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Transverse complex magnetic susceptibility of single-domain ferromagnetic particles
with uniaxial anisotropy subjected to a longitudinal uniform magnetic field
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The infinite hierarchy of differential-recurrence relations for the equilibrium transverse correlation functions
appropriate to magnetic relaxation of single-domain ferromagnetic particles with uniaxial anisotropy subjected
to a uniform external magnetic field, is derived by averaging Gilbert’s equation. Exact expressions in terms
of matrix continued fractions for the transverse complex magnetic susceptibility are obtained with the aid of
linear-response theory by solving the infinite hierarchy. The principal features of the spectra are emphasized in
figures showing the real and imaginary parts of the complex magnetic susceptibility. The accuracy and the
range of the applicability of analytical results based on the effective eigenvalue method is established. It is
shown that this method provides in general a good approximation to the exact solution with the exception of
the range of low-to-intermediate barrier heights of the anisotropy potential where atldm#iere exists
essentially a spread of the precession frequencies of the magnetiz&0d:i63-182607)03229-3

[. INTRODUCTION tions of the magnetization vectdvl in these coordinates.
The Fokker-Planck equation in the case of axial symmetry
A single-domain ferromagnetic particle with a uniaxial can be solved by the method of separation of the variables.
anisotropy is characterized by an internal potential which haghe separation procedure gives rise to an equation of the
two stable stationary points with a potential barrier betweerSturm-Liouville type. An alternative approach to the prob-
them. If the particle is sufficiently finéand hence the poten- lem which is not confined to axial symmetry is to expakd
tial barrier is low, the vector of magnetizatiokl may un-  as a series of spherical harmonics so yielding an infinite hi-
dergo a rotation due to thermal agitation, surmounting theerarchy of linear differential-recurrence equations for aver-
barrier, as described by WE' The thermal instability of the aged spherical harmonics. The infinite hierarchy can be then
magnetization arises from the so-called superparamagrfetismolved by finding eigenvalues and eigenvectors of the system
because each fine particle behaves as an enormous paramagatrix or, much more efficiently, by a matrix continued-
net of magnetic moment $6 1Pug. The thermal fluctua- fraction method® This hierarchy can also be obtained by
tions and relaxation of the magnetization of a single-domairdirectly averaging Gilbert's equation without recourse to the
particle currently merits attention in view of its importance Fokker-Planck equatiot:*
in the context of magnetic recording metliaand A basic model in the study of the superparamagnetism is
paleomagnetisrf. when an external uniform magnetic field, of arbitrary
The behavior of the magnetization of a single-domain ferstrength is superimposed on the anisotropy potential
romagnetic particle has been the subject of much study. Larfield.***#In the simplest case of the uniaxial anisotropy the
dau and Lifshitz in their 1935 papegave an equation of free-energy density of a single-domain particle is given by
motion describing the average behavior of the magnetization.
Gilbert in his 1955 papérpresented a similar equation of V=—K cog9—(M-Hy), 1.1
motion. Browr extended these equations of motion to de-
scribe not the average but the dynamic behavior of the magwvhereK is the anisotropy constant anlis the polar angle.
netization of an individual single-domain ferromagnetic par-In general such a field can only be applied at some angle to
ticle. He based his work on the Langevin equation approackhe easy axis of magnetization since the axis is in a random
to the theory of Brownian motion. Brown took as the Lange-position. However, in order to preserve the axial symmetry
vin equation, Gilbert's equation transformed to Landau-of the problem and its attendant mathematical simplifications
Lifshitz form. He was able to construct from it the underly- it is often assumed thatly is applied along the polar axis.
ing probability density diffusion equation, which is the Initiated by Neel' and Stoner and Wohlfahftthis problem
Fokker-Planck equation. In order to accomplish this, Brownhas been recently studied in Refs. 15-19. However, these
wrote down the equation of motion in spherical polar coor-studies were mainly confined to the longitudinal relaxation
dinates. He then used the methods of Wang and Uhlefibecko that only in Refs. 15 and 19 were approximate transverse
combined with the Stratonovictdefinition of the derivative relaxation solutions for several particular cases obtained by
of a stochastic variable to construct the Fokker-Planck equadint of the effective eigenvalugnomen} method(for recent
tion for the distribution functiodnV({M},t) of the orienta- reviews of the method, see Refs. 20 and 21, and references
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cited therein. This method was applied by Rder and are the normalized autocorrelation functions of the longitu-
Shliomig? to the study of relaxation and ferromagnetic reso-dinal and transverse components of the magnetization of the
nance in the uniaxial anisotropy potentiall4=0, and was  particle, respectivelyM,, M, M, are the Cartesian com-
recently extended?*to more complicated anisotropy poten- ponents ofM, and the brackets ), designate the equilib-
tials such as a cubic anisotropy. However, the formal applifium ensemble average. According to linear-response
cation of this approximate method to the transverse relaxtheory° the corresponding components of the complex mag-
ation may not be deemed completely satisfactory as theetic susceptibility tensoy,(w) and x, (w) are given by
results obtained for the transverse response were not com-
pared with the exact solutions, so that the accuracy of these
results remains unknown. Indeed, we shall demonstrate in
the present paper that the effective eigenvalue method fails
to describe the transverse relaxation at low to moderate bar- (y=Il,1). (1.8

rier heights andH,=0. o o )

