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In the past, transverse coherent instabilities have been observed at the Hadron-Electron Ring Accelerator

(HERA) proton ring that were instigated by the presence of linear coupling. Linear coupling can also

potentially explain some transverse instabilities that were observed in the Large Hadron Collider (LHC) in

both run I and run II, however a detailed description of the destabilizingmechanism of linear couplingwas not

known at the time. A study into the effect of linear coupling on transverse beam stability was carried out, and a

newmechanism that could incite transverse instabilities by causing a loss of Landau damping has been found.

The study includes time domain simulations with PYHEADTAIL and frequency domain computations based

on analytical approaches, and was then verified by measurements with a single proton bunch in the LHC.
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I. INTRODUCTION

In run I of the LHC, many transverse coherent insta-

bilities were observed at high energy (3.5 and 4 TeV) at the

end of the betatron squeeze that were not fully explained

[1]. The instabilities had characteristics that were consistent

with the predictions from single bunch simulations, except

that the Landau octupole (LO) current required to stabilize

was a factor of approximately 5 higher than predicted. It

was clear that a loss of Landau damping was occurring due

to a mechanism whose source was not known. Linear

coupling was considered as a potential cause for these

instabilities, however other mechanisms were explored

which allowed physics operation but ultimately were not

able to fully explain the instability. In 2015, during run II of

the LHC, instabilities were observed at injection energy

(450 GeV) while the machine was being filled with around

2000 proton bunches for physics operation [2]. During this

process the horizontal and vertical tunes were drifting

closer together due to the Laslett tune shift [3], and once the

tune separation became too small emittance blowup was

occurring. This instability was strongly suspected to be

related to the presence of linear coupling due to its

occurrence when the tune separation became small.

A headtail instability was also observed at the HERA

proton ring at the beginning of the acceleration ramp [4]

where it was measured that linear coupling was an essential

ingredient for the instability to occur. An explanation was

put forward in the framework of “coupled Landau damp-

ing” [5], where the possibility that linear coupling could

cause a loss of Landau damping was discussed. However,

only a simple analytical model with an externally given

tune spread was proposed and the exact mechanism for the

impact of linear coupling on the Landau damping was not

developed.

These observations are seemingly in contradiction to

measurements that were made in the CERN Proton

Synchrotron (PS) [6,7]. In the PS, a horizontal headtail

instability was observed at injection energy (1.4 GeV) that

was able to be cured by the introduction of linear

coupling. The linear coupling in this case was shown to

be beneficial due to the sharing of the instability rise times

in each plane, allowing stabilization of the horizontal

plane through coupling to the stable vertical plane. This

was performed in the absence of both octupoles and a

transverse feedback. Simulation studies were also per-

formed in the SPS that also showed a beneficial effect of

linear coupling by increasing the threshold for the trans-

verse mode-coupling instability [8] in one plane by

coupling to the other.

It is clear that linear coupling can strongly impact the

transverse beam stability, but the exact mechanism of

this interaction has not been studied in detail. It is well

known that the introduction of linear coupling changes the

coherent motion of the beam as it moves around the

accelerator [9]. This can complicate the way nonlinear

elements interact with the beam. In the specific case of the

LHC, the effect of linear coupling on nonlinear observ-

ables [such as residual amplitude detuning from the
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interaction regions (IRs)] has been extensively studied

[10–12] and shown to have a large impact. A more general

model for how linear coupling interacts with the LO’s

that can be applied to any machine has been derived by

R. Tomás et al. [13]. However in all of these studies, the

link between the optics parameters and beam stability has

not been made.

This paper will present the results of a series of analytic

and simulation studies that aim to show how linear

coupling can affect the single bunch transverse stability

by modification of the amplitude detuning from the LOs.

Time domain simulations will be performed using

PYHEADTAIL [14–16], a self-consistent 6D macropar-

ticle tracker. These will be compared with an analytic

approach which consists of several frequency domain

calculations. These calculations start with an estimation of

the transverse stability threshold based on the coherent

tune shifts obtained from the frequency domain Vlasov

solver DELPHI [17] and is then followed by a numerical

estimation of the dispersion integral using the PYSSD

(Python Solver for Stability Diagrams [18]) code. PYSSD

requires as input the transverse amplitude detuning due to

the lattice which is computed with single particle tracking

using MAD-X [19].

The results of this simulation study were able to be tested

with controlled measurements with a single bunch in the

LHC at an energy of 6.5 TeV. Some examples when

uncontrolled instabilities occurred during physics opera-

tion, which have since been attributed to the destabilizing

mechanism caused by linear coupling, will be briefly

mentioned. Chronologically speaking, the simulation

model was developed before the controlled measurement

was carried out and the full numerical analysis came

afterwards. Here the results will be described in a more

logical progression.

Section II will introduce some of the basic relevant

physics behind linear coupling in an accelerator system.

Then the analytic results computed using frequency domain

techniques will be shown in Sec. II. The time domain

simulations will then be introduced and described in

Sec. III. Controlled instability measurements will be

described in Sec. IV, before an application of the results

found here will be applied to the LHC stability model

which is shown in Sec. V.

II. LANDAU DAMPING IN THE PRESENCE

OF LINEAR COUPLING

A. Basic concepts

To model linear coupling appropriately, some consistent

definitions need to be introduced [20]. First, to define the

strength of the coupling resonance the parameter jC−j is
used, which is the minimum tune separation achievable in

the coupled system. This parameter is also called the closest

tune approach and is a global property of the full lattice and

can be easily obtained by performing a tune crossing,

where a clear separation between the measured fractional

tunes in the horizontal and vertical spectra will be observed.

