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Transverse complex magnetic susceptibility of single-domain ferromagnetic particles
with uniaxial anisotropy subjected to a longitudinal uniform magnetic field

Yu P. Kalmykov
Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Vvedenskii Square 1,

Fryazino, Moscow Region, 141120, Russian Federation

W. T. Coffey*
Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland
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The infinite hierarchy of differential-recurrence relations for the equilibrium transverse correlation functions
appropriate to magnetic relaxation of single-domain ferromagnetic particles with uniaxial anisotropy subjected
to a uniform external magnetic fieldH0 is derived by averaging Gilbert’s equation. Exact expressions in terms
of matrix continued fractions for the transverse complex magnetic susceptibility are obtained with the aid of
linear-response theory by solving the infinite hierarchy. The principal features of the spectra are emphasized in
figures showing the real and imaginary parts of the complex magnetic susceptibility. The accuracy and the
range of the applicability of analytical results based on the effective eigenvalue method is established. It is
shown that this method provides in general a good approximation to the exact solution with the exception of
the range of low-to-intermediate barrier heights of the anisotropy potential where at smallH0 there exists
essentially a spread of the precession frequencies of the magnetization.@S0163-1829~97!03229-3#
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I. INTRODUCTION

A single-domain ferromagnetic particle with a uniaxi
anisotropy is characterized by an internal potential which
two stable stationary points with a potential barrier betwe
them. If the particle is sufficiently fine~and hence the poten
tial barrier is low!, the vector of magnetizationM may un-
dergo a rotation due to thermal agitation, surmounting
barrier, as described by Ne´el.1 The thermal instability of the
magnetization arises from the so-called superparamagne2

because each fine particle behaves as an enormous para
net of magnetic moment 104– 105mB . The thermal fluctua-
tions and relaxation of the magnetization of a single-dom
particle currently merits attention in view of its importan
in the context of magnetic recording media3 and
paleomagnetism.4

The behavior of the magnetization of a single-domain f
romagnetic particle has been the subject of much study. L
dau and Lifshitz in their 1935 paper5 gave an equation o
motion describing the average behavior of the magnetizat
Gilbert in his 1955 paper6 presented a similar equation o
motion. Brown7 extended these equations of motion to d
scribe not the average but the dynamic behavior of the m
netization of an individual single-domain ferromagnetic p
ticle. He based his work on the Langevin equation appro
to the theory of Brownian motion. Brown took as the Lang
vin equation, Gilbert’s equation transformed to Landa
Lifshitz form. He was able to construct from it the underl
ing probability density diffusion equation, which is th
Fokker-Planck equation. In order to accomplish this, Bro
wrote down the equation of motion in spherical polar co
dinates. He then used the methods of Wang and Uhlenb8

combined with the Stratonovich9 definition of the derivative
of a stochastic variable to construct the Fokker-Planck eq
tion for the distribution functionW($M%,t) of the orienta-
560163-1829/97/56~6!/3325~13!/$10.00
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tions of the magnetization vectorM in these coordinates
The Fokker-Planck equation in the case of axial symme
can be solved by the method of separation of the variab
The separation procedure gives rise to an equation of
Sturm-Liouville type. An alternative approach to the pro
lem which is not confined to axial symmetry is to expandW
as a series of spherical harmonics so yielding an infinite
erarchy of linear differential-recurrence equations for av
aged spherical harmonics. The infinite hierarchy can be t
solved by finding eigenvalues and eigenvectors of the sys
matrix or, much more efficiently, by a matrix continue
fraction method.10 This hierarchy can also be obtained b
directly averaging Gilbert’s equation without recourse to t
Fokker-Planck equation.11,12

A basic model in the study of the superparamagnetism
when an external uniform magnetic fieldH0 of arbitrary
strength is superimposed on the anisotropy poten
field.1,13,14In the simplest case of the uniaxial anisotropy t
free-energy densityV of a single-domain particle is given b

V52K cos2q2~M•H0!, ~1.1!

whereK is the anisotropy constant andq is the polar angle.
In general such a field can only be applied at some angl
the easy axis of magnetization since the axis is in a rand
position. However, in order to preserve the axial symme
of the problem and its attendant mathematical simplificatio
it is often assumed thatH0 is applied along the polar axis
Initiated by Néel1 and Stoner and Wohlfahrt14 this problem
has been recently studied in Refs. 15–19. However, th
studies were mainly confined to the longitudinal relaxati
so that only in Refs. 15 and 19 were approximate transve
relaxation solutions for several particular cases obtained
dint of the effective eigenvalue~moment! method~for recent
reviews of the method, see Refs. 20 and 21, and refere
3325 © 1997 The American Physical Society
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cited therein!. This method was applied by Ra�kher and
Shliomis22 to the study of relaxation and ferromagnetic res
nance in the uniaxial anisotropy potential atH050, and was
recently extended20,23 to more complicated anisotropy pote
tials such as a cubic anisotropy. However, the formal ap
cation of this approximate method to the transverse re
ation may not be deemed completely satisfactory as
results obtained for the transverse response were not c
pared with the exact solutions, so that the accuracy of th
results remains unknown. Indeed, we shall demonstrat
the present paper that the effective eigenvalue method
to describe the transverse relaxation at low to moderate
rier heights andH050.