The primary goal of this paper is to evaluate the trans-1he Iong|tgd|nal compllex suscept|b|I|Fy whelj a uniform
verse complex magnetic susceptibiliy (w) of a system of magne_t|c_ﬂeld|—_|0 of arbitrary _strength is superimposed on
noninteracting single-domain ferromagnetic particles sub!N€ uniaxial anisotropy potential field has been evaluated in
jected to a constant magnetic field. We obtéiith the aid Ref. 15. In order to evaluate thg transverse su_sceptlbmty we
of linear-response theorghe exactsolutions fory, () in must f|rs§ ca]culate the equ!hbnum correlgtlon funcuon
terms of matrix continued fractions. In order to obtain these~. (t) Which is more conveniently accomplished directly
results we shall use the approach of Coffey, Kalmykov, and‘rorqunbert’s equation rather than from the Fok_ker-PIa_mck
Waldron? for the solution of the infinite hierarchy of ©ONe: Thus, we bypass the Fokker-Planck equation entirely.
differential-recurrence relations which has already allowed
us to obtain the exact solution for the longitudinal Il. DERIVATION OF DIFFERENTIAL-RECURRENCE
relaxation'® This approach is based on matrix continued RELATIONS FROM GILBERT'S EQUATION
fractions and essentially constitutes a further development of AUGMENTED BY A RANDOM-FIELD TERM
Risken’s method® It has also been used in the theory of
dielectric and Kerr effect relaxaticit:?®

Before proceeding we must first summarize the principal .
results oflinear-response theorfRef. 10, Chap. J The ap- gt M(t)=vy[M(t) X[H(t)+h(t)—gM(D)]], (2.2)
plication of this theory to axially symmetric magnetic prob-
lems predicts that the decay of the magnetiza{ibh) (t) of  wherey is the gyromagnetic ratioy is the damping param-

a system of noninteracting single-domain ferromagneticeter,H(t) is the magnetic field acting on the particle which
particles, when a small constant external field;  may consist of externally applied magnetic fields, the crys-

Xy(w)=x;(w)—ix’;(w)=xy[1—iwf:e_i“"Cy(t)dt}

Gilbert's equation in the presence of thermal agitatién is

[v(M-H;)/kT<1] has been switched off at time=0, is talline anisotropy field, and a random Gaussian white-noise
field h(t), which has the properties
(M) =(Mzo=xH1Cy(1), (1.2
(for the case of the longitudinal relaxatiadyliH,) and hi(H)=0,
(M) (t)=x,H.C, (1), (1.3 hi(D)hj(t")=(2kTn/v) 5 6(t—t"). 2.2
(for the case of the transverse relaxatibty,L H,), where Here the overbar means the statistical average over an en-
semble of particles which all have at timeghe samemag-
N, ) ) netizationM. If V({M}) is the free energy per unit volume
Xi1=" g [{M2)0=(Mz)q] (1.4  expressed as a function of componentdvbfthen
and H=— -2 vmy). 2.3
M
VZNO 2 V2No 2 . . . . .
XL=" T <Mx>0:W (M3)o (1.5  Itis assumed throughout this analysis that the magnetization

is uniform inside the particle and only the orientation and not

are the components of the static magnetic susceptibility terf?€ magnitude of the magnetization is subject to variations.
sor, Ng is the number of particles per unit volumejs the The assumptions made in the derivation of Gilbert’s equation

volume of the particle. Also, were discussed e_Isewhe(r&ag., Ref. 26. .
Gilbert’s equation(2.1) may be rearranged explicitlfas
<Mz(0)Mz(t)>o—<Mz>S shown, e.g., in Refs. 2 and 18sing the properties of the
(= > > (1.6)  triple product formula to yield that equation in the
(M2)o—=(M2)o Landau-Lifshit2 form:
and

d
Gt MO=MG'IMOX[H®+h(1)]]

<Mx(o)Mx(t)>0=<My(0)My(t)>O (17)

C, ()=
® (Mo (M?)o +h/ M) X[H(t) +h()]IXM()], (2.9
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where a=vynyMq. (2.6

a
g’=(lTyW, h’:uTyz)W:ag’, (2.5 Equation (2.4) is of the same mathematical form as the
@ )Ms @ )Ms Landau-Lifshitz equatiohexcept that both parameters
M, is the saturation magnetization, and the damping constasindh’ depend orw.

a is given by Expanding Eq(2.4) in its Cartesian components we have

1 d
R dt (O =11 O Ty = [a7 () + Uy (0 Thy(0) + [a ™ uy (0~ U (DU D I(0) + [ 1= U THL(D)

- [a_luz(t) + ux(t)uy(t)]Hy(t) + [a_luy(t) —Uz(t)uy(t) JH(1), (2.7

1 d
R, dt WO =la U0 = u(Ou OO + 1= U0y (0~ @ u (0 +uy (DO Thy(0) +[a u ()

- ux(t)uy(t)]Hx(t) +[1_ ui(t)]Hy(t) - [ailux(t) + uy(t)ux(t)]Hz(t)r (28)

1 d
h/_Ms a uz(t) == [ailuy(t) + ux(t)uz(t)]hx(t) + [ailux(t) - uy(t)uz(t)]hy(t) + [1_ ui(t)]hz(t) - [ailuy(t)

F U (UL () TH (1) +[ ™ tuy(t)— uy(Hu(t) JHy (1) +[1— uZ(H)HL(), (2.9
|
where where¢;(t+ 7) (7>0) is the solution of Eq(2.10 with the
_ . _ initial conditions &;(t)=x;. In Egs. (2.10 and (2.12 the
Uy=M,/M¢=sind} cosp, u,=M,/Mg=sind sing, summation ovel andk is understoodEinstein’s notatioh
The proof of Eq(2.12 can be found elsewhersee Ref. 10,
u,=M,/Mg=cos . pp. 54 and 5p We remark that just as for dielectric

relaxatiof* we shall always use the Stratonovich
The set of stochastic differential equatiof®.7)—(2.9) definitior™?’ of the average of the multiplicative noise term
contains multiplicative noise termb;(t)u;(t)u,(t). This here as that definition always constitutes the mathematical
poses an interpretation problem for these equations as hidealization of the physical relaxation process. Thus, it is
been discussed in Refs. 10 and 12. We recall, taking the seinnecessary to transform the Langevin equati@id—(2.9)
of the Langevin equations for thB stochastic variables to Ito equationse.g., Ref. 27. Moreover, we can apply the

{E() F={&1(1), (1), ... .En(D)}: methods of ordinary analysfS.