However if the tune separation is large compared to the

jC−j, then the effect of coupling on the transverse motion

will be small.

The tune separation is defined as Qsep ¼ jQy −Qxj,
where Qx and Qy are the uncoupled horizontal and vertical

fractional tunes. When coupling is present a tune shift

occurs, and the new coupled tune separation is defined as

Qsep;coupled ¼ jQv −Quj where Qu and Qv are the peaks

observed in the horizontal and vertical spectra. The tune

shift that is experienced is given by Eqs. (1) and (2) [21]

Qu −Qx ¼ −

1

2

�

−Qsep þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
sep þ jC−j2

q

�

ð1Þ

Qv −Qy ¼
1

2

�

−Qsep þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2
sep þ jC−j2

q

�

: ð2Þ

In the LHC a tune feedback is used to ensure that the

measured coupled horizontal and vertical tunes remain at

the desired value. At 6.5 TeV and during collision, the

desired fractional tunes are Qx ¼ 0.31, Qy ¼ 0.32. When

linear coupling is present, the measured tunes are not Qx,

Qy but Qu, Qv. Therefore the tune feedback is keeping the

coupled tunes at their desired values. This intrinsically

increases the effect of linear coupling on the system. In the

event that the jC−j increases, the tunes begin to shift away

from the coupling resonance. With the feedback on, tune

trims are applied to ensure that the tunes remain constant,

which reduces the uncoupled separation Qsep and amplifies

the effect of linear coupling on the beam dynamics.

A coupling feedback is also in development in the LHC

[22,23]. When operational this would provide fast and

accurate coupling measurements throughout the dynamic

phases of LHC operation (for example the energy ramp or

the betatron squeeze). This information will then be used to

apply trims to the skew quadrupole corrector magnets,

hence reducing the overall coupling in the machine. A

coupling feedback would allow reliable operation at very

small tune separations and many of the problems that will

be described here would not occur.

B. Effect of linear coupling on Landau octupoles

In the LHC, the required betatron tune spread to stabilize

the transverse coherent instabilities through Landau damp-

ing is provided by dedicated Landau octupoles (LOs) [24].

An unstable mode has a real and imaginary tune shift, (the

real part is seen as a physical tune shift, while the imaginary

denotes an instability rise time). The ability for the tune

spread to damp this mode is determined by the stability

diagram theory [25,26], but one can use a simple model. If

the real part of the unstable mode lies within the projection

of the tune spread on both the horizontal and vertical axes,
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then the mode can potentially be stabilized (depending on

the imaginary part). If the mode lies outside of this spread,

then it cannot be stabilized through Landau damping.

The effect of linear coupling on the tune spread and

consequently on the Landau damping can be studied using

the MAD-X tracking code. To start with, the LHC lattice

model of 2016 is used and a single skew quadrupole is

placed at the center of Interaction Point 3 (IP3). This

single skew quadrupole can be powered to provide linear

coupling throughout the lattice. In this case, there is no

local variation of coupling throughout the ring, and the

jC−j can be used to quantify the strength of the linear

coupling. Calibration studies were performed which

allowed to determine the relationship between the strength

of the skew quadrupole and the jC−j. The LOs were

powered with Joct ¼ 500 A, and the tunes were kept

constant at Qu ¼ 0.31, Qv ¼ 0.32. Single particles ini-

tialized at different amplitudes are then tracked through

the lattice for 1024 turns and the tune of each of the

particles is determined with a high accuracy through an

interpolated Fourier transform [27]. The amplitude de-

pendent tuneQu;vðJu; JvÞ is thus obtained numerically and

it is conveniently represented as a tune footprint, where

the tune of each particle oscillating at different amplitude

is drawn on the tune diagram. The effect of the linear

coupling on the tune spread generated by the LOs is

illustrated in Fig. 1. In order to possibly Landau damp an

unstable mode, the real part of the coherent shift must lie

within the projection of the footprint on both the hori-

zontal and vertical axes. Linear coupling has a clear

impact on the amplitude detuning generated by the

LOs, which can lead to a loss of Landau damping. This

can be seen by the fact that for no coupling or small

coupling (blue and green curves), the black point lies

within the projection of the footprint, while for strong

coupling (red footprint) the tune spread is severely

diminished.

Throughout this study, the magnitude of the tune spread

will be described in units of Amperes (relating to the

amount of current given to the LOs). It is important to

explain how the current in the LOs relates to the tune

spread. Typically, the amount of detuning provide by LOs

is given by [28]

ΔQxðJx; JyÞ ¼ αxxJx þ αxyJy

ΔQyðJx; JyÞ ¼ αyyJy þ αyxJx; ð3Þ

where Jx and Jy are the transverse actions of the particle

and α corresponds to the detuning coefficient. These

detuning coefficients can be analytically calculated

according to the strength of the octupoles and the values

of optics parameters at the octupoles around the ring.

In the case of the LHC at 6.5 TeV the coefficients can be

computed as [29]

αxx ≈ 287 608
JFoct
550

− 8460
JDoct
550

;

αyy ≈ 10 542
JFoct
550

− 298 526
JDoct
550

;

αxy ¼ αyx ≈ −110 127
JFoct
550

þ 100 510
JDoct
550

; ð4Þ

where JFoct and J
D
oct refers to the octupole current at the LOs

placed alongside a focusing quadrupole and defocusing

quadrupole, respectively.