The primary goal of this paper is to evaluate the tra
verse complex magnetic susceptibilityx'(v) of a system of
noninteracting single-domain ferromagnetic particles s
jected to a constant magnetic field. We obtain~with the aid
of linear-response theory! the exactsolutions forx'(v) in
terms of matrix continued fractions. In order to obtain the
results we shall use the approach of Coffey, Kalmykov, a
Waldron12 for the solution of the infinite hierarchy o
differential-recurrence relations which has already allow
us to obtain the exact solution for the longitudin
relaxation.16 This approach is based on matrix continu
fractions and essentially constitutes a further developmen
Risken’s method.10 It has also been used in the theory
dielectric and Kerr effect relaxation.24,25

Before proceeding we must first summarize the princi
results oflinear-response theory~Ref. 10, Chap. 7!. The ap-
plication of this theory to axially symmetric magnetic pro
lems predicts that the decay of the magnetization^M &(t) of
a system of noninteracting single-domain ferromagne
particles, when a small constant external fieldH1

@v(M•H1)/kT!1# has been switched off at timet50, is

^M i&~ t !2^Mz&05x iH1Ci~ t !, ~1.2!

~for the case of the longitudinal relaxation,H0iH1! and

^M'&~ t !5x'H1C'~ t !, ~1.3!

~for the case of the transverse relaxation,H0'H1!, where

x i5
n2N0

kT
@^Mz

2&02^Mz&0
2# ~1.4!

and

x'5
n2N0

kT
^Mx

2&05
n2N0

kT
^M y

2&0 ~1.5!

are the components of the static magnetic susceptibility
sor, N0 is the number of particles per unit volume,n is the
volume of the particle. Also,

Ci~ t !5
^Mz~0!Mz~ t !&02^Mz&0

2

^Mz
2&02^Mz&0

2 ~1.6!

and

C'~ t !5
^Mx~0!Mx~ t !&0

^Mx
2&0

5
^M y~0!M y~ t !&0

^M y
2&0

~1.7!
-
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are the normalized autocorrelation functions of the longi
dinal and transverse components of the magnetization of
particle, respectively,Mx , M y , Mz are the Cartesian com
ponents ofM , and the bracketŝ &0 designate the equilib-
rium ensemble average. According to linear-respo
theory10 the corresponding components of the complex m
netic susceptibility tensorx i(v) andx'(v) are given by

xg~v!5xg8~v!2 ixg9~v!5xgF12 ivE
0

`

e2 ivtCg~ t !dtG
~g5i ,' !. ~1.8!

The longitudinal complex susceptibility when a unifor
magnetic fieldH0 of arbitrary strength is superimposed o
the uniaxial anisotropy potential field has been evaluated
Ref. 16. In order to evaluate the transverse susceptibility
must first calculate the equilibrium correlation functio
C'(t) which is more conveniently accomplished direct
from Gilbert’s equation rather than from the Fokker-Plan
one.11 Thus, we bypass the Fokker-Planck equation entire

II. DERIVATION OF DIFFERENTIAL-RECURRENCE
RELATIONS FROM GILBERT’S EQUATION
AUGMENTED BY A RANDOM-FIELD TERM

Gilbert’s equation in the presence of thermal agitation6

d

dt
M ~ t !5g†M ~ t !3@H~ t !1h~ t !2hṀ ~ t !#‡, ~2.1!

whereg is the gyromagnetic ratio,h is the damping param
eter,H(t) is the magnetic field acting on the particle whic
may consist of externally applied magnetic fields, the cr
talline anisotropy field, and a random Gaussian white-no
field h(t), which has the properties

hi~ t !50,

hi~ t !hj~ t8!5~2kTh/n!d i j d~ t2t8!. ~2.2!

Here the overbar means the statistical average over an
semble of particles which all have at timet the samemag-
netizationM . If V($M%) is the free energy per unit volum
expressed as a function of components ofM , then

H52
]

]M
V~$M%!. ~2.3!

It is assumed throughout this analysis that the magnetiza
is uniform inside the particle and only the orientation and n
the magnitude of the magnetization is subject to variatio
The assumptions made in the derivation of Gilbert’s equat
were discussed elsewhere~e.g., Ref. 26!.

Gilbert’s equation~2.1! may be rearranged explicitly~as
shown, e.g., in Refs. 2 and 19! using the properties of the
triple product formula to yield that equation in th
Landau-Lifshitz5 form:

d

dt
M ~ t !5Msg8†M ~ t !3@H~ t !1h~ t !#‡

1h8†@M ~ t !3@H~ t !1h~ t !##3M ~ t !‡, ~2.4!
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where

g85
g

~11a2!Ms
, h85

ga

~11a2!Ms
5ag8, ~2.5!

Ms is the saturation magnetization, and the damping cons
a is given by
h
s

a

nt

a5ghMs . ~2.6!

Equation ~2.4! is of the same mathematical form as th
Landau-Lifshitz equation5 except that both parametersg8
andh8 depend ona.

Expanding Eq.~2.4! in its Cartesian components we hav
1

h8Ms

d

dt
ux~ t !5@12ux

2~ t !#hx~ t !2@a21uz~ t !1ux~ t !uy~ t !#hy~ t !1@a21uy~ t !2uz~ t !ux~ t !#hz~ t !1@12ux
2~ t !#Hx~ t !

2@a21uz~ t !1ux~ t !uy~ t !#Hy~ t !1@a21uy~ t !2uz~ t !ux~ t !#Hz~ t !, ~2.7!

1

h8Ms

d

dt
uy~ t !5@a21uz~ t !2ux~ t !uy~ t !#hx~ t !1@12uy

2~ t !#hy~ t !2@a21ux~ t !1uy~ t !ux~ t !#hz~ t !1@a21uz~ t !

2ux~ t !uy~ t !#Hx~ t !1@12uy
2~ t !#Hy~ t !2@a21ux~ t !1uy~ t !ux~ t !#Hz~ t !, ~2.8!

1

h8Ms

d

dt
uz~ t !52@a21uy~ t !1ux~ t !uz~ t !#hx~ t !1@a21ux~ t !2uy~ t !uz~ t !#hy~ t !1@12uz

2~ t !#hz~ t !2@a21uy~ t !