In like manner we can prove that the averaged equation
dé&i(t) . for an arbitrary differentiable functioh({¢}) has the follow-
T:hi({g(t)}vt)+gij({§(t)}.t)rj(t)a (|,J=1,...,N), mg form (See AppendixA

(2.10
with df({xp) . f{&t+nH—Ff({x})
=lim
- dt 0 T
I(t)=0,
J
F,(t)FJ(t’)=2D5,]5(t—t'), (21]) :h|({X},t) (9_X| f({x})+ngJ({X}’t)
and interpreting them as Stratonovich equations, that the av- d d
erzl%eigl equations for the sharp valugét)=x; at timet X e gi;({xht) % f({xh |, (213
ar
dx m where summation ovar, j, andk is also understood.
d_tl = |im ———2 In the study of the orientation relaxation the quantities of
7—0 T

interest are the spherical harmoniXs,, defined as

0
=hi({x},t) + Dgy;({x},t) —— g;;({x},1), m
J X~ Xnm=€"¢PM(cosd) =e™¢(1—cogI)™? %,

(i,ji=1,...N), (2.12 (2.14
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where P, (x) and P](x) are the Legendre polynomials and d e d™P,(u,) d
the associated Legendre functions of the first kind, gt Knm=M(UxFiuy) ™ — @ av U
respectively’® The X,,, are expressed in terms af,uy,u, z
as follows: _ ) d™P,(u,)
+im(ug+iuy)m ! —qu Y
S um d™Pn(uy) Uz
Xnm_(ux+|uy) W dm+1pn(uz) d

: . . . +(ux+iuy)m d m+1_a u,, (215)
Noting that according to the Stratonovich definition the con- u;
ventional rules of transformation of a stochastic varigble ~ we can obtain from Egqg2.7), (2.8), and(2.9) the equation

dinary calculug can be used and taking into account the of motion of the sharp values of spherical harmoniGs,

theorem Eq(2.13 with (Refs. 11 and 12
d vM , d™ 1P (u,) - , . d™P,(u,)
278 g Xom="eT (ux+|uy)mTLZ[Hz—uz(u~H)+a L(ugHy—uyH,) 1+ m(u,+iuy)™ 1#;“2
; Po-1 ; i o—1 2 J i ym-1 d"™Pn(uy)
X[(Hy+iHy)(1+ia™ "u,) = (uytiuy)((u-H)+ia "Hy) ] + 7h Msgkja_uk m(uy+iuy) d—u’Z“
. o dMP(Uy)
X(ng+|gyj)+(ux+|uy) W zj|» (216)
z
where
gxle_uiv gxy:_a_luz_uyuw gxz:a_luy_UzUXv
Op=a U muyly, Oy =1-Ul,  gy,=—a tuugu,,
gZX:_a_luy_uZuXv gzy:a_lux_uyuz’ gZZ:l_ug’ (217
and the relaxation timey is given by
14
(2.18

™ ZRTH

We remark that all theX,,,, and H; in Eqg. (2.16 are in general functions af,,uy,u,. Also u,,uy,u, in Eqg. (2.16 and
Uy(t),uy(t),u,(t) in Egs.(2.7—(2.9 have different meanings, namely,(t),u,(t),u,(t) in Egs.(2.7)—(2.9) are stochastic
variables, whileu, ,uy ,u, in Eq. (2.16 are the shargdefinite) valuesu,(t) =u, at timet. Instead of using different symbols
for the two quantities we have distinguished sharp values atttifren stochastic variables by deleting the time argument as
in Ref. 10.

The right-hand side of Eq2.16) consists of two terms, namely, tldeterministicdrift and thenoise-inducedor spuriou$
drift. These terms can be considerably simplified after some ald&bmaparticular, the spurious drift is given by

L d"Py(u,) d™ 1P, (u,)

d . _ ) .
Uh/Mggkj 07_Uk m(ux+|uy)m du™ (gxy+|gyj)+(ux+|uy)m dum+ T Oz =-—n(n+1)Xn- (2.19
z 7z

Thus, we obtain

vMg(H,+iH,

d ) .
ZTN&Xnern(nJrl)Xnm: 2KT(2n+1) [n(n—m+1)(n—m+2)X,s1m-1+ia X(2n+1)(n—m+1)(n+mM)Xpm_1

yMg(Hy—iH,)

“2kT(2n+1) [NXns1me1—ia” 2N+ 1) Xnme

+(n+1)(n+m=1)(n+mM)X,_1m-1]—

vM H

er;l) [n(N—m+1)Xpt1m+ia” m(2n+1)X,m

+(n+1)xn—lm+1]_

—(n+21)(n+m)X,,_1ml- (2.20

Equation(2.20 is valid for any anisotropy potential.
Equation(2.20 can be further simplified for a uniaxial magnetic anisotropy field with uniaxial anisotropy energy density
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V=—KuZ=—K cogd, (2.21

where} is the angle betweekl and the positive axis, superimposed on a strong constant magnetic figldpplied along
the z direction. Thus the fieldH has only az component given by

H=

2K
Ho+ —— uz)k. (2.22
Ms

On substituting Eq(3.24 into Eq. (3.22 and on using the equalities for the associated Legendre funttions

VI—X2PM (%) — (n+m+ 1)xPM(x) + (n—m+1)PM, ,(x)=0, (2.23
(2n+1)xP(x)=(n—m+1)P], ;(x)+(n+m)P]_;(x), (2.29
we have
d n(n+1) iém n(n+1)—3m?
™t | T T oy T T 2n_1y(2n+3)|
B (n+m) [n+1 imo (n—m+1) (n imax (n+1)(n+m)(n+m—1)x
8 onr1 |72 ag /T Tongn (21 g e T T T 2n n-2m
n(n—m+l)(n—m+2)x 2
~ (2n+1)(2n+3) n+2m: (229
where
K _ vMgHq 22
TTKkT ST kT (2.29