A description on how to make this calculation can be

found in Refs. [28,29]. A fundamental description of how

linear coupling can cause this effect on the amplitude

detuning can be found in Ref. [13]. The interplay between

the non-linear fields of the octupole and skew quadrupolar

errors can be described following the Hamiltonian

approach. Particle tracking simulations are preferred when

modeling this interplay as practical analytic solutions do

not exist for arbitrary cases.

The appendix shows the results of a study that compares

the effect of local linear coupling and global linear

coupling. The appendix shows that what contributes to

the distortion of the tune footprint from the LOs is the

magnitude of the linear coupling resonance driving terms

(RDTs) at the LOs rather than the global coupling given by

the jC−j. However, in the regime where only one skew

quadrupole is used, or that the coupling is large (which

means that the global effects dominate over local varia-

tions), local and global coupling are directly related.

C. Stability theory in presence of linear coupling

The Discrete Expansion over Laguerre Polynomials and

Headtail Modes to compute Instabilities (DELPHI) code is

FIG. 1. MAD-X tracking results showing the tune footprint for

different values of jC−j and constant tunes with Joct ¼ 500 A. The

particle amplitude is extended to 4σ. A clear impact on the tune

spread can be observed as the coupling approaches the coupled

tune separation. This severely inhibits the ability of the LOs to

stabilize against a typical unstable mode (black point).
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a frequency domain Vlasov solver that takes a machine

impedance and bunch parameters as input, and calculates

all the complex coherent modes that can develop [17].

It can also include first order chromaticity and transverse

feedbacks in the computation of the complex mode

frequencies. From the unstable modes it is straightforward

to determine what is the most critical mode and the tune

spread that is required in order to stabilize it. However,

DELPHI is not yet able to model linear coupling directly,

so a slightly different approach is required. Firstly, it is

assumed that both planes are approximately the same

(including impedance, chromaticity and transverse feed-

back). Linear coupling causes a modification of many

different beam dynamics effects, but one of the effects that

linear coupling has on the impact of LOs is a rotation. The

transformation from Qx, Qy to Qu, Qv can be modelled as

an effective rotation, which reduces the effect of normal

octupoles and increases the effect of skew octupoles.

This is what changes the detuning coefficients of the tune

footprints shown in Fig. 1. In the case of the complex

coherent modes, if both planes are similar then the unstable

mode that develops in the uncoupled frame has the same

characteristics as the mode that develops in the coupled

frame (as the rotation will result in coupled modes of the

same real and imaginary magnitudes). This allows an

uncoupled treatment to be applied to the coupled unstable

modes to determine their stability in the presence of a tune

spread.

In order to check if this is valid for the case of the LHC,

the ratio between the horizontal and vertical impedances can

be plotted in the frequency range of interest. This frequency

range is determined by the convolution of the bunch modes,

which for a Gaussian beam and no chromaticity is given

by Eq. (5) [3], and the full absolute machine impedance.

This gives an effective impedance, which is the part of the

impedance that contributes to the unstable mode.

hlðωÞ ¼

�

ωσz

c

�

2l

e−ω
2σ2z=c

2

; ð5Þ

where σz is the one-sigma bunch length in the z-coordinate, c
is the velocity of light, l is the mode number for the bunch

decomposition and ω is the angular frequency. When

chromaticity is introduced, the bunch modes are shifted

by the chromatic frequency

ωξ ¼
ξωβ

η
; ð6Þ

where ξ ¼ ΔQ=Q
Δp=p

is the first order chromaticity, ωβ ¼ ω0Q,

ω0 is the revolution angular frequency,Q is the tune (integer

and fractional) and η is the slip factor. In the LHC, the

terminology used to denote the chromaticity is Q0 where

Q0 ¼ Qξ ¼ ΔQ
Δp=p

. Typical values used in operation range

between Q0 ¼ 0 and Q0 ¼ 20.

By making the substitution ω → ωþ ωξ for Q0 ¼ 15

and plotting the first three bunch modes alongside the ratio

of the impedance, it is clear to see that the horizontal

impedance is approximately 25% larger than the vertical

impedance. This is shown in Fig. 2.

The tune spread required to stabilize a coherent mode of

oscillation with a given coherent tune shift with respect to

the unperturbed tune ΔQi obtained by the modal analysis

in a given machine and beam configuration is determined

using the dispersion integral [26]

−1

ΔQi

¼

Z Z

∞

0

Ji
dψ
dJi

Q −QiðJu; JvÞ
dJudJv; i ¼ u; v; ð7Þ

where ΨðJu; JvÞ is the particle distribution assumed to

be exponential in the transverse coupled actions Ju and

Jv, and therefore Gaussian in physical space. Q is the

FIG. 2. Ratio of the horizontal to vertical impedances (black) of

the LHC at 6.5 TeV plotted alongside the first three bunch modes

(red, green and blue).

