algorithm in the real RAM model of
computation. First reduce in O(n log n) time the set of segments to the case of pairwise
distinct supporting lines. Choose any three of these lines. Either they are pairwise skew
or two of them are coplanar. If they are pairwise skew (see Section 3.1), their transversals,
and hence the transversals to all n segments, lie in one ruling of a hyperboloid. Any seg-
ment that intersects the hyperboloid in at most two points admits at most two transversals
that lie in that ruling. Checking whether these lines are transversals to the n segments can
be done in linear time. Consider now the case of a segment that lies on the hyperboloid.
Its set of transversals, lying in the ruling, can be parameterized in constant time by an
interval on a line or a circle depending on the type of the hyperboloid. Computing the
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transversals to the n segments thus reduces in linear time to intersecting n intervals on
a line or on a circle, which can be done in O(n log n) time. If two supporting lines are
coplanar (see Section 3.2), computing the transversals to the n segments reduces in linear
time to computing transversals to at most n segments in one or two planes, which can
be done in O(n log n) time [12].

Finally, note that we did not consider in this paper, for simplicity, segments that can
extend to lines or half-lines inR3 although our theorem holds in those situations as well.
For example, in R3 the transversals to n ≥ 3 lines of one ruling of a hyperboloid of one
sheet are all the lines of the other ruling with the exception of the lines parallel to the n
given lines. Thus, in R3 the transversals form n connected components. Notice however
that our theorem does not hold for lines in projective space P3; in this case our proof
directly yields that if a set of lines admit infinitely many transversals, they form one
connected component.
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