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We study the real-time dynamics of a quantum Ising chain driven periodically by instantaneous
quenches of the transverse field (the transverse field varying as rectangular wave symmetric about
zero). Two interesting phenomena are reported and analyzed: (i) We observe dynamical many-body
freezing (DMF) [1], i.e. strongly non-monotonic freezing of the response (transverse magnetization)
with respect to the driving parameters (pulse width and height) resulting from equivocal freezing
behavior of all the many-body modes. The freezing occurs due to coherent suppression of dynamics
of the many-body modes. For certain combination of the pulse height and period, maximal freezing
(freezing peaks) are observed. For those parameter values, a massive collapse of the entire Floquet
spectrum occurs. (ii) Secondly, we observe emergence of a distinct solitary oscillation with a single
frequency, which can be much lower than the driving frequency. This slow oscillation, involving
many high-energy modes, dominates the response remarkably in the limit of long observation time.
We identify this slow oscillation as the unique survivor of destructive quantum interference between
the many-body modes. The oscillation is found to decay algebraically with time to a constant value.
All the key features are demonstrated analytically with numerical evaluations for specific results.

I. INTRODUCTION

Dynamics of driven quantum many-body system is
an emerging paradigm for studying and unveiling new
quantum phenomena. Last few years have witnessed a
surge of theoretical endeavors in understanding dynamics
of quantum many-body systems under simple drivings.
A major part of these recent activities is concentrated
around quantum quenches, leading to several interesting
and novel issues including (but not limited to) univer-
sal quench dynamics across quantum critical points – as-
sociated quantum Kibble-Zurek mechanism, physics of
non-equilibrium excitations, and the physics of thermal-
ization in quantum systems (see for a review, Ref.[2]; and
C. de Grandi et. al., S. Mondal et. al., and U. Divkaran
et. al, in Ref.[3] and references therein). The main fo-
cuses of these studies, e.g., the final defect density in a
quantum quench, or the effective temperature in a ther-
malized system, however, are insensitive to the details
of the quantum coherence of the underlying many-body
dynamics. For example, the dynamical idea behind quan-
tum Kibble-Zurek mechanism [4] is a robust translation
of the classical Kibble-Zurek idea [5] to quantum systems
– of course, the origin of the relevant length scales and
time scales are different.

Here we focus on another important class of driven
quantum non-equilibrium phenomenon, where quan-
tum coherence plays the central role. Though non-
adiabaticity is a common covering for all interesting non-

equilibrium phenomenon, here coherent quantum me-
chanical suppression of dynamics contributes crucially to
the non-adiabaticity of the dynamics which makes the re-
sulting response behavior difficult to explain using classi-
cal intuitions. We discuss dynamics of periodically driven
quantum many-body system. Coherent periodic driv-
ing can give rise to surprising phenomenon in quantum
many-body system, that counters our classical intuitions
drastically [1]. The role of quantum coherence in the im-
portant context of superfluid-insulator transition realized
in periodically driven optical lattice was demonstrated
earlier [6, 7]. Owing to the experimental break-through
in attaining long coherence time in quantum many-body
systems in last decade, for example, within the frame-
work of atoms/ions in optical lattices and traps, this
coherent regime is becoming more and more accessible
experimentally (see, e.g., [8–12]). Here we study the co-
herent dynamics (Schrödinger dynamics at zero temper-
ature) of a simple paradigmatic system - the transverse
Ising chain [13] subjected to a train of rectangular pulses
of the transverse field. Two interesting phenomenon are
reported – both purely quantum mechanical in origin and
are results of coherent many-body dynamics.

It has been observed recently that a class of inte-
grable quantum many-body systems exhibit the phe-
nomenon of dynamical many-body freezing (DMF), i.e.
non-monotonic freezing behavior of all the many-body
modes when driven externally by varying a parameter
in the Hamiltonian continuously [1]. The said freezing
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behavior is counter-intuitive to the “classical” picture of
a driven system falling out of equilibrium. The classi-
cal behavior arises from competition of two timescales:
the driving period and the relaxation time of the sys-
tem (see, however, [14]). In contrary to the expected
monotonically increasing freezing behavior of the system
with respect to the driving frequency according to that
picture, we observe strongly non-monotonic freezing be-
havior, with maximal freezing for certain combination of
driving amplitude and frequency. A related phenomenon,
observed in context of a single particle localized in a pe-
riodically driven potential – known as dynamical local-
ization, or synonymously, coherent destruction of tunnel-
ing (CDT) is well studied [15–19]. In [19], interestingly,
it has been shown in the context of periodically driven
BEC, that the driving can lead to steady BEC-like states
which are different from the equilibrium ground state of
the undriven Hamiltonian. Above findings motivate us
investigating such phenomenon in a pulse driven many-
body system, where, instead of a smoothly varying driv-
ing rate, we have sequences of instantaneous quenches
and subsequent waiting times. Here we observe DMF,
confirming the generality of the phenomenon beyond si-
nusoidal driving. We deduce the exact condition for the
maximal freezing analytically and explore other charac-
teristics of the freezing phenomenon.
In addition to DMF, we observe another interesting