FIG. 3. Stability diagram in the complex tune space as a

function of different values of jC−j plotted alongside the complex

coherent modes from DELPHI. As the coupling is increased,

some previously stable modes lie outside of the stable region and

Landau damping is lost. The coupled tunes are kept constant with

Qu ¼ 0.31 and Qv ¼ 0.32.
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coherent resulting tune one is looking for taking into

account the effect of the tune spread, modelled as a

perturbation. Thus, by varying Q on the real axis, the

contour defines the boundary in the complex plane where

an oscillation mode with a coherent tune shift ΔQi

obtained from the linear theory, i.e. in absence of tune

spread, is at the limit of stability by the presence of a given

tune spread. The representation of this boundary is called

a stability diagram, where stability is assumed if the

unstable mode lies within the curve. By comparing the

complex tune shift of all the oscillation modes obtained

with the linear theory to the stability diagram, one can

deduce the beam stability. In particular, a stability cri-

terion is defined called the “coherent stability factor” that

allows the beam stability to be quantified by considering

the smallest relative distance of the tune shifts with respect

to its projection on the stability diagram among all the

coherent modes. A coherent stability factor above the unit

indicates a beam instability, whereas if it is below the unit

it indicates beam stability.

Figure 3 shows the effect of the modification of the tune

footprint due to linear coupling shown in Fig. 1, obtained

by integrating numerically Eq. (7) with the amplitude

detuning derived with MAD-X. The coherent tune shift

expected with the LHC machine and beam parameters of

the 2016 run (shown in Table I) are marked as crosses.

Some modes lose Landau damping as the strength of linear

coupling is increased. This mechanism will be demon-

strated with multiparticle tracking simulation and with

comparison to experimental data.

III. PYHEADTAIL SIMULATIONS

A. Simulation setup

PYHEADTAIL is a macroparticle tracking code

designed specifically to simulate collective effects in

circular machines. A linear map is created that can include

kicks from a variety of different elements, including

wakefields, feedback systems, magnetic elements, or arbi-

trary user defined kicks as well as longitudinal maps to

account for synchrotron motion or amplitude detuning from

octupoles. For the examples that will be shown here, a

linear map that is comparable to a simplified LHC is

constructed. This model slices the bunch longitudinally and

calculates a kick from the wakefield that propagates from

one slice to the next and also includes a single skew

quadrupole kick in order to introduce coupling and a

longitudinal map to account for chromatic and synchrotron

effects.

Octupoles can also be modeled by introducing a trans-

verse detuning that follows Eq. (4). The detuning coef-

ficients are computed using MADX and the values are used

as input in PYHEADTAIL. The transverse actions of each

macroparticle is calculated individually and the relevant

change is made to its phase advance in the horizontal and

vertical planes to account for the amplitude detuning.

The aim of the simulations is to mimic the behaviour of

the LHC, but in a reduced and simplified scenario. It was

shown in Sec. II that when coupling is introduced, a tune

shift occurs that can be calculated from Eqs. (1) and (2).

However, in the LHC during operation the tune feedback is

active. This is a system that calculates the tune in real time

and applies small changes to specified corrector quadru-

poles to ensure the tunes remain at the desired values.

These values are either at injection tunes (Qx ¼ 0.28,

Qy ¼ 0.31) or collision tunes (Qx ¼ 0.31, Qy ¼ 0.32),

depending on the stage of the operation. In the event that

coupling is introduced with the tune feedback on, the

coupled tunes Qu and Qv will not shift but the uncoupled

tune separation Qsep will become different.

In order to determine the magnitude of this tune trim,

a 2D minimization function was implemented with

PYHEADTAIL using only a skew quadrupole to introduce

global coupling. The initial tunes were varied until they

gave the desired tunes (Qu ¼ 0.31, Qv ¼ 0.32), and this

was performed as a function of the jC−j. The results of this
scan are shown in Fig. 4. In order to maintain collision

tunes when the jC−j is equal to the coupled tune separation,
a shift on the order of ≈10−3 is needed to be applied in both

planes.

TABLE I. Bunch and machine parameters for a full machine in

2016 that was used to compute the stability diagram shown in

Fig. 3.

Parameter Value Unit

Number of Bunches M 2748 � � �
Beam Energy 6.5 TeV

β� IP1=5 40 cm

Bunch intensity Nb 1.2 1011p
Bunch normalized emittance εx, εy 2, 2 μm

Bunch length 4σt 1.2 ns

Transverse feedback damping time τb 100 turns

Chromaticity Q0
x; Q

0
y 10, 10 � � �

FIG. 4. Initial uncoupled horizontal (red) and vertical (blue)

tune shifts required in order to maintain collision tunes.
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Rather than try to perform these simulations with opera-

tional parameters (2748 bunches with ðQ0
x; Q

0
yÞ ¼ ð15; 15Þ,

strong octupoles and a strong transverse feedback), we

perform these simulations with more favorable parameters

in order to determine the fundamental impact of coupling

on the transverse stability. These parameters can be found

in Table II.

Scans in the LO current were then performed as a

function of jC−j in order to determine how much current

is required for stabilization. The tunes were able to be

maintained by using the information from Fig. 4 combined

with a fixed tune shift from the bunch intensity (countering

the effect of the bunch intensity interacting with the

impedance). The PYHEADTAIL simulation results will

be compared to the results from PYSSD, as described in the

following section.

B. Simulation results

As an initial test of the simulation results, the tunes were

calculated for each jC−j step with Joct ¼ 0 A. By perform-

ing the tune analysis on the first 20 000 turns, before the

instability has started, the tune can be determined. The

same analysis can then be repeated for the last 20 000 turns

and the real coherent tune shift ΔQcoh from the instability

can be determined. The results of these calculations can be

found in Fig. 5.