The quantitiesX,,, in Eq. (2.29 are functions of the sharp valueg which are themselves random variables with the
distribution (probability density function W. Therefore we must also average E2,25 overW.? In the absence of external
perturbations, the system is at equilibrium with Boltzmann distribution fundfigrgiven by

1 vV 1
Wy(9)= - exq - ﬁ) =3 exp(é cosd+ o cog ), (2.27

where Z is the normalizing constarithe partition function As the equilibrium distribution(2.27) is independent of the
azimuthal anglep, all equilibrium ensemble averagéX, .o vanish form+0, and{ ), designates the equilibrium averaging
defined as

1 (27 (=
(Ao=3 f f A(D,p)e” VP Tsingd dde.
0 0

We may construct from Eq2.25 an infinite hierarchy of differential-recurrence equations for any equilibrium correlation
functions which may be desired. In particular, on multiplying Ej25 by Re€X,,(0)}, and averaging the resulting equation
over the equilibrium distribution functiolV, at the instant=0, we obtain the hierarchy for the equilibrium transverse
correlation functions:

n(n+1) iém n(n+1)—3m?
™ gt fom 2 2a 7 (2n—1)(2n+3) Fim(®)
B (n+m) [n+1 imo (n—=m+1) (n ima) (n+1L)(n+m)(n+m—1)
T % 2n+1 2 af) U T | §+ aé fream(t) | +o (2n—1)(2n+1) n—2m(t)
n(n—m+1)(n—m+2)
T (ntD(znt3) e (2.28

wheref, (t) is the transverse correlation function defined as

fn,m(t):<Re{xlm(0)}xnm(t)>0- (2.29
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Equation(2.28 is valid for anym. However, for the problem under consideration it is enough to consider this equation for
m=1 only because the transverse autocorrelation fun@ipft) and complex magnetic susceptibiligy (w) are expressed in
terms off, 4(t) and its one-sided Fourier transforimy(iw), viz.

1
C, ()= —= R fy4(1)], 2.3
L( ) f1,1(0) q: l,l( )] ( @
’ o Iw >y . Tx .
Xxi(@)=x (0)=ix (0)=x | 1= 50— [f1a(io) +f(—iw)], (2.3)
2114(0)
where the asterisk denotes the complex conjugate,
’M2N,
XL=3kT (1—(P2)o), (2.32
and
’Fn,m(iw):j fn,m(t)e_iwtdt. (2.33
0

Ill. EVALUATION OF THE COMPLEX TRANSVERSE SUSCEPTIBILITY IN TERMS OF MATRIX
CONTINUED FRACTIONS

Form=1 Eq.(2.28 can be transformed into the matrix three-term differential-recurrence equation

d
™ Gt Cn(H)=Qp Cn_1(1) +QnCn(t) +Qn Cpy (1), 3.9
where
f2n11(t)) (<5in‘3(0)003P(0)X2n11(t)>o)
= = * 2
Cnl) ( fona(®) | =1 (Sin®(0)co8p(0)Xan 1(1))0 (3.2
and
io
4n%(2n—-1 ——  |né——
| vy @D
Qn - ( n 0)( n ) 2n(2n+ 1)2 ’ (33)
7 (4n—1)(4n+1)
2n(2n-1)-3 1 P& (2n—1) 1\ o
| T@n—3@n+n " Y72, Tan-n |4\t
Qn= (2n+1) 1\ ic en2nt1)-3 g | 34
an+1) |8 "2 7 Gn-Dyan+a "N tU-5,
2n(2n—1)?
"7 @n—1)(4n+1) 0
Q= il —o an?(2n+1) | . (3.5
- — 4n+1)(4n+3
@+ ™ (4n+1)(@n+3)
|
On applying the general method of solution of matrix * n
three term differential-recurrence E¢3.1), suggested in + Qi 1S(w)(Q )t Cn(O)},
Refs. 12 and 30, we obtain thexactsolution for the one- n=2|k=2
sided Fourier transforr®, (i w) in terms of matrix continued (3.6
fractions
wherel is the 2x2 identity matrix,Q,,Q, are the 22
T (iw) matrices, given in Eq$3.3—(3.5), and the matrix continued
(?1*1“ )) = [ i 0l — Q1 — Q; Sy(w)] ™Y C1(0) fraction S,(w) is defined as
2\lw
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=[ryiwl —Q,—QF Q.. (3. e’sin
Sh(w)=[myiol = Qn=Qy Syi1(w)] 7Qy (3.7 (P1(cos9))o= zhf_zi’ (3.1
Also o g
_ f2n—1,1(0)> 3e’ & 2
Cn(O)—( fon1(0) (Pz(coaﬂ)>o=ﬁ (cosrf— 5 sinh¢ | + 852
n(2n—1) 3 1
“an—1_ (Pan-2)0=(P2n)o) 5 (3.12
n(2n+1) - (38
“an+1 (Pan-1)0=(P2n+1)0) and
In order to derive Eq(3.8 we have used Eq$2.23), (2.24), 1 1 [ £
and(2.29. Z=f et ’gx= 2 \ﬁe‘fz"‘” erfil o+ —)
The initial condition vectorsC,(0) may be evaluated -1 2 Vo 2\o
from the recurrence equation for the equilibrium averages of
Legendre polynomiafé +erfi( Jo- ¢ ) (313
P o
(2n—=1)(2n+3) (Pn)o [erfi(x) =i erf(—ix) is the error function of imaginary argu-

menti. However,C,(0) can be more efficiently evaluated by

matrix continued fractions by using Risken’s metH8d.

Namely, let us transform E(q3.9) to a matrix three-term
recurrence relation as follows:

20(n—1)

3
=5n71 L{Pn-10—(Pn+1)o]

HZn—Dantn (Fr-2o
°Q,

<P2n—3(0033)>0) °Q (<P2n—1(0033)>0>

20(n+2) (P2n—2(cosd))o (P2n(cosd))o

T 2n+1(2n+3) (Pn+2)o/» (3.9

4o+ <P2n+1(003'3)>0>20 (3.14
where the three first members of the hierarchy are givéh by N (Panio(COSH))o) '
(Po(cos?))o=1, (3.10  where°Q,,°Q, are the 22 matrices given by
|
4on(n—1)(2n—1) %
Q= A= DEn=3 " 2on(2n-1y2n+1) |- (319
(4n—1)(4n+1)

20 én(2n—1)

S S [ Ter e T (4n-1)
Qn= &n(2n+1) 20 ! (3.16

(an+1) 2N+ Gn-D@n+3)
B 20n(2n—1)(2n+1) 0
An—1)(4n+1

oQ:: ( ngn(z)r(wrnl) ) B 4on(n+1)(2n+1) | . (3.17

- (4n+1)(4n+3)

(4n+1)
|
The solution of Eq(3.14 is then given b¥ In particular
<P2n1(003ﬂ)>0) $$ § 0)
= e y (31& <P1(C08‘9)>0 . 0

(Pan(cosd))e 81l g [(puooe) s3], 320

where the matrix continued fractic® is defined as

o ot o Thus, on using Eqs(3.8) and (3.18, we are now able to
S=-1°Q,+°Q; 11171 %Q, . (319  evaluate the initial conditions in terms of matrix continued
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fractions only, and so evaluate the complex magnetic susceaninad” obtained an equation for the circular magnetic sus-
tibility x, (). ceptibility, which can be rearranged to the following expres-
sion for the complex transverse susceptibility:
IV. RESULTS AND DISCUSSIONS
x. (o) IN2+iwTy\
X IN2— w27ﬁ+2inN)\’ '

The exact matrix continued-fraction soluti¢kq. (3.6)] (4.6

we have obtained is very convenient for the purpose of com-
putation (algorithms for calculating matrix continued frac- \yherel is the effective eigenvalugmow complex given by
tions are discussed in Ref. 10, Chap. 3ust as for the lon-

gitudinal relaxatiorf? all the matrix continued fractions and £+1—¢cothe g
series involved converge very rapidly, thus 10-12 downward AN=N+IN'=F———+ =—.
iterations in calculating the continued fractiof&19 and 2(¢ cote—1)  2e

11-14 terms in the serie8.6) are enough to arrive at an o pigh-field parametersée1) Eq. (4.6) also reduces to
accuracy not less than six significant digits in the Majorityihe | andau-Lifshitz equationtd.4) with wo=é(2ary) L.

cases. We remark that f@g= 0 the results are considerably Equation(4.7) was derived foré#0, =0 only. However

S|_mpl|f|eq since Eq(2.28 r_educes_, to ascalar three-term_ on noting that\ is the effective eigenvalue for the equilib-
differential-recurrence relation which has the exact solutlorhum autocorrelation functiori; (t) as well, Eqs(4.6) and

; ; : i1 d0,12
in terms of ordinary continued fractions®!? The present g_n can readily be generalized far~0 and/oro<¢ as

(4.7)

method of solving scalar three-term recurrence relations is llows. According to Eq.(2.25, the first equation of the
particular case of the matrix one. It has been describe finite hierarchy is '

elsewher& % for similar problems and may readily be ad-
justed to suit the problem under consideration.

Having determined the exact solution, we may now cal-
culate dispersion and absorption plots as well as evaluate the  — f ,(t)+
accuracy of various approximate solutions which have been dt =
already presented. As we have already mentioned in the In- o
troduction, most analytical results were obtained by the ef- + — f34(t)=0. 4.9
fective eigenvalue method. For example, on applying this 15 =
method foré=0, o+ 0, Rakher and Shliom#& derived an
expression fory, (w) which in our notation is

3
326

1+i§+0
2a ' 5

fr()+ fo4(0)

The effective eigenvalue approach implies that the solution
of Eq. (4.8) is approximated by a single exponential, namely,
X (@) ] I N P ws fbi}l(t) =f14(0)e” ™ with the effective eigenvaluk given

X1 B Notiory) (N tioTy) +A’

whereA=oa ?(\;—1). Here\,,\, are the effective ei-

genvalues which can be expressed in terms of equilibrium flyl(O) i& o [ioc &)\ f,40)
values of the Legendre polynomial of ordefR5), viz. =- f1400) = Z+ e m
! 20 f34(0)
115 (Pa)o 20+(P,)o(0—6) 157, 40) (4.9
M=y, M T 3Ry (4.2 o
ith i 270 Equation(4.9) can be simplified after some algebra to yield
wit
3e” 3 1 2+(P,) 3(P,)
<P > 7 5 (43) N i\ — 2/0 . 1/0
7 2w effiVo) 40 2 MNP0 T Zal (Pt 1O
For high potential barrierso>>1) when where(P,)y and(P,), are given by Egs(3.11) and(3.12,
MN~0, Ay~0, A~o2a 2 respectively. Foo=0, Eq.(4.10 reduces to Eq(4.8) since

in this case
Eq. (4.1) reduce® to the ferromagnetic resonance equation

of Landau and LifshitZ (P1>0=coth§—§‘1, <p2>0:1_3§—1(c0t|~§_g—1)_
o 2. (4.11
X (w) (1+ a”)wytiawwg
Y. = (1+ az)wg—w2+2iaww0' (4.4 The genera_liza_tion c_)f the I%ehgr and Shliomis resuﬁ%_for
£#0, £<o is given in Appendix B. Moreover, for arbitrary
where ¢ and o and large dampingwhen one may ignore preces-
4 sional motion the transverse spectrum may effectively be
wo=0(a7y) "~7yHan, (45 described by the Debye relaxational equatfon
andH,_,=2K/Mjy is the strength of the anisotropy field.
Furthermore, on using the effective eigenvalue method in X1 (@) _ 1 (4.12

the opposite limite=0, £#0, Garanin, Ischenko, and x.  ltiery/\"’
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£=10, 6=10 0=0.1, £=0.01
0.2 - . ]
1-0=2 :
2-a=05 :
3-0=0.1 4 5 :
o1 4-0=0.05 :
e Y B | RS E
~ B
Y :
- e 3 s
-4 ; 5 B
-0.1 _‘ ......................... ............

i n ] 02 i ; L] H
0 1 2 4 0 1 2 3
log (w7 )
10 N IOg IO((DTN)

FIG. 1. The real part of, (w) (solid lineg vs log,(wry) for
0=10 and (=10 and various values ok. Filled circles are the
overdamped effective eigenvalue solution from E¢612 and

(4.13.

FIG. 3. Comparison of the exa¢solid lineg and effective ei-
genvalugffilled circles, Eqs(2.31) and(B7)] solutions for the real
part of x, (7) vs logg(wmy) for =0.1 andé=0.01 and various
values ofo.

where)\’ is the effective eigenvalue which can also be ex-

, ) seem to be available. Some theoretical estimationsyiéld
pressed in terms gfP,), from Eq.(3.12), viz. [cf. Egs.(4.2)

values of order of 0.01-0%.The comparison of the effec-

and(4.10] tive eigenvalue solutiod3!®?!with the exact results allows
1+ 12Py)q us to estimate the accuracy of the former. In Figs. 1 and 2 the
N = 7 (4.13  results of the exact calculations are compared with the over-

1-=(P2)o damped solution Eq(4.12.° In Figs. 3 and 4 the exact

calculations are compared with the solution ofilkkeer and

It should be noted that Eq$4.10 and (4.13 are valid for ~ Shliomis?? It is obviously by inspection of these figures that
any uniaxial potentiaf'® both solutions are in agreement fer=0 and foro>1 only.

Typical spectra of the real and imaginary partsyof{ ) However, in the most interesting range of the barrier height
are shown in Figs. 1—@he calculations were carried out for parameterc~1-5, the effective eigenvalue approach fails
V2M§N0/kT= 1). The relaxational behavior of the spectrato describe the transverse response. The explanation appears
x. (w) is obtained for a small anisotropy and field param-to be as follows: at small to moderate barrier heightse is
eters ¢ o0~0) or large damping. s expected at small essentially a spread of the precession frequencies of the
damping the spectra have a pronounced resonant charactemmagnetization in the anisotropy fiel@io a certain extent this
and strongly depend on the damping parametdiFigs. 1  effect is analogous to inhomogeneous broadening and con-
and 2. However, the value of remains unknown. Methods siderably exceeds the true dampiidherefore, it is practi-
of experimental and theoretical estimations @fvere dis-  cally impossible to describe asymmetric absorption and dis-
cussed, e.g., in Refs. 21, 22, and 26, but no experimental data

a=0.1, £=0.01

£-10, 610 ' ' 5 ' 5

logm(-lmxl)

log . 0(-Im xl)

1OgIO(wTN)
10g10(w1!\/)

FIG. 4. Comparison of the exa¢s$olid lineg and effective ei-
FIG. 2. log o — Im{x, (w}) (solid lineg vs log,( w 7y) for =10 genvalue[filled circles, Eqs.(2.31) and (B7)] solutions for logg
and £&=10 and various values of. Filled circles are the over- (—Im{x, (w}) vs log(wry) for @=0.1 and£=0.01 and various
damped effective eigenvalue solution from EGE12 and(4.13. values ofo.
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os a=0.1, 6=0.01 sible to arrive at erroneous results as clearly demonstrated in
‘ ! | ' ! Figs. 3 and 4. We remark that for the longitudinal relaxation
the effective eigenvalue approach has a restricted range of
validity and is applicable for low barrier heightsr€1)
_________________________ only.
"""""""" 8 Thus, the transverse response of an ensemble of noninter-
acting single domain particles can be evaluated fromethe
act equation(3.6). Furthermore, we demonstrated that the
effective eigenvalue approach which yields simple analytical
expression$Egs.(4.1), (4.6), (4.10, (4.12, (B6)], describes
the main features of the transverse complex susceptibility
; ; i with the exception of the range of intermediate barriers
04 - i . i . ; . ~1-5 andé<1, where there exists essentially a spread of
; the precession frequencies of the magnetization in the anisot-
log,((@r,)) ropy potential field. In order to derive these results we have
assumed that all particles are identical. This assumption is
FIG. 5. Comparison of the exacsolid lines and effective ei-  practically never fulfilled in an experiment. In order to take
genvaludfilled circles, Eqs(4.6) and(4.10] solutions for the .real into account the polydispersity of the particles one must also
part of x, (@) vs logi(wy) for «=0.1 ando=0.01 and various  ayerage the susceptibility over appropriate distribution func-
values of¢. tions (e.g., over that of particle volumpsHowever, as dem-
onstrated by Shliomis and Stepafbsuch averaging does
not substantially alter the transverse susceptibility in contrast

. by th  sinal h't the longitudinal one where the averaging may consider-
persion curves Dy the usual single resonance spectrum Wiy, change the spectrum. In order to simplify the theory we

is predicted by the effective eigenvalue approach. However,ue 4150 assumed throughout that the constant magnetic

in the high barrier limit ¢>1) when the anisotropy poten- fie|q 1 'is applied along the easy axis of the magnetization.
tial may be approximated by a harmonic potential the systeMy/hen H, is at an arbitrary angle to that axis the theory

may be e_ffe_ctively describe_d by a single resonance with th?)ecomes very much more complicafédhe results of such
characteristic frequency, given by Eq.(4.5. On the other calculations of the transverse response are described in Ref.

hand, foro~0 andforo<¢ the effective eigenvalue ap- 35 Equationg4.6) and (4.7) were first derived in Ref. 33.
proach providesjust as for the longitudinal relaxatiéh

perfect correspondence with the exact solufiomall values
of the field paramete€ (see Figs. 5 and)6since we now
have the natural resonance with the angular frequengy

=¢&(2ay) "t Thus, when the external magnetic field con-  The partial support of this work by the Russian Founda-
siderably exceeds the anisotropy field or the anisotropy fielgion for Basic ResearctGrant No. 96-02-16762) and the

is close to zero, the effective eigenvalue method accuratelgorbairt Research Collaboration Fund is gratefully acknowl-
describes the transverse relaxation. However, when the infligdged.

ence of a constant magnetic field is negligible, the effective
eigenvalue method requires careful investigation of the range
of its applicability before proceeding. Otherwise, it is pos-

v
o g
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APPENDIX A

=01, 6=0.01 Noting that the rule for changing of variables in Stra-
i ' ) tonovich differential equations is the same as in ordinary
analysis?’ the equation of motion for an arbitrary differen-
tiable functionf({£}) may be obtained by cross multiplying
ith Eq.(2.10 by of ({&(1)})/9¢&; , respectively, and then sum-
ming them. Thus, we obtain a stochastic equation for

fd&M}:

lo gw(-l m ;(_L)

d d
gt TEEON=h(ED}LD S 1GEDY)

0
+0i; (€D}, 9E fAEODT;(L). (A1)

logm(wrN)

FIG. 6. Comparison of the exa¢solid lineg and effective ei-
genvalue[filled circles, Egs.(4.6) and (4.10] solutions for log,  From a mathematical point of view the stochastic differential
(—Imfx, () vs log(wry) for «=0.1 ando=0.01 and various equation (A1) [just as Eq.(2.10] with the &-correlated
values of¢. Langevin forcesI';(t) is not completely definet’® The
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most satisfactory interpretation of E¢2.10 and(Al) is as t+r af({&(t")})
the stochastic integral equatidfts? fét+ )= f({x})+ft hi({€(t) 1t )T

thr oo otdEny) o
+Jt gij &)}t )ﬁ—girj(t )dt’.
(A3)

t+7 H H H
+J g (EHLUHT()dt,  (A2) On supposing that the integrands in E¢52) and (A3) can
be expanded in Taylor series, we obtain

t+7
§(t+7)=x+ ft hi{£(t")},t")dt’

t+7 t+ t+7
§i(t+7):Xi+ft hi({x},t’)dt’+f [&(t)— Xk] h({x}t ydt’ +f gij({x}-t,)rj(t,)dt,+ft [&(t") = %]

Jd
Xa_xk gij({x},t")I(tHdt" +--- (A4)
t+7
f(eces =1+ [ g T ars [T g -xg o {h({ x4 }}
t+7 t+
+ft gij ({x3,t') ({ }) Iy(t)dt’ +f [&(t") =X [g., ({x}.t") k! })}r,-(t')dw--- :
(A5)
On substitutingé, (t') — x, from Eq. (A4) into Eq. (A5) we iterate
t+7 9 ’
feces mp=tcoart [ T g [T o) T [ earar
e g At xh] v oo [ ({ X /
+Jt 07_)(k Xy, IX; jt gkn({x}at )Fn(t )dt dt +Jt gl]({ }t ) I (t )dt
tvr 9 | of '
+Jt s gi;({x},t") ;i)l(})}l“j(t)’ﬁt h ({x},t")dt"dt’
tvr g | of '
+ft o, | 9t ;{x).(}) Li(t") f: (X, )T () dt"dt + - (AB)

Then averaging EqA6) with account of the propertie®.11) and retaining only the terms of the order nfwe have

- thr J thr g J ¢
f(etr I =f({x)+ f M(9.) 2 (X +20 3, f o) S 10 f Gl X))

X 8(t' —t")dt"dt’ +o( 7). (A7)

After obvious transformations in E§A7), we obtain

f t+ —f d d d
e T)j) ({X})=hi<{x},t+7®§&)>Kf({x}>+ng,»({x},t+705,?) Xk[gij<{x},t+r®ffk>>7f({x}>}+o(1>,

(A8)

where® ([} are constants (@0 {)<1). Here we have also used the property of &nction

b
y(b)=2L1 S(b—x)y(x)dx.

Taking the limit7—0 in Eq. (A8), we have Eq(2.13.
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APPENDIX B

The application of the effective eigenvalue approach at
£+0, £€<o requires two effective eigenvalues for the first

two equations of the infinite hierarchy E@.25, since the
resonance arises here due to the coupling betweg) and

YU. P. KALMYKOV AND W. T. COFFEY

i

o\ 15
fs,l(t):()\iﬁ—l—z—g 5o fu® (B9

[in accordance with EqB3) the equality(B5) is assumed to
be valid at any time]. We note that in the limit,c—0 the

f,4(t) (this behavior is termed “entanglement” of the dipole effective eigenvalues have the following behavior:

and quadrupole branches of the response bkia and

Shliomis.?? Thus we obtain the set of coupled equations,

VIZ.

f,1(t)=0, (B1)

d ic ¢
™ gt fl,l(t)+)\iﬁf1,1(t)+(£+ 5

£ 0| ¢
P ;) +5(f2aV)

d
™ gt f2,1<t>+x§“fz,1<t>—3{<1—xiff>

= O,
where the effective eigenvalues are given by
1§

2a 5 15F,40)

&€ 1 3 [20—&P1)o
E_TLE(W
i& &

=5 1ot

(B2)

(o 20 f3'1(0)

ff
AT=14

i€
=5 ) (B3)
eff_i_g g
A5 —2a+3 7

120 £44(0)
'35 f,4(0)

20(P1)o—&(P2)o }
E((P2)o—1)+3(P1)o)’
Here(P,)o and(P,)q are given by Eqgs(3.11) and(3.12),
respectively. At the derivation of EqB2) we have taken
into account that

(B4)

F3 o 8d° 4¢é
eff _ > L
Mot st st s
i& o 160° 80é&?
eff _ > _
A2 2a+3 7+ 147+ 441+ :

On applying the one-sided Fourier transform to E@&L)
and(B2), we can solve the set of linear equations so obtained

for 1 4(iw) yielding

Trqio) A +iwry) -6 5
f1100)  A+Hion)A\+iory)+A’ (B9
where
(& o € Q) €
A= §+; [(1_)\1 )(;4‘; +§, (B7)
_ ¢ o fz,l(o)_ 3 [ 3<P1>0
5‘<€+£) f1,1<0>‘(E+Z)(1—<Pz>o_§)'
(B8)

On substituting Eq(B6) into Eq. (2.31), we can evaluate
x . (w), which até=0 reduces to Eq4.1).

* Author to whom correspondence should be addressed.

L. Néel, Ann. Geophys(Francé 5, 99 (1949.

2W. F. Brown, Jr., IEEE Trans. Magi5, 1196(1979.

3H. B. Braun and H. N. Bertram, J. Appl. Phy&5, 4609(1994.

4C. P. Bean and J. D. Livingston, J. Appl. Phys. Sug3gl. 1205
(1959.

5L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetuni@ 153
(1935.

57. L. Gilbert, Phys. Rev100, 1243(1956 (Abstract only.

"W. F. Brown, Jr., Phys. Revl30, 1677 (1963; J. Appl. Phys.
Suppl.30, 130S(1959.

M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phyg, 323
(1945.

9R. L. StratonovichConditional Markov Processes and Their Ap-
plication to the Theory of Optimal Contr@Elsevier, New York,
1968.

104, Risken,The Fokker-Planck Equatiorend ed.(Springer, Ber-
lin, 1989.

vy, P. Kalmykov, J. Mol. Lig.69, 117 (1996.

12w, T. Coffey, Yu. P. Kalmykov, and J. T. Waldrofihe Langevin
Equation(Singapore, World Scientific, 1996

3A. Aharoni, Phys. Rev177, 763 (1969.

15D, A. Garanin, V. V. Ischenko, and L. V. Panina, Teor. Mat. Fiz.
82, 242(1990. [ Theor. Math. Phys82, 169(1990].

6w, T. Coffey, D. S. F. Crothers, Yu. P. Kalmykov, and J. T.
Waldron, Phys. Rev. B1, 15 947(1995.

"W, T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J. Geoghegan,
Yu. P. Kalmykov, J. T. Waldron, and A. W. Wickstead, Phys.
Rev. B52, 15 951(1995.

18D, A. Garanin, Phys. Rev. B4, 3250(1996.

Bw. T. Coffey, P. J. Cregg, and Yu. P. Kalmyka&kdvances in
Chemical Physigsedited by I. Prigogine and S. A. Ri¢&Viley,
New York, 1993, Vol. 83, pp. 263-464.

20\ T. Coffey, Yu. P. Kalmykov, and E. S. Massawfavances in
Chemical Physigsedited by I. Prigogine and S. A. Ri¢&Viley,
New York, 1993, Vol. 85, Part 2, p. 667.

2lyu. L. Rakher and M. I. ShliomisAdvances in Chemical Phys-
ics, edited by W. T. Coffey, I. Prigogine, and S. A. Ri¢#iley,
New York, 1994, Vol. 87, p. 595.

22Yu. L. Raikher and M. I. Shliomis, Zh. Eksp. Teor. Fi&7, 1060
(1974 [ Sov. Phys. JETRO, 526 (1974)).

Yy, L. Rakher and V. |. Stepanov, Zh. Eksp. Teor. Fi02,
1409(1992 [ Sov. Phys. JETH5, 764 (1995].

24w, T. Coffey, J. L. Dgardin, Yu. P. Kalmykov, and S. V. Titov,
Phys. Rev. B54, 6462(1996.

14E. C. Stoner and E. P. Wohlfahrt, Philos. Trans. R. Soc. London?®J. L. Ddardin, P. M. Dgardin, and Yu. P. Kalmykov, J. Chem.

Ser. A240, 599(1948.

Phys.106, 5824(1997).



56 TRANSVERSE COMPLEX MAGNETIC SUSCEPTIBILIY . .. 3337

26|, Klik and L. Gunther, J. Stat. Phy80, 473(1990. 208, 462 (1994.

27C. W. GardinerHandbook of Stochastic MethoBpringer, Ber- M. I. Shliomis and V. I. Stepano\Advances in Chemical Physics
lin, 1985. (Ref. 21, Vol. 87, p. 1.

2Handbook of Mathematical Functionedited by M. Abramowitz ~ 32W. T. Coffey, D. S. F. Crothers, J. L. Dormann, L. J. Geoghegan,
and |. Stegur{Dover, New York, 196% J. T. Waldron, and E. Kennedynpublishegl

2A. R. Edmonds,Angular Momentum in Quantum Mechanics *°R. S. Gekht, V. A. Ignatchenko, Yu. L. Rduer, and M. I. Shlio-
(Princeton University Press, Princeton, 1857 mis, Zh. Eksp. Teor. FiZ70, 1290(1976 [Sov. Phys. JETR3,

30W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, Physica A 677 (1976].