1ux~ t !uz~ t !#Hx~ t !1@a21ux~ t !2uy~ t !uz~ t !#Hy~ t !1@12uz
2~ t !#Hz~ t !, ~2.9!
c
h
m
tical

is

tion

of
where

ux5Mx /Ms5sinq cosw, uy5M y /Ms5sinq sinw,

uz5Mz /Ms5cosq.

The set of stochastic differential equations~2.7!–~2.9!
contains multiplicative noise termshi(t)ui(t)uk(t). This
poses an interpretation problem for these equations as
been discussed in Refs. 10 and 12. We recall, taking the
of the Langevin equations for theN stochastic variables
$j(t)%5$j1(t),j2(t),...,jN(t)%:

dj i~ t !

dt
5hi~$j~ t !%,t !1gi j ~$j~ t !%,t !G j~ t !, ~ i , j 51,...,N!,

~2.10!

with

G i~ t !50,

G i~ t !G j~ t8!52Dd i j d~ t2t8!, ~2.11!

and interpreting them as Stratonovich equations, that the
eraged equations for the sharp valuesj i(t)5xi at time t
are10,12

dxi

dt
5 lim

t→0

j i~ t1t!2xi

t

5hi~$x%,t !1Dgk j~$x%,t !
]

]xk
gi j ~$x%,t !,

~ i , j 51,...,N!, ~2.12!
as
et

v-

wherej i(t1t) (t.0) is the solution of Eq.~2.10! with the
initial conditions j i(t)5xi . In Eqs. ~2.10! and ~2.12! the
summation overj andk is understood~Einstein’s notation!.
The proof of Eq.~2.12! can be found elsewhere~see Ref. 10,
pp. 54 and 55!. We remark that just as for dielectri
relaxation24 we shall always use the Stratonovic
definition9,27 of the average of the multiplicative noise ter
here as that definition always constitutes the mathema
idealization of the physical relaxation process. Thus, it
unnecessary to transform the Langevin equations~2.7!–~2.9!
to Itô equations~e.g., Ref. 27!. Moreover, we can apply the
methods of ordinary analysis.27

In like manner we can prove that the averaged equa
for an arbitrary differentiable functionf ($j%) has the follow-
ing form ~see Appendix A!:

d f~$x%!

dt
5 lim

t→0

f „$j~ t1t!%…2 f ~$x%!

t

5hi~$x%,t !
]

]xi
f ~$x%!1Dgk j~$x%,t !

3
]

]xk
Fgi j ~$x%,t !

]

]xi
f ~$x%!G , ~2.13!

where summation overi , j , andk is also understood.
In the study of the orientation relaxation the quantities

interest are the spherical harmonicsXnm defined as

Xnm5eimwPn
m~cosq!5eimw~12cos2q!m/2

dmPn~cosq!

d cosqm ,

~2.14!



d
d

n

3328 56YU. P. KALMYKOV AND W. T. COFFEY
wherePn(x) and Pn
m(x) are the Legendre polynomials an

the associated Legendre functions of the first kin
respectively.28 The Xnm are expressed in terms ofux ,uy ,uz
as follows:

Xnm5~ux1 iuy!m
dmPn~uz!

duz
m .

Noting that according to the Stratonovich definition the co
ventional rules of transformation of a stochastic variable~or-
dinary calculus! can be used27 and taking into account the
theorem Eq.~2.13! with
,

-

d

dt
Xnm5m~ux1 iuy!m21

dmPn~uz!

duz
m

d

dt
ux

1 im~ux1 iuy!m21
dmPn~uz!

duz
m uy

1~ux1 iuy!m
dm11Pn~uz!

duz
m11

d

dt
uz , ~2.15!

we can obtain from Eqs.~2.7!, ~2.8!, and~2.9! the equation
of motion of the sharp values of spherical harmonicsXnm
~Refs. 11 and 12!:
s
t as

nsity
2tN

d

dt
Xnm5

nMs

kT H ~ux1 iuy!m
dm11Pn~uz!

duz
m11 @Hz2uz~u•H!1a21~uxHy2uyHx!#1m~ux1 iuy!m21

dmPn~uz!

duz
m

3@~Hx1 iH y!~11 ia21uz!2~ux1 iuy!~~u•H!1 ia21Hz!#J 1hh8Ms
2gk j

]

]uk
Fm~ux1 iuy!m21

dmPn~uz!

duz
m

3~gx j1 igy j!1~ux1 iuy!m
dm11Pn~uz!

duz
m11 gz jG , ~2.16!

where

gxx512ux
2, gxy52a21uz2uyux , gxz5a21uy2uzux ,

gyx5a21uz2uyux , gyy512uy
2, gyz52a21ux2uyuz ,

gzx52a21uy2uzux , gzy5a21ux2uyuz , gzz512uz
2, ~2.17!

and the relaxation timetN is given by

tN5
n

2kTh8
. ~2.18!

We remark that all theXnm and Hi in Eq. ~2.16! are in general functions ofux ,uy ,uz . Also ux ,uy ,uz in Eq. ~2.16! and
ux(t),uy(t),uz(t) in Eqs. ~2.7!–~2.9! have different meanings, namely,ux(t),uy(t),uz(t) in Eqs. ~2.7!–~2.9! are stochastic
variables, whileux ,uy ,uz in Eq. ~2.16! are the sharp~definite! valuesuk(t)5uk at time t. Instead of using different symbol
for the two quantities we have distinguished sharp values at timet from stochastic variables by deleting the time argumen
in Ref. 10.

The right-hand side of Eq.~2.16! consists of two terms, namely, thedeterministicdrift and thenoise-induced~or spurious!
drift. These terms can be considerably simplified after some algebra.11 In particular, the spurious drift is given by

hh8Ms
2gk j

]

]uk
Fm~ux1 iuy!m21

dmPn~uz!

duz
m ~gxy1 igy j!1~ux1 iuy!m

dm11Pn~uz!

duz
m11 gz jG52n~n11!Xnm . ~2.19!