The uppermost plot shows the simulated tunes vs the

jC−j. It is clear to see that the tunes are constant throughout
the scan, with the horizontal tune having a constant offset

of approximately −3.3 × 10−5 while the vertical is even

closer (save for one outlier with an offset of ≈10−4 that is

not shown. On the scale of the effects that are being studied,

this offset is negligible. The lower plot shows the real part

of the coherent tune shift and its evolution with the

introduction of linear coupling. It can be seen that this

shift varies by approximately 0.5% when introducing the

maximum possible coupling (when jC−j ¼ Qsep;coupledÞ.
The introduction of linear coupling does not have an

impact on the real coherent tune shift.

In terms of the instability characteristics, due to the

slightly higher impedance in the horizontal plane the

dominant instability was in horizontal. Therefore the analy-

sis will mostly contain instabilities in the horizontal plane

but in some cases the horizontal instability does not allow

clean calculations for the vertical plane.

Figure 6 shows the headtail mode trace of the horizontal

instability (for Joct ¼ 0A) with and without linear coupling.

It can be seen that the mode profile is the same in both

cases, and shows a radial mode jlj ¼ 1. Figure 7 shows

the instability rise time for Joct ¼ 0 A as a function of the

coupling. The instability rise time is directly related to the

TABLE II. Bunch and machine parameters used for the

PYHEADTAIL simulations. The values used were to reduce

the level of complexity of the simulations.

Parameter Value Unit

Number of bunches M 1 � � �
Beam energy 6.5 TeV

β� IP1=5 3 m

Bunch intensity Nb 1.1 1011p
Bunch normalized emittance εx=εy 2=2 μm

Bunch length 4σt 1.2 ns

Transverse feedback damping time τb ∞ turns

Chromaticity Q0
x=Q

0
y 1=1 � � �

Number of macroparticles 6 105

Number of turns simulated 1.5 106

FIG. 5. Top: Simulated tunes after the introduction of linear

coupling. It can be seen that all tunes are within 10−4 (one outlier

not shown) of the required value. Bottom: Coherent tune shift of

the instability as a function of the linear coupling. A variation on

the order of 0.4%–0.5% can be seen for jC−j ¼ 0.01.

FIG. 6. Comparison of headtail pattern with Joct ¼ 0 A for the

case without coupling (top) compared to the case with coupling

(bottom).
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imaginary part of the complex coherent tune shift, and it

can be seen that it too has a small variation with coupling.

From each of these observations (complex coherent tune

shifts and headtail pattern) it can be seen that the funda-

mental characteristics of the instability do not change. This

adds further weight to the previous assertion that the linear

coupling mechanism is purely a loss of Landau damping, as

well as validating the assumption that this work is appli-

cable only in the case where the impedance, chromaticity,

and transverse feedback properties are similar for both

planes.

The fact that the variation of the rise time with coupling

is on the order of ≈ 2%–3% while the variation of the real

coherent tune shift with coupling is on the order of ≈0.3%

is another validation of the measurements made in the

CERN PS. Linear coupling has a much stronger effect on

the instability rise time by sharing it between the planes,

while having a minimal effect on the real coherent tune

shift. A fully developed analytical theory will cast a light on

why this is the case.

The results of the stabilizing octupole scan in

PYHEADTAIL is shown alongside the results of equivalent

PYSSD computations in Fig. 8. Both sets of results are

plotted normalized to their uncoupled stabilizing threshold,

such that the figure is showing the relative increase in the

required octupole current as a function of linear coupling.

The figure shows clearly that similar effects are being

observed in PYHEADTAIL as was observed in PYSSD.

As the linear coupling increases, more octupole current is

required to fully stabilize the single bunch against coherent

instabilities. There is some small disagreement in the region

4x10−3 < jC−j < 8 × 10−3 that could arise from a number

of reasons from the fact that PYHEADTAIL can only

simulate a finite number of turns whereas frequency

domain analysis is for infinite turns. The most striking

difference between the two sets of results is at jC−j ¼ 0.01,

where PYSSD shows a large reduction in the required

octupole current whereas PYHEADTAIL shows a continu-

ation of the steady increase. This is likely due to the fact

that the stability diagram theory makes the assumption that

the particle dynamics are not dominated by resonances.

Clearly in the strongly coupled case, this assumption breaks

down. PYHEADTAIL is not limited by this assumption.

At first glance it may appear that these simulation results

do not agree with the simple model shown in Fig. 1. If the

octupole current is increased then the mode will clearly not

lie within the project of the footprint. However what the

simple model does not include is the fact that for higher

octupole currents, the contour of the stability diagram

increases which also has the effect of increasing the rise

time for the unstable modes. It is therefore possible that

over the timescales simulated in the time domain, the rise

times increase until an instability does not develop.

This section has shown that linear coupling can cause a

loss of Landau damping through a modification of the

tune footprint, without changing fundamentally any of the

characteristics of the instability. The next section will show

the results of some beam based measurements on transverse

beam stability in the presence of linear coupling that were

performed in the LHC at 6.5 TeV, as well the results of

some uncontrolled instabilities in physics operation that

have been linked to linear coupling.

IV. BEAM BASED MEASUREMENTS

IN THE LHC

Measurements have been made in the LHC that aim to

verify the impact of linear coupling on transverse beam

stability. Two sets of controlled measurements were made

with a single bunch in dedicated studies. The first deter-

mined the stabilizing octupole threshold without linear

coupling. The second set of measurements went to identical

machine conditions, but made a single bunch become

unstable through linear coupling in the presence of high

octupole currents. The thresholds of each case and the

instability characteristics can be compared in order to verify

the simulation results from Sec. III. More information

FIG. 7. The change of instability rise time with coupling.