phenomenon away from the freezing peaks. In the limit of
long observation time, we see spectacular dominance of a
single long-lived oscillation (with frequency much smaller
than the driving frequency) in the response dynamics.
Surprisingly, this happens even in the limit of strong and
fast driving (pulse amplitude and frequency much larger
than the inter-spin coupling). We discuss the origin and
nature of this intriguing quantum oscillation.

II. THE MODEL AND THE DYNAMICS

We quench the transverse field Γ from +Γ0 to −Γ0

and back in successive time intervals of duration T in a
transverse Ising chain Hamiltonian:

H = −J
N
∑

j=1

sxj s
x
j+1 − Γ(t)

N
∑

j=1

szj , (1)

where the field Γ(t) varies like a square-wave with period
T at t = 0 :

Γ(t) =

{

Γ0 for nT < t < (n+ 1

2
)T

−Γ0 for (n+ 1

2
)T < t < (n+ 1)T

(2)

with n = 0, 1, 2, · · · and Γ0 > 0. We set the energy scale
by taking J = 1. In order to investigate the dynamics in
this case, first we diagonalize Hamiltonian (1) for a given
value of Γ by Jordan-Wigner transformation followed by
Fourier transform [20]. This transforms the Hamiltonian
(1) into a direct-sum of Hamiltonians of non-local free

fermions of momenta k. The Hamiltonian preserves the
parity of the fermion number (even/odd) and the ground
state always lies in the even-fermionic sector. We work
with the projection of the Hamiltonian in this sector,
given by

H =
⊕

k>0

Hk; (3)

Hk = (−2i sin k)
[

a†ka
†
−k + aka−k

]

− 2(Γ + cos k)
[

a†kak + a†−ka−k − 1
]

,

where k = (2n+1)π/N ; n = 0, 1, ..., N/2−1. The ground
state of Hk is a linear combination of the fermionic oc-
cupation number basis states |0〉k = |0k, 0−k〉 (both ±k
levels unoccupied) and |1〉k = |1k, 1−k〉 (both ±k levels
occupied), and the Hamiltonian does not couple them
with the two other basis states |0k, 1−k〉 and |1k, 0−k〉.
Hence starting with ground state, the dynamics always
remains confined within a manifold which is the direct
product of the 2−dimensional subspaces spanned by |0〉k
and |1〉k. We denote the eigenstates of Hk within this
subspaces as |(Γ, k)−〉 (ground state), and |(Γ, k)+〉, with
eigenvalues −λ(Γ, k), λ(Γ, k), where

λ(Γ, k) = 2
√

Γ2 + 1 + 2Γ cos k (4)

|(Γ, k)−〉 = i cos θ|1〉k − sin θ|0〉k (5)

|(Γ, k)+〉 = i sin θ|1〉k + cos θ|0〉k (6)

tan θ =
− sin k

Γ + cos k +
√
Γ2 + 1 + 2Γ cos k

. (7)

We now solve the Schrödinger equation

i~
∂|ψk〉
∂t

= Hk|ψk〉, (8)

where the wave-function in the time-dependent energy
eigen-basis may be expressed as

|ψk〉 = x−(t)|(Γ, k)−(t)〉+ x+(t)|(Γ, k)+(t)〉. (9)

If Γ(t) is constant (say, Γ0) over a time interval t0 to t,
then we have

x±(t) = x±(t0) exp

{

∓ i

~
(t− t0)λ(Γ0, k)

}

. (10)