Thus, we obtain

2tN

d

dt
Xnm1n~n11!Xnm5

nMs~Hx1 iH y!

2kT~2n11!
@n~n2m11!~n2m12!Xn11m211 ia21~2n11!~n2m11!~n1m!Xnm21

1~n11!~n1m21!~n1m!Xn21m21#2
nMs~Hx2 iH y!

2kT~2n11!
@nXn11m112 ia21~2n11!Xnm11

1~n11!Xn21m11#2
nMsHz

kT~2n11!
@n~n2m11!Xn11m1 ia21m~2n11!Xnm

2~n11!~n1m!Xn21m#. ~2.20!

Equation~2.20! is valid for any anisotropy potential.
Equation~2.20! can be further simplified for a uniaxial magnetic anisotropy field with uniaxial anisotropy energy de
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V52Kuz
252K cos2q, ~2.21!

whereq is the angle betweenM and the positivez axis, superimposed on a strong constant magnetic fieldH0 applied along
the z direction. Thus the fieldH has only az component given by

H5S H01
2K

Ms
uzD k. ~2.22!

On substituting Eq.~3.24! into Eq. ~3.22! and on using the equalities for the associated Legendre functions29

A12x2Pn
m11~x!2~n1m11!xPn

m~x!1~n2m11!Pn11
m ~x!50, ~2.23!

~2n11!xPn
m~x!5~n2m11!Pn11

m ~x!1~n1m!Pn21
m ~x!, ~2.24!

we have

tN

d

dt
Xnm1Fn~n11!

2
1

i jm

2a
2s

n~n11!23m2

~2n21!~2n13!GXnm

5jF ~n1m!

2n11 S n11

2
2

ims

aj DXn21m2
~n2m11!

2n11 S n

2
1

ims

aj DXn11mG1sF ~n11!~n1m!~n1m21!

~2n21!~2n11!
Xn22m

2
n~n2m11!~n2m12!

~2n11!~2n13!
Xn12mG , ~2.25!

where

s5
nK

kT
, j5

nMsH0

kT
. ~2.26!

The quantitiesXnm in Eq. ~2.25! are functions of the sharp valuesuk which are themselves random variables with t
distribution~probability density! functionW. Therefore we must also average Eq.~2.25! overW.12 In the absence of externa
perturbations, the system is at equilibrium with Boltzmann distribution functionW0 given by

W0~q!5
1

Z
expS 2

nV

kTD5
1

Z
exp~j cosq1s cos2q!, ~2.27!

where Z is the normalizing constant~the partition function!. As the equilibrium distribution~2.27! is independent of the
azimuthal anglew, all equilibrium ensemble averages^Xnm&0 vanish formÞ0, and^ &0 designates the equilibrium averagin
defined as

^A&05
1

Z E
0

2pE
0

p

A~q,w!e2nV~q!/kTsinqdqdw.

We may construct from Eq.~2.25! an infinite hierarchy of differential-recurrence equations for any equilibrium correla
functions which may be desired. In particular, on multiplying Eq.~2.25! by Re$X1m(0)%, and averaging the resulting equatio
over the equilibrium distribution functionW0 at the instantt50, we obtain the hierarchy for the equilibrium transver
correlation functions:

tN

d

dt
f n,m~ t !1Fn~n11!

2
1

i jm

2a
2s

n~n11!23m2

~2n21!~2n13!G f n,m~ t !

5jF ~n1m!

2n11 S n11

2
2

ims

aj D f n21,m~ t !2
~n2m11!

2n11 S n

2
1

ims

aj D f n11,m~ t !G1sF ~n11!~n1m!~n1m21!

~2n21!~2n11!
f n22,m~ t !

2
n~n2m11!~n2m12!

~2n11!~2n13!
f n12,m~ t !G , ~2.28!

where f n,m(t) is the transverse correlation function defined as

f n,m~ t !5^Re$X1m~0!%Xnm~ t !&0 . ~2.29!
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Equation~2.28! is valid for anym. However, for the problem under consideration it is enough to consider this equatio
m51 only because the transverse autocorrelation functionC'(t) and complex magnetic susceptibilityx'(v) are expressed in
terms of f 1,1(t) and its one-sided Fourier transformf̃ 1,1( iv), viz.

C'~ t !5
1

f 1,1~0!
Re@ f 1,1~ t !#, ~2.30!

x'~v!5x'8 ~v!2 ix'9 ~v!5x'H 12
iv

2 f 1,1~0!
@ f̃ 1,1~ iv!1 f̃ 1,1* ~2 iv!#J , ~2.31!

where the asterisk denotes the complex conjugate,

x'5
n2Ms

2N0

3kT
~12^P2&0!, ~2.32!

and

f̃ n,m~ iv!5E
0

`

f n,m~ t !e2 ivtdt. ~2.33!

III. EVALUATION OF THE COMPLEX TRANSVERSE SUSCEPTIBILITY IN TERMS OF MATRIX
CONTINUED FRACTIONS

For m51 Eq. ~2.28! can be transformed into the matrix three-term differential-recurrence equation

tN

d

dt
Cn~ t !5Qn

2Cn21~ t !1QnCn~ t !1Qn
1Cn11~ t !, ~3.1!

where

Cn~ t !5S f 2n21,1~ t !
f 2n,1~ t ! D5S ^sinq~0!cosw~0!X2n21,1~ t !&0

^sinq~0!cosw~0!X2n,1~ t !&0
D ~3.2!

and

Qn
25S s

4n2~2n21!

~4n21!~4n23!

0

2n

~4n21! Fnj2
is

a G
s

2n~2n11!2

~4n21!~4n11!

D , ~3.3!

Qn5S s
2n~2n21!23

~4n23!~4n11!
2n~2n21!2

i j

2a
~2n11!

~4n11! FjS n1
1

2D2
is

a G
2

~2n21!

~4n21! FjS n2
1

2D1
is

a G
s

2n~2n11!23

~4n21!~4n13!
2n~2n11!2

i j

2a

D , ~3.4!

Qn
15S 2s

2n~2n21!2

~4n21!~4n11!

2
2n

~4n11! Fnj1
is

a G
0

2s
4n2~2n11!

~4n11!~4n13!
D . ~3.5!
rix
On applying the general method of solution of mat
three term differential-recurrence Eq.~3.1!, suggested in
Refs. 12 and 30, we obtain theexactsolution for the one-
sided Fourier transformC̃1( iv) in terms of matrix continued
fractions

S f̃ 1,1~ iv!
˜ D 5tN@tNivI2Q12Q1

1S2~v!#21H C1~0!

f 2,1~ iv!
1 (
n52

` F )
k52

n

Qk21
1 Sk~v!~Qk

2!21GCn~0!J ,

~3.6!

where I is the 232 identity matrix,Qn ,Qn
6 are the 232

matrices, given in Eqs.~3.3!–~3.5!, and the matrix continued
fraction Sn(v) is defined as
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Sn~v!5@tNivI2Qn2Qn
1Sn11~v!#21Qn

2 . ~3.7!

Also

Cn~0!5S f 2n21,1~0!

f 2n,1~0! D

5S n~2n21!

4n21
~^P2n22&02^P2n&0!

n~2n11!

4n11
~^P2n21&02^P2n11&0!

D . ~3.8!

In order to derive Eq.~3.8! we have used Eqs.~2.23!, ~2.24!,
and ~2.29!.

The initial condition vectorsCn(0) may be evaluated
from the recurrence equation for the equilibrium averages
Legendre polynomials24

F12
2s

~2n21!~2n13!G^Pn&0

5
j

2n11
@^Pn21&02^Pn11&0#

1F 2s~n21!

~2n21!~2n11!
^Pn22&0

2
2s~n12!

~2n11!~2n13!
^Pn12&0G , ~3.9!

where the three first members of the hierarchy are given b24

^P0~cosq!&051, ~3.10!
f

^P1~cosq!&05
essinhj

sZ
2

j

2s
, ~3.11!

^P2~cosq!&05
3es

2sZ S coshj2
j

2s
sinhj D1

3j2

8s2

2
3

4s
2

1

2
, ~3.12!

and

Z5E
21

1

ejx1sx2
dx5

1

2
Ap

s
e2j2/4sFerfiS As1

j

2As
D

1erfiS As2
j

2As
D G ~3.13!

@erfi(x)5 i erf(2ix) is the error function of imaginary argu
ment#. However,Cn(0) can be more efficiently evaluated b
matrix continued fractions by using Risken’s method10

Namely, let us transform Eq.~3.9! to a matrix three-term
recurrence relation as follows:

0Qn
2S ^P2n23~cosq!&0

^P2n22~cosq!&0
D10QnS ^P2n21~cosq!&0

^P2n~cosq!&0
D

10Qn
1S ^P2n11~cosq!&0

^P2n12~cosq!&0
D50, ~3.14!

where 0Qn ,0Qn
6 are the 232 matrices given by
0Qn
25S 4sn~n21!~2n21!

~4n21!~4n23!

0

jn~2n21!

~4n21!

2sn~2n21!~2n11!

~4n21!~4n11!

D , ~3.15!

0Qn5S n~2n21!F 2s

~4n23!~4n11!
21G

jn~2n11!

~4n11!

2
jn~2n21!

~4n21!

n~2n11!F 2s

~4n21!~4n13!
21G D , ~3.16!

0Qn
15S 2

2sn~2n21!~2n11!

~4n21!~4n11!

2
jn~2n11!

~4n11!

0

2
4sn~n11!~2n11!

~4n11!~4n13!
D . ~3.17!
ed
The solution of Eq.~3.14! is then given by24

S ^P2n21~cosq!&0

^P2n~cosq!&0
D5Sn

0Sn21
0 ...S1

0S 0
1D , ~3.18!

where the matrix continued fractionSn
0 is defined as

Sn
052@0Qn10Qn

1Sn11
0 #21 0Qn

2 . ~3.19!
In particular

S ^P1~cosq!&0

^P2~cosq!&0
D5S1

0S 0
1D . ~3.20!

Thus, on using Eqs.~3.8! and ~3.18!, we are now able to
evaluate the initial conditions in terms of matrix continu
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fractions only, and so evaluate the complex magnetic sus
tibility x'(v).

IV. RESULTS AND DISCUSSIONS

The exact matrix continued-fraction solution@Eq. ~3.6!#
we have obtained is very convenient for the purpose of co
putation ~algorithms for calculating matrix continued frac
tions are discussed in Ref. 10, Chap. 9!. Just as for the lon-
gitudinal relaxation,16 all the matrix continued fractions an
series involved converge very rapidly, thus 10–12 downw
iterations in calculating the continued fractions~3.19! and
11–14 terms in the series~3.6! are enough to arrive at a
accuracy not less than six significant digits in the major
cases. We remark that forj50 the results are considerab
simplified since Eq.~2.28! reduces to ascalar three-term
differential-recurrence relation which has the exact solut
in terms of ordinary continued fractions.10,12 The present
method of solving scalar three-term recurrence relations
particular case of the matrix one. It has been descri
elsewhere24,25 for similar problems and may readily be a
justed to suit the problem under consideration.

Having determined the exact solution, we may now c
culate dispersion and absorption plots as well as evaluate
accuracy of various approximate solutions which have b
already presented. As we have already mentioned in the
troduction, most analytical results were obtained by the
fective eigenvalue method. For example, on applying t
method forj50, sÞ0, Ra�kher and Shliomis22 derived an
expression forx'(v) which in our notation is

x'~v!

x'

5
l1l21D1 ivtNl2

~l21 ivtN!~l11 ivtN!1D
, ~4.1!

whereD5sa22(l121). Herel1 ,l2 are the effective ei-
genvalues which can be expressed in terms of equilibr
values of the Legendre polynomial of order 2,^P2&0 , viz.

l15

11
1

2
^P2&0

12^P2&0
, l25

2s1^P2&0~s26!

3^P2&0
~4.2!

with

^P2&05
3es

2Aps erfi~As!
2

3

4s
2

1

2
. ~4.3!

For high potential barriers (s@1) when

l1;s, l2;s, D;s2a22,

Eq. ~4.1! reduces22 to the ferromagnetic resonance equati
of Landau and Lifshitz5

x'~v!

x'

5
~11a2!v0

21 iavv0

~11a2!v0
22v212iavv0

, ~4.4!

where

v05s~atN!21'gHan , ~4.5!

andHan52K/Ms is the strength of the anisotropy field.
Furthermore, on using the effective eigenvalue method

the opposite limit s50, jÞ0, Garanin, Ischenko, an
p-

-

d

n

a
d

l-
he
n
n-
f-
s

m

in

Panina15 obtained an equation for the circular magnetic s
ceptibility, which can be rearranged to the following expre
sion for the complex transverse susceptibility:

x'~v!

x'

5
ulu21 ivtNl8

ulu22v2tN
2 12ivtNl8

, ~4.6!

wherel is the effective eigenvalue~now complex! given by

l5l81 il95
j2112j cothj

2~j cothj21!
1

i j

2a
. ~4.7!

For high-field parameters (j@1) Eq. ~4.6! also reduces to
the Landau-Lifshitz equation~4.4! with v05j(2atN)21.
Equation~4.7! was derived forjÞ0, s50 only. However,
on noting thatl is the effective eigenvalue for the equilib
rium autocorrelation functionf 1,1(t) as well, Eqs.~4.6! and
~4.7! can readily be generalized fors'0 and/ors!j as
follows. According to Eq.~2.25!, the first equation of the
infinite hierarchy is

tN

d

dt
f 1,1~ t !1F11

i j

2a
1

s

5G f 1,1~ t !1S is

3a
1

j

6D f 2,1~ t !

1
2s

15
f 3,1~ t !50. ~4.8!

The effective eigenvalue approach implies that the solut
of Eq. ~4.8! is approximated by a single exponential, name
f 1,1(t)5 f 1,1(0)e2lt/tN with the effective eigenvaluel given
by

l52
ḟ 1,1~0!

f 1,1~0!
511

i j

2a
1

s

5
1S is

3a
1

j

6D f 2,1~0!

f 1,1~0!

1
2s

15

f 3,1~0!

f 1,1~0!
. ~4.9!

Equation~4.9! can be simplified after some algebra to yie

l5l81 il95
21^P2&0

2~12^P2&0!
1 i

3^P1&0

2a~12^P2&0!
, ~4.10!

where^P1&0 and^P2&0 are given by Eqs.~3.11! and ~3.12!,
respectively. Fors50, Eq.~4.10! reduces to Eq.~4.8! since
in this case

^P1&05cothj2j21, ^P2&05123j21~cothj2j21!.
~4.11!

The generalization of the Ra�kher and Shliomis results22 for
jÞ0, j!s is given in Appendix B. Moreover, for arbitrary
j and s and large damping~when one may ignore preces
sional motion! the transverse spectrum may effectively
described by the Debye relaxational equation19

x'~v!

x'

5
1

11 ivtN /l8
, ~4.12!
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wherel8 is the effective eigenvalue which can also be e
pressed in terms of̂P2&0 from Eq.~3.12!, viz. @cf. Eqs.~4.2!
and ~4.10!#

l85
111/2̂ P2&0

12^P2&0
. ~4.13!

It should be noted that Eqs.~4.10! and ~4.13! are valid for
any uniaxial potential.19

Typical spectra of the real and imaginary parts ofx'(v)
are shown in Figs. 1–6~the calculations were carried out fo
n2Ms

2N0 /kT51!. The relaxational behavior of the spect
x'(v) is obtained for a small anisotropy and field para
eters (j,s'0) or large damping. s expected at smal
damping the spectra have a pronounced resonant charac
and strongly depend on the damping parametera ~Figs. 1
and 2!. However, the value ofa remains unknown. Method
of experimental and theoretical estimations ofa were dis-
cussed, e.g., in Refs. 21, 22, and 26, but no experimental

FIG. 1. The real part ofx'(v) ~solid lines! vs log10(vtN) for
s510 andj510 and various values ofa. Filled circles are the
overdamped effective eigenvalue solution from Eqs.~4.12! and
~4.13!.

FIG. 2. log10(2Im$x'(v%) ~solid lines! vs log10(vtN) for s510
and j510 and various values ofa. Filled circles are the over-
damped effective eigenvalue solution from Eqs.~4.12! and ~4.13!.
-

-

r

ta

seem to be available. Some theoretical estimations ofa yield
values of order of 0.01–0.1.22 The comparison of the effec
tive eigenvalue solutions15,19,21with the exact results allows
us to estimate the accuracy of the former. In Figs. 1 and 2
results of the exact calculations are compared with the o
damped solution Eq.~4.12!.19 In Figs. 3 and 4 the exac
calculations are compared with the solution of Ra�kher and
Shliomis.22 It is obviously by inspection of these figures th
both solutions are in agreement fors'0 and fors@1 only.
However, in the most interesting range of the barrier hei
parameters;1 – 5, the effective eigenvalue approach fa
to describe the transverse response. The explanation ap
to be as follows: at small to moderate barrier heightsthere is
essentially a spread of the precession frequencies of
magnetization in the anisotropy field. To a certain extent this
effect is analogous to inhomogeneous broadening and
siderably exceeds the true damping.15 Therefore, it is practi-
cally impossible to describe asymmetric absorption and

FIG. 3. Comparison of the exact~solid lines! and effective ei-
genvalue@filled circles, Eqs.~2.31! and~B7!# solutions for the real
part of x'(t) vs log10(vtN) for a50.1 andj50.01 and various
values ofs.

FIG. 4. Comparison of the exact~solid lines! and effective ei-
genvalue@filled circles, Eqs.~2.31! and ~B7!# solutions for log10

(2Im$x'(v%) vs log10(vtN) for a50.1 andj50.01 and various
values ofs.
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persion curves by the usual single resonance spectrum w
is predicted by the effective eigenvalue approach. Howe
in the high barrier limit (s@1) when the anisotropy poten
tial may be approximated by a harmonic potential the sys
may be effectively described by a single resonance with
characteristic frequencyv0 given by Eq.~4.5!. On the other
hand, for s'0 and/or s!j the effective eigenvalue ap
proach provides~just as for the longitudinal relaxation16!
perfect correspondence with the exact solutionfor all values
of the field parameterj ~see Figs. 5 and 6! since we now
have the natural resonance with the angular frequencyv0
5j(2atN)21. Thus, when the external magnetic field co
siderably exceeds the anisotropy field or the anisotropy fi
is close to zero, the effective eigenvalue method accura
describes the transverse relaxation. However, when the in
ence of a constant magnetic field is negligible, the effect
eigenvalue method requires careful investigation of the ra
of its applicability before proceeding. Otherwise, it is po

FIG. 5. Comparison of the exact~solid lines! and effective ei-
genvalue@filled circles, Eqs.~4.6! and~4.10!# solutions for the real
part of x'(v) vs log10(vtN) for a50.1 ands50.01 and various
values ofj.

FIG. 6. Comparison of the exact~solid lines! and effective ei-
genvalue@filled circles, Eqs.~4.6! and ~4.10!# solutions for log10

(2Im$x'(v%) vs log10(vtN) for a50.1 ands50.01 and various
values ofj.
ich
r,

m
e

ld
ly
u-
e
e

-

sible to arrive at erroneous results as clearly demonstrate
Figs. 3 and 4. We remark that for the longitudinal relaxati
the effective eigenvalue approach has a restricted rang
validity and is applicable for low barrier heights (s<1)
only.

Thus, the transverse response of an ensemble of noni
acting single domain particles can be evaluated from theex-
act equation~3.6!. Furthermore, we demonstrated that t
effective eigenvalue approach which yields simple analyti
expressions@Eqs.~4.1!, ~4.6!, ~4.10!, ~4.12!, ~B6!#, describes
the main features of the transverse complex susceptib
with the exception of the range of intermediate barrierss
;1 – 5 andj<1, where there exists essentially a spread
the precession frequencies of the magnetization in the an
ropy potential field. In order to derive these results we ha
assumed that all particles are identical. This assumptio
practically never fulfilled in an experiment. In order to tak
into account the polydispersity of the particles one must a
average the susceptibility over appropriate distribution fu
tions ~e.g., over that of particle volumes!. However, as dem-
onstrated by Shliomis and Stepanov31 such averaging doe
not substantially alter the transverse susceptibility in cont
to the longitudinal one where the averaging may consid
ably change the spectrum. In order to simplify the theory
have also assumed throughout that the constant mag
field H0 is applied along the easy axis of the magnetizati
When H0 is at an arbitrary angle to that axis the theo
becomes very much more complicated.17 The results of such
calculations of the transverse response are described in
32. Equations~4.6! and ~4.7! were first derived in Ref. 33.
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APPENDIX A

Noting that the rule for changing of variables in Str
tonovich differential equations is the same as in ordin
analysis,27 the equation of motion for an arbitrary differen
tiable functionf ($j%) may be obtained by cross multiplyin
i th Eq.~2.10! by ] f „$j(t)%…/]j i , respectively, and then sum
ming them. Thus, we obtain a stochastic equation
f „$j(t)%…:

d

dt
f „$j~ t !%…5hi„$j~ t !%,t…

]

]j i
f „$j~ t !%…

1gi j „$j~ t !%,t…
]

]j i
f „$j~ t !%…G j~ t !. ~A1!

From a mathematical point of view the stochastic differen
equation ~A1! @just as Eq. ~2.10!# with the d-correlated
Langevin forcesG j (t) is not completely defined.10,27 The
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most satisfactory interpretation of Eqs.~2.10! and~A1! is as
the stochastic integral equations10,12

j i~ t1t!5xi1E
t

t1t

hi„$j~ t8!%,t8…dt8

1E
t

t1t

gi j „$j~ t8!%,t8…G j~ t8!dt8, ~A2!
f „$j~ t1t!%…5 f ~$x%!1E
t

t1t

hi„$j~ t8!%,t8…
] f „$j~ t8!%…

]j i
dt8

1E
t

t1t

gi j „$j~ t8!%,t8…
] f „$j~ t8!%…

]j i
G j~ t8!dt8.

~A3!

On supposing that the integrands in Eqs.~A2! and ~A3! can
be expanded in Taylor series, we obtain
j i~ t1t!5xi1E
t

t1t

hi~$x%,t8!dt81E
t

t1t

@jk~ t8!2xk#
]

]xk
hi~$x%,t8!dt81E

t

t1t

gi j ~$x%,t8!G j~ t8!dt81E
t

t1t

@jk~ t8!2xk#

3
]

]xk
gi j ~$x%,t8!G j~ t8!dt81••• , ~A4!

f „$j~ t1t!%…5 f ~$x%!1E
t

t1t

hi~$x%,t8!
] f ~$x%!

]xi
dt81E

t

t1t

@jk~ t8!2xk#
]

]xk
Fhi~$x%,t8!

] f ~$x%!

]xi
Gdt8

1E
t

t1t

gi j ~$x%,t8!
] f ~$x%!

]xi
G j~ t8!dt81E

t

t1t

@jk~ t8!2xk#
]

]xk
Fgi j ~$x%,t8!

] f ~$x%!

]xi
GG j~ t8!dt81••• .

~A5!

On substitutingjk(t8)2xk from Eq. ~A4! into Eq. ~A5! we iterate

f „$j~ t1t!%…5 f ~$x%!1E
t

t1t

hi~$x%,t8!
] f ~$x%!

]xi
dt81E

t

t1t ]

]xk
Fhi~$x%,t8!

] f ~$x%!

]xi
G E

t

t8
hk~$x%,t9!dt9dt8

1E
t

t1t ]

]xk
Fhi~$x%,t8!

] f ~$x%!

]xi
G E

t

t8
gkn~$x%,t9!Gn~ t9!dt9dt81E

t

t1t

gi j ~$x%,t8!
] f ~$x%!

]xi
G j~ t8!dt8

1E
t

t1t ]

]xk
Fgi j ~$x%,t8!

] f ~$x%!

]xi
GG j~ t !8E

t

t8
hk~$x%,t9!dt9dt8

1E
t

t1t ]

]xk
Fgi j ~$x%,t8!

] f ~$x%!

]xi
GG j~ t8!E

t

t8
gkn~$x%,t9!Gn~ t9!dt9dt81••• . ~A6!

Then averaging Eq.~A6! with account of the properties~2.11! and retaining only the terms of the order oft, we have

f „$j~ t1t!%…5 f ~$x%!1E
t

t1t

hi~$x%,t8!
]

]xi
f ~$x%!dt812Dd jnE

t

t1t ]

]xk
Fgi j ~$x%,t8!

]

]xi
f ~$x%!G E

t

t8
gkn~$x%,t9!

3d~ t82t9!dt9dt81o~t!. ~A7!

After obvious transformations in Eq.~A7!, we obtain

f „$j~ t1t!%…2 f ~$x%!

t
5hi~$x%,t1tQ i i i

~1!!
]

]xi
f ~$x%!1Dgk j~$x%,t1tQ i jk

~2!!
]

]xk
Fgi j ~$x%,t1tQ i jk

~2!!
]

]xi
f ~$x%!G1o~1!,

~A8!

whereQ i jk
(n) are constants (0<Q i jk

(n)<1). Here we have also used the property of thed function

y~b!52E
a

b

d~b2x!y~x!dx.

Taking the limitt→0 in Eq. ~A8!, we have Eq.~2.13!.
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APPENDIX B

The application of the effective eigenvalue approach
jÞ0, j!s requires two effective eigenvalues for the fi
two equations of the infinite hierarchy Eq.~2.25!, since the
resonance arises here due to the coupling betweenf 1,1(t) and
f 2,1(t) ~this behavior is termed ‘‘entanglement’’ of the dipo
and quadrupole branches of the response by Ra�kher and
Shliomis!.22 Thus we obtain the set of coupled equatio
viz.

tN

d

dt
f 1,1~ t !1l1

efff 1,1~ t !1S is

3a
1

j

6D f 2,1~ t !50, ~B1!

tN

d

dt
f 2,1~ t !1l2

efff 2,1~ t !23F ~12l1
eff!S j

s
1

i

a D1
j

2G f 1,1~ t !

50, ~B2!

where the effective eigenvalues are given by

l1
eff511

i j

2a
1

s

5
1

2s

15

f 3,1~0!

f 1,1~0!

5
i j

2a
1

j2

4s
2

1

2
1

3

4s S 2s2j^P1&0

12^P2&0
D , ~B3!

l2
eff5

i j

2a
132

s

7
1

12s

35

f 4,1~0!

f 2,1~0!
5

i j

2a
212s1

j2

2s

13F 2s^P1&02j^P2&0

j~^P2&021!13^P1&0
G . ~B4!

Here ^P1&0 and ^P2&0 are given by Eqs.~3.11! and ~3.12!,
respectively. At the derivation of Eq.~B2! we have taken
into account that
o

t

,

f 3,1~ t !5S l1
eff212

i j

2a
2

s

5 D 15

2s
f 1,1~ t ! ~B5!

@in accordance with Eq.~B3! the equality~B5! is assumed to
be valid at any timet#. We note that in the limitj,s→0 the
effective eigenvalues have the following behavior:

l1
eff'

i j

2a
111

s

5
1

8s2

175
1

4sj2

175
1••• ,

l2
eff'

i j

2a
132

s

7
1

16s2

147
1

8sj2

441
1••• .

On applying the one-sided Fourier transform to Eqs.~B1!
and~B2!, we can solve the set of linear equations so obtai
for f̃ 1,1( iv) yielding

f̃ 1,1~ iv!

f 1,1~0!
5

~l1
eff1 ivtN!2d

~l1
eff1 ivtN!~l2

eff1 ivtN!1D
, ~B6!

where

D5S j

2
1

is

a D F ~12l1
eff!S j

s
1

i

a D1
j

2G , ~B7!

d5S j

6
1

is

3a D f 2,1~0!

f 1,1~0!
5S j

4s
1

i

2a D S 3^P1&0

12^P2&0
2j D .

~B8!

On substituting Eq.~B6! into Eq. ~2.31!, we can evaluate
x'(v), which atj50 reduces to Eq.~4.1!.
,
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