The initial starting values were τH ¼ 5.66 s and τV ¼ 7.65 s.
FIG. 8. Stablizing octupole current (normalized to uncoupled

value) as a function of the jC− for both PYSSD (contours) and

PYHEADTAIL. For each step the tunes are kept at constant

values of Qu ¼ 0.31, Qv ¼ 0.32.
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about the measurements will be provided in the next

section.

A. Controlled measurements

In 2016 two instability measurements were performed

in the LHC at 6.5 TeV [2,30]. For each measurement, a

single bunch with intensity Nb ≈ 1.1 × 1011 p and normal-

ized emittance ðεx; εyÞ ≈ ð2; 2Þ μm was accelerated to

6.5 TeV. An overview of the bunch and machine parameters

used for the measurements can be found in Table III. The

first instability measurement determined the octupole current

threshold in the absence of linear coupling, which is

measured by slowly lowering the octupole current in steps

until an instability develops. This allowed the characteristics

of the instability to be acquired from the various diagnostic

devices on the LHC [31]. This includes a headtail monitor,

which enables the acquisition of the intrabunch motion, a

beam synchrotron radiation telescope (BSRT) which mea-

sures the beam emittance from the emitted synchrotron light

and the turn-by-turn base-band tune measurement device

(BBQ), from which one can observe a bunch undergoing

coherent oscillations as well as performing frequency

domain analyses to acquire the tune and the azimuthal

mode during the instability.

The second measurement took a bunch with similar

parameters, introduced linear coupling (which allowed a

measurement of the jC−j via a tune crossing), and then

slowlymoved the tunes closer together in the presence of high

octupole currents. The tune separation at which an instability

is predicted to occur due to effects from linear coupling can

then be calculated using the measured parameters.

In order to be able to make comparisons between

different sets of measurements with small variations in

beam parameters, each octupole threshold measurement is

linearly scaled to a bunch with fixed parameters, here

(for simplicity later) it is normalized to Nb ¼ 1.2 × 1011 p

and ε ¼ 1.5 μm.

The single bunch measurement without linear coupling

became unstable horizontally with ðQ0
x; Q

0
yÞ ¼ ð9; 8Þ and a

damping time of τd ≈ 100 turns at an octupole current of

Joct;th;x ¼ 101 A [32]. An azimuthal mode 0 and 2 nodes

in the headtail pattern were observed. The rise time of the

instability was τ ≈ 32 s.

Immediately after this measurement, another single

bunch was accelerated to 6.5 TeV with the same machine

parameters. The intention of the dedicated measurements

was to introduce large coupling at the position of the LOs,

and incite an instability with large LO currents present by

moving the tunes closer together.

Available in the LHC control room are knobs to vary the

real and imaginary components for the f1001 resonance

driving term at the location of the tune measurement

pickups. In the case where the coupling is well corrected,

the local variation in coupling is large. However when the

knobs are varied to increase the global coupling, it has

the effect of increasing the local coupling everywhere in the

ring, which reduces the impact of local variations. In this

particular regime, the jC−j becomes an adequate parameter

to describe the level of coupling at the LOs.

In the LHC there are two families of LO, one adjacent to

a focusing quadrupole (LOF) and one adjacent to a

defocusing quadrupole (LOD), despite the opposite cur-

rents, the final output strength of the octupole is the same.

First, the jC−j was measured by performing a crossing

of the horizontal and vertical tunes. The minimum tune

separation in this case was measured to be jC−j ¼ 0.0015.

The coupling knobs were empirically varied to increase the

jC−j (based on previous optics measurements), and the

tunes were then crossed again to provide the new meas-

urement, which was jC−j ¼ 0.0106. These measurements

can be found in Fig. 9. The bunch did not go unstable

during the second tune crossing because the crossing

occurred very rapidly. Typically for the machine and bunch

parameters used, the instabilities have rise times on the

order of approximately 20 s, whereas the crossing was

completed in less than 6 s.

Once coupling had been introduced, the tunes were

slowly moved closer together with a constant current in the

LOs of Joct ¼ 283 A. An instability developed in the

horizontal plane with Qsep;coupled ¼ 0.0191, which with a

FIG. 9. Horizontal (red) and vertical (blue) fractional tunes as a

function of time for each of the jC−j measurements. The left plot

was a measurement of the machine with well corrected coupling,

and the right plot shows the coupling after the knobs were varied.

The white dashed lines are used to compute the closest tune

approach.

TABLE III. Bunch and machine parameters during the con-

trolled stability measurements in the absence of linear coupling.

Parameter Value Unit

Number of bunches M 1 � � �
Beam energy 6.5 TeV

β� IP1=5 3 m

Bunch intensity Nb 1.2 1011p
Bunch normalized emittance εx, εy 1.5, 1.75 μm

Transverse feedback damping time τb 100 turns

Chromaticity Q0
x; Q

0
y 9, 8 � � �
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jC−j ¼ 0.0106 corresponds to Qsep ¼ 0.0158. This is

shown in Fig. 10.

The uncoupled normalized single bunch instability thresh-

old had previously been measured as Joct;th ¼ 101 A in the

horizontal plane, giving a factor increase in the required

octupole current of 2.8 for these machine settings. Typically,

the emittance measurement from the BSRT can have a 10%

error bar attached to it, which is the dominant source of

error out of all the bunch and machine parameters. This error

can be propagated through to give a measured increase of

2.8� 0.3.

The headtail monitor was able to capture the intrabunch

motion during the instability and can be seen in Fig. 11.

The top plot shows the intrabunch pattern from the

instability without coupling, and the bottom plot shows

the instability incited by coupling. Both traces clearly show

2 nodes in the headtail motion. Along with the azimuthal

mode 0 observed from this coupled headtail instability, it is

clear that this instability is consistent with the uncoupled

observations made in the previous measurement. This

further confirms the assumption that in the event that both

planes have similar characteristics (impedance, chromatic-

ity, transverse feedback) then linear coupling does not

impact on the coherent mode and only affects the tune

footprint and thus the Landau damping.

A similar analysis to that found in Sec. III can be

performed, but this time the tunes can be matched such that

they are constantly separated by the measured coupled tune

separation of Qsep;coupled ¼ 0.0191. A frequency domain

scan of the linear coupling and the LO current was

performed using PYSSD and the results can be found in

Fig. 12. The white dashed vertical line marks the measured

jC−j which reaches a coherent stability factor of 1 (marking

the threshold) at the point when the required current is 2.91

times more than for the uncoupled case.

The predicted increase in the octupole threshold was

2.91, the measured increase in the octupole threshold was

2.8� 0.3, showing good agreement between the two

approaches.

This measurement shows that if the tune separation is not

maintained in the presence of large linear coupling and

small coupled tune separations, Landau damping can be

lost even in the presence of a large spread from LOs. The

observations were in good agreement with simulations,

which show that the characteristics of the unstable mode

do not change in the event that both planes have similar

properties.

FIG. 10. Top: Horizontal and vertical tunes as a function of

time. Bottom: Horizontal BBQ amplitude vs time. An instability

developed despite Joct ¼ 283 A in the LOs. The tune separation

was calculated using the measured jC−j.

FIG. 11. Headtail monitor acquisitions during an instability

without coupling (top) compared to the instability observed with

coupling (bottom). 2 nodes in the headtail motion can clearly be

seen in both cases. For both sets of measurements, ðQ0
x; Q

0
yÞ ¼

ð9; 9Þ with the transverse feedback operating in nominal

conditions.

FIG. 12. PYSSD results for a fixed coupled tune separation of

Qsep;coupled ¼ 0.0191. The white dashed vertical line marks the

measured jC−j which corresponds to an increase in the octupole

threshold by a factor of 2.91.
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B. Uncontrolled

There have been several cases in 2016 and 2017 when

instabilities were observed during physics operation that

could be related to linear coupling.

It has been seen that during collisions (when almost all of

the approximately 2500 bunches have significant beam-

beam effects) the working point with a more optimized

dynamic aperture (DA) is found with a reduced tune

separation. When moving the working point closer to the

coupling resonance, the noncolliding bunches (that are used

for more accurate tune measurements) are regularly seen to

undergo coherent oscillations and suffer emittance blowup.

This is because of the fact that the ratio of the linear coupling

to the tune separation becomes large, despite the fact the

linear coupling is kept small (on the order of 1–2 × 10−3).

V. APPLICATION TO THE LHC

STABILITY MODEL

The octupole current required for stabilization varies

depending on the size of the complex coherent tune shift.

Many different factors can impact the size of this shift,

such as chromaticity, transverse feedback, or the beam

intensity. A combination of the tune spread and the beam

emittance is important for determining if the coherent

mode can be Landau damped. Linear coupling must now

also be included in the stability model in order to be able

to make accurate predictions for stability thresholds

during operation of the LHC.

Figure 13 shows the required stabilizing octupole

current (both positive and negative) for the horizontal

plane as a function of Q0. For each step, the coupled tunes

are kept at Qu ¼ 0.31, Qv ¼ 0.32 and a damping time of

τd ¼ 50 turns is used. The impedance model used is for

a full machine (number of bunches M ¼ 2748) and

β� ¼ 40 cm. The three curves are for different values of

jC−j. It can be seen from the figure that for jC−j ¼ 0.004, a

small effect is found on the required stabilizing octupole

current. However this becomes significant when the jC−j
is increased. For jC−j ¼ 0.008, a factor 3-4 times more

octupole is needed to stabilize. For Joct < 0, the effect of

coupling gets gradually worse with increasing chroma-

ticity. This is because the tune spread is now in the

opposite direction to that shown in Fig. 1 (with the spread

opening out in the bottom left instead of the top right of

the figure), making it easier to stabilize. For Joct > 0, large

values that are up to the limit of the LHC octupoles

(550 A) are required to stabilize.

It is clear that if efficient beam operation is to occur, the

linear coupling needs to be kept small. The critical value

is foundwhen the jC−j becomes approximately 50%–60%of

the coupled tune separation. At this point, losing Landau

damping is likely except in the presence of extremely high

octupole currents. Linear coupling is now a critical part

of theLHCstabilitymodel.To aid in the endeavour of keeping

the effect of linear coupling on the beam dynamics as small as

possible, an automatic correction of the Laslett tune shift is

now applied during injection into the LHC, and new tools are

being developed to better measure and correct the coupling in

all stages of the machine cycle. If there are cases where the

jC−j is unable to be accurately controlled, then a large tune

separation will be maintained to prevent instabilities.

It is worth noting that if the tune separation needs to be

reduced to improve the DA and therefore the beam lifetime,

then particular care needs to be paid to reduce the jC−j.

VI. CONCLUSIONS

Observations in the past, both at HERA and the LHC,

have shown that if the linear coupling is high and the

tune separation is small, then transverse instabilities can

occur. Simulations have been performed with both particle

tracking in the time domain and analytic computations in

the frequency domain, which show that linear coupling

can strongly perturb the tune spread acquired from the

Landau octupoles. This can lead to transverse instabilities

due to the loss of Landau damping. Dedicated measure-

ments in the LHC verified the prediction from simula-

tions. In machines that require Landau octupoles for

stabilization, linear coupling must be considered when

analyzing collective effects.

Linear coupling is now an integral part of the LHC

stability model, and must be well corrected at all stages of

the machine cycle. When the tune separation is small, the

beam stability becomes dependent on the strength of the

linear coupling. If the jC−j becomes about 50%–60% of

the coupled tune separation, the required Landau octupole

current can increase by approximately a factor of 4.

Some measurements from the LHC in 2012 have since

shown that a jC−j as high as 0.01 could have been present

FIG. 13. Required stabilizing octupole current in the horizontal

plane from PYSSD as a function of Q0 for different values of

jC−j. This figure uses the LHC 2016 impedance model for an

energy of E ¼ 6.5 TeV. Constant tunes ofQu ¼ 0.31,Qv ¼ 0.32

were maintained for each point, with τd ¼ 50 turns, M ¼
2748 bunches and β� ¼ 40 cm.
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during some stages of the machine cycle. This highlights

that linear coupling could have provided the missing factor

4 or 5 required for stability.

This study had focused on the effect of linear coupling

on the tune spread generated by Landau octupoles only.

The effect of linear coupling on other elements that

generate a tune spread is currently under study for its

potential impact on operation of the LHC. For example,

there could be a strong dependence of linear coupling on

the impact of beam-beam, space-charge, or electron cloud

effects. Studying these mechanisms will allow a greater

understanding of the machine and will continue to push the

LHC to more challenging scenarios in the future.
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APPENDIX: LOCAL VS GLOBAL COUPLING

Throughout this study, the jC−j is used as a measure of

the linear coupling in the machine. This is a global

parameter of the ring, and is calculated by the minimum

tune separation that can be achieved. However, this

parameter does not take into account the local coupling

variation throughout the lattice. In this Appendix, the

modification of the tune footprint through linear coupling

is disentangled between local and global coupling.

In order to investigate this, a coupling bump is intro-

duced into one LHC sector (S12). By powering the octu-

poles only in one sector at a time, the effect on the tune

footprint can be determined. To do this, 8 skew quadrupoles

were artificially added in drift spaces in the LHC MAD-X

lattice: 4 skew quadrupoles to the right of IP1, and 4 skew

quadrupoles to the left of IP2. The strength of these 8 skew

quadrupoles, together with the trim quadrupoles used to

control the tune, were entered into a matching algorithm to

introduce a local coupling bump in S12. The tunes were set

to the design tunes used at injection energy Qx ¼ 0.28,

Qy ¼ 0.31. The results of this matching can be found in

Fig. 14. It can be seen that the coupling resonance driving

terms (RDTs) only have an amplitude in S12, while being

equal to 0 for the rest of the ring (this is not shown but can

be inferred by there being no other skew quadrupoles

powered and the RDTs being 0 either side of S12). For

localized coupling to this sector, the global coupling is

small (jC−j ¼ 0.0018) compared to the tune separation

(Qsep ¼ 0.03).

The effect of this coupling bump on the tune footprint

can now be calculated by comparing two cases: first by

powering the octupoles in a different sector (S81) and

comparing the footprints with and without the coupling

bump in S12, and then by powering the octupoles in S12

and comparing the footprint with and without the coupling

bump (in the same sector).

Figure 15 shows the first case described above. All of the

LOs are powered in S81 and the footprints are shown with

and without the coupling bump in S12. It is clear to see that

there is negligible difference between the two cases.

Figure 16 shows the second case described above, where

the LOs are powered only in S12 and the footprints are

compared between the cases of nocouplingandwith coupling

bump. It canbe seen that despite the small jC−j and largeQsep,

a strong impact is observed on the tune footprint.

For both of these cases, the closest tune approach is kept

constant at jC−j ¼ 0.0018 and is small compared to the

tune separation. This leads to the conclusion that when

considering a real machine, local coupling at the point

where a tune spread is created is the critical parameter for

determining how strongly the footprint is modified.

FIG. 14. Top: Real (solid) and imaginary (dashed) components

for the coupling RDTs f1001 (red) and f1010 (blue) focused on

Sector 12. Bottom: The absolute value of the RDT’s in the same

location. It can be seen that there is no coupling outside of this

region, while maintaining strong coupling inside this region.

FIG. 15. Comparison of the tune footprints with LOs powered

only in S81 and no coupling bump in S12 (red) or with coupling

bump in S12 (blue). No impact on the footprint can be observed.
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In a realmachine, sources of local coupling are distributed

throughout the ring and these sources are well corrected.

However, that still means that in the case where there is a

small global coupling, strong sources of local coupling

could be present [for example in the interaction regions

(IRs)], which could modify the footprint and therefore the

Landau damping. From the point of view of the LOs, this has

less of an effect as the octupoles are distributed throughout

the arcs, but for beam-beam effects this could be significant.

In the LHC, when increasing the coupling using the

skew quadrupoles in the arc cells, it has the effect of

increasing the local coupling everywhere. This makes the

impact from small local coupling bumps small and causes

the coupling in the arcs to dominate. For simplicity in

the simulation model, only the case with a single skew

quadrupole is considered. In this case, as in the case where

coupling is introduced in the real machine, the global

coupling is directly related to the strength of the local

coupling throughout the ring.
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