At time t = 0 let the system be in a state

|ψk〉 = α|(Γ0, k)−〉+ β|(Γ0, k)+〉 (11)

with |α|2 + |β|2 = 1. Then according to Eq. (10) at t =
T
2
−ǫ (where ǫ is a small positive number), the coefficients

are given by,
(

x−(
T
2
− ǫ)

x+(
T
2
− ǫ)

)

=

(

eiµ1 0
0 e−iµ1

)(

α
β

)

, (12)

where

µ1 =
T

2~
λ(Γ0, k). (13)
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Using the continuity of |ψk〉 at t = T
2

one obtains the

wave function at t = T
2
+ ǫ in terms of |(−Γ0, k)−〉 and

|(−Γ0, k)+〉. Time evolution in the second half proceeds
in the same way as in the first half and the transformation
over one full cycle is given by,

(

x−(T + ǫ)
x+(T + ǫ)

)

= Uk

(

α
β

)

(14)

where,

Uk =

(

cosφ − sinφ
sinφ cosφ

)(

eiµ2 0
0 e−iµ2

)

(15)

×
(

cosφ sinφ
− sinφ cosφ

)(

eiµ1 0
0 e−iµ1

)

.

Here

µ2 =
T

2~
λ(−Γ0, k) and φ = θ1 − θ2 (16)

where θ1, θ2 are the values of θ (as defined in Eq. (7))
for Γ = +Γ0, −Γ0 respectively.
During the first half-cycle after n full cycles, at a time

t = nT + τ with 0 < τ < T
2
, the coefficients are given by,

(

x−(nT + τ)
x+(nT + τ)

)

=

(

eiµ3 0
0 e−iµ3

)

Un
k

(

α
β

)

(17)

where µ3 = τ
~
λ(Γ0, k). Similarly, during the second half-

cycle after n full cycles, at a time t = nT + T
2
+ τ , the

coefficients are given by,

(

x−(nT + T
2
+ τ)

x+(nT + T
2
+ τ)

)

=

(

eiµ4 0
0 e−iµ4

)

(18)

×
(

cosφ sinφ
− sinφ cosφ

)(

eiµ1 0
0 e−iµ1

)

Un
k

(

α
β

)

where µ4 = τ
~
λ(−Γ0, k).

Transverse magnetization Mz (per spin) at any time is
given by,

Mz = −1 +
4

N

π
∑

k=0

Mk = −1 +
2

π

∫ π

0

Mk dk (19)

where Mk = 1

2
〈ψk|

(

a∗kak + a∗−ka−k

)

|ψk〉. From Eqs. (5,
6),

Mk = | (x− cos θj + x+ sin θj) |2 (20)

with j = 1, 2 according as we are in the first or second
half-cycle respectively.
In order to calculate Un

k , giving the time-evolution af-
ter nth cycle, we note that for any 2× 2 matrix,

U2
k = −(TrUk)1+ (detUk)Uk

This shows that one can write

Un
k = an1+ bnUk (21)

The recursion relations for an and bn can be easily solved
to get

an = −bn−1 and bn = sin(nωk)/ sinωk. (22)

where cosωk = cos(µ1 + µ2) cos
2 φ+ cos(µ1 − µ2) sin

2 φ.
The expressions bn are the Chebyshev polynomials of the
second kind in cosωk.

III. DYNAMICAL MANY-BODY FREEZING
(DMF)

The system is initially (t = 0) in the ground state of the
Hamiltonian with Γ = +Γ0, before it is driven by the
pulses. We have computed the magnetization numeri-
cally at any time (within a cycle) by obtaining x− and
x+ from Eqs (17, 19), substituting them in Eq. (20) to
getMk and then integrating it using Eq. (19). The result
is presented in Fig. 1. Frame (a) and (b) shows that the
response, i.e., the transverse magnetizationMz which re-
mains localized somewhere close to its initial value for all
time. In other words, the response retains the memory
of the breaking of the Z2 symmetry in transverse direc-
tion by the polarized initial state through all later time,
though the symmetry is respected by the driving over
each complete cycle. The degree of symmetry-breaking
is given by the long-time average of Mz:

Q = lim
Tf→∞

1

Tf

∫ Tf

0

Mz(t)dt (23)

Q is also a measure of non-adiabatic freezing - if a driv-
ing were adiabatic, the resulting response would always
follow the field (i.e., trace the instantaneous ground state
value of the response) and thus would preserve the sym-
metry of the Hamiltonian over a period. The maximum
amplitude of oscillation ofMz also determines the degree
of freezing.
It is clear from Fig. 1 that for a given value of Γ0, the non-
adiabatic freezingQ is a strongly non-monotonic function
of T . When the condition

Γ0T

~
= π, 2π, 3π · · · , (24)

is satisfied the freezing attains a maximum (Q shows a
peak), as shown in Fig. 1(b) and 1(c). Naively speaking,
for a given Γ0, if T is made larger, there is more time for
system to react to the successive flips made, and hence
the response is expected to be more adiabatic (smaller Q
and bigger response amplitude). This classical intuition
clearly does not hold in this case, as the freezing (Q and
response amplitude) is strongly non-monotonic in T for
a given Γ0 (Fig. 1 a). Strong maximal freezing of the
entire many-body system (Q peaks) observed for isolated
points in the parameter space is also a surprising non-
classical feature of DMF, arising from coherent quantum
dynamics [1].
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FIG. 1: The dynamical many-body freezing (DMF) behavior of the resulting response. (a) Variation of Mz with t for different
p(p = Γ0T

π
) for Γ0 = 20. (b) Variation of Q with 2π/T for Γ0 = 20. (c) Variation of Q with p for different Γ0. Maximal

Freezing are seen for integer p. (d) Magnetization after 100th and 1000th cycle at different Γ0 for T = 0.1. (~ = 1)

In order to derive the extremal freezing condition (24),
we set τ = 0 and evaluate Mk(t = nT ) as a function of
n. Thus, we are basically looking at the start of every
oscillation. Also, we assume that initially (at t = 0) the
system was in the ground state for the transverse field at
that moment. Thus, we set α = 1, β = 0 in Eq. (17),
use Eq. (21) there and obtain x−(nT ) and x+(nT )which
is then substituted in Eq. (20). The result is

Mk = Ak +Rk cos(2nωk + δk) (25)

where

Ak = cos2 θ1 + gkfk, (26)

R2
k = g2k

[

f2k + sin2(2θ1) sin
2 µ1 sin

2 ωk

]

,

tan δk =
1

fk
sin(2θ1) sinµ1 sinωk

with

fk = sin(2θ1) sinµ1 cosωk + sin(2θ2) sinµ2 (27)

gk = sin(2φ) sin(µ2)/(2 sin
2 ωk) = |U12|/(2 sin2 ωk)

and

ωk = cos−1
[

cos(µ1 + µ2) cos
2 φ+ cos(µ1 − µ2) sin

2 φ
]

(28)

From Eq. (20) and (25) we see, the non-adiabatic freezing
parameter Q (Eq. 23) is given by

Q = −1 +
2

π

∫ π

0

Akdk (29)

Now, for large Γ0, from Eqs. (13) and (16) we get

φ = −π
2
+

sin k

Γ0

+O
(

1

Γ3
0

)

, and (30)

µ2 =
Γ0T

~

[

1− cos k

Γ0

+O
(

1

Γ2
0

)]

The off-diagonal elements of the transfer matrix Uk be-
comes then,

U12 = ie−iµ1 sinµ2 sin 2φ (31)

= −i.e−iµ1

[

sin

(

Γ0T

~

)

2 sin k

Γ0

+O(1/Γ2
0)

]

= −U∗
21

Hence, according to Eq. (16) if Γ0T
~

is an integral
multiple of π, Uk becomes a Identity matrix up to
terms 1/Γ0 (since µ1 ≈ −Γ0T/~ for Γ0 ≫ 1), and the
system is found at the initial state (approximately) after
each cycle. Note that the freezing occurs for any initial
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state, irrespective of whether it is an eigenstate of the
initial Hamiltonian or not. It is also consistent with
the Floquet picture of quasi-energy degeneracy (see e.g.,
[21, 22]) employed in explaining dynamical localization.
According to Floquet theory, the above time evolution
operator Uk, which induces evolution from t = 0 to
t = T , should have the general form Uk = eiMkt, where
Mk is a time independent Hermitian matrix (sharing
same dimension and space as Uk) [21], with eigenvectors
denoted by |µ1k〉 and |µ2k〉 corresponding to eigenvalues
µ1k and µ2k, which are the Floquet quasi-energies.
Now as we have shown, in our case Uk tend to the
Identity matrix up to term 1/Γ0 in large Γ0 limit, which
means both its eigenvalues eiµ1k , eiµ1k tend to unity
for every k within the said approximation, resulting
in a massive quasi-energetic degeneracy all over the
many-body spectrum – the crux of DMF. Recently,
another interesting manifestation of DMF is observed in
periodically driven bosons in optical lattice with small
amplitude driving across the tip of the Mott lobe [23].

The mechanism of DMF with rectangular driving can
be visualized appealing to the simplicity of the driv-
ing – it consists of dynamics driven by piecewise time-
independent Hamiltonians. From Eq. (32) one can
see, the dynamics (in the eigen-basis {|(+Γ0, k)±〉} of
Hk(+Γ0)) can be broken up into successive rotation of
the basis by φ (due to successive flips of the transverse
field) and intermediate accumulation of phases µ1,2 (due
to intermediate waitings of length T/2). Clearly if one
could adjust the intermediate phases µ1,2 such that their
effect is nullified for all k, in each cycle, then the system
would return very closely to it’s initial state after ev-
ery cycle for any of the eigenstates {|(+Γ0, k)±〉} as the
initial state - the eigen-state of the initial Hamiltonian
becomes Floquet states with degenerate quasi-energies
(albeit with a difference in sign, which does not matter in
this case). This happens, as explained in the paragraph
following Eq. (32), when Γ0 is large and the condition
for maximal freezing (Eq. 24) is satisfied. For small Γ0,
µ1,2 would retain strong k-dependence, and hence this
massive collapse of Floquet spectrum would not have
been possible (see Fig. 1 d). It is however worth not-
ing that this simple picture of DMF cannot be extended
in cases of continuously driven systems. For example, in
the case of sinusoidal driving, the eigen-states of the ini-
tial Hamiltonian do not tend to return to themselves as
one approaches the DMF freezing peak – they retain a
strongly k-dependent period (k is the quasi-momentum
diagonalizing the initial Hamiltonian) of oscillation which
actually diverges in the thermodynamic limit for certain
modes as the DMF peak is approached. Freezing in that
case is visualized as vanishing of the amplitude of oscil-

lation of each k mode, rather than “all k-modes coming
back to itself”. It seems massive collapse of the entire
DMF spectrum is a result of integrability of the model
and simplicity of the driving.

IV. LONG-LIVED SOLITARY OSCILLATION:
THE SURVIVOR OF DESTRUCTIVE

INTERFERENCES

Analysis of Mz(t) shows that it is dominated by a
distinct solitary oscillation in the long-time limit. The
analysis of the response reveals sinusoidal oscillations
of only two distinct timescales – one (denoted by ω0)
matches with the driving period T (as expected), while
the other, denoted by TQ (corresponding to frequency
ωQ = 2π/TQ), depends on all the driving parameters.
TQ can be much larger compared to T . In spite of the
fact that the driving has a large amplitude and high fre-
quency, and the system has several excitable energy lev-
els, we observe only one distinct non-trivial frequency in
the response.
This can be understood as follows. The transverse

magnetization Mz(t) (Eq. 19) at a time t is a super-
position of contributions Mk for all k’s (Eq. 25). For
sufficiently large n, the argument (2nωk + δk) in Eq.(25)
will be large (so that its cosine will fluctuate very rapidly
with k) while Rk will remain relatively slowly varying.
Thus the contributions from neighboring k’s will cancel
out due to destructive interference (adding up with al-
most same amplitude but rapidly varying phase) over any
small intervals of k, except those around the stationary
points of ωk (with respect to k). In the neighborhood of
its stationary points, ωk is expected to vary slowly with
k, and hence the contribution from different k′s within
such neighborhood is expected to add up constructively.
Elsewhere the contributions adds up destructively and
can hence be ignored. Thus we may write

∫ π

0

Rk cos(2nωk+δk)dk ≈ Rπ/2

∫ π
2
+ǫ

π
2
−ǫ

cos(2nωk+δπ/2)dk

(32)
By Taylor expansion of ωk about the stationary point,
we can write,

cos(2nωk+δπ/2) = cos(2nωπ/2+δπ/2) cos

(

nC
[

k − π

2

]2
)

(33)
where C = (d2ωk/dk

2)k=π/2. This finally gives,

Mz(n) ≈M0 +
a√
n
cos(nωQ + δπ/2) (34)

where,

ωQ = 2ωπ/2 = 2 cos−1
{

1− cos2 φ[1− cos(µ1 + µ2)]
}

(35)
and

M0 = −1 +
2

π

∫ π

0

Ak dk, a = Rπ/2

√

π

2C
.

Above arguments are quite generic, and variants of them
can be found in different other contexts (see, e.g., [24]).
Survival of few such distinct oscillations of very long
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FIG. 2: Features of magnetization obtained by numerical integration of Eqs. (25) and (19). (a) Oscillations of two distinct
time-scales are observed in Mz(t). In addition to the expected one with period T (matching to the driving), there is an
additional longer time-scale prominently visible. (b) Fourier transform of Mz(t) showing two timescales visible in (a): two
distinct peaks at angular frequencies ωQ and ω0 are observed. The peak at ωQ = 1.822 in the Fig, matches quite well with the
estimation (1.815) from Eq. (35). While ω0 ≈ 2π/T , where T = 0.1 is the driving period. (c) Long-time behavior of Mz(t)
obtained numerically (points) and that given by Eq. fitting (34) (continuous curve) using is shown. The envelop corresponding
to the 1/

√
n decay (Eq. 34) is visible. (d) Variation of TQ = 2π/ωQ with p for T = 0.1 obtained by Fourier transform. TQ

tends to blow up (i.e., ωQ vanishing up to order 1/Γ0) at integer values p – consistent with the observed maximal freezing at
integer p. The points correspond to the values obtained from Fourier Transform and the continuous line is obtained from Eq.
(35). (~ = 1)

(compared to the driving period) time-scales was also ob-
served in an infinite-range transverse Ising model driven
periodically in time [25]. The results described in this
section are manifestation of more general results re-
garding periodically driven quantum many-body system
([26]).
We see from Eq. (35), when freezing condition (p = in-
teger) is satisfied, ωQ vanishes for large Γ0 up to terms
linear in 1/Γ0 and a→ 0,M0 → 1. Numerical calculation
of Mz (using Eqs.(17-20)) is presented in Fig.2. Discrete
Fourier Transform of Mz(t) also shows two peaks corre-
sponding to ω0 and ωQ. The value of ωQ obtained from
there matches pretty well with the analytical expression
in Eq.(35).
Though our results are demonstrated for rectangular

pulses, similar argument can be extended for other forms
of periodic drivings. The only requirements for appear-
ance of solitary oscillations (if they exist) are certain an-
alytical properties of the response, continuity of the spec-

trum, and long driving time. Hence such oscillations are
expected to appear quite generically in many-periodically
driven coherent many-body quantum system, but analyt-
ical results might not be easy to extract in all cases. An
extension of DMF for some other forms of periodic driv-
ings may be achieved following [27].
The phenomena we discussed above are result of quan-

tum coherence. Further investigations in this direction
are likely to reveal many new phenomena (see. e.g.
Ref.[28]). A natural open question is whether they are re-
alizable in real experiments, in presence of the inevitable
experimental imperfections existing within the present
day setups. Such experimental realizations would also
allow for exploring these phenomena in more generic non-
integrable systems where accurate theoretical investiga-
tions could be difficult. Experimental observation of the
above phenomena might be possible within the frame-
work of coherent quantum simulation using trapped ions
and atom in optical lattice. In particular, DMF will
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have clear signature even for very small systems con-
sisting of few spins realized in the experimental systems
above, since at the freezing peaks, all the momentum-
modes freeze independent of system-size, whereas away
from the peaks, considerable dynamics is expected for
any system-size. Coherent simulation of transverse Ising
Hamiltonian with time-dependent transverse field, which
can be varied adiabatically, has also been realized exper-
imentally. In layered linear Paul traps using 171Y b+ ions
[11], and 25Mg+ ions [12], they realized transverse field
Ising model where they can tune both spin-spin interac-
tions and transverse field with time.

V. SUMMARY

We investigate dynamics of the transverse Ising chain
under periodic instantaneous quenches of the transverse
field. We make two interesting observations -
(i) In the high amplitude (Γ0 ≫ J) and fast quenching
(T ≪ J) limits we observe Dynamical Many-body Freez-
ing – we see that the driven system freezes close to its
initial state, and the degree of freezing is a highly non-

monotonic function of the pulse amplitude Γ0 and period
T . The extremal freezing is observed for Γ0T/~ = nπ
(n = positive integers). At these freezing “peaks”, the
system remains frozen very strongly independent of its
initial state. This freezing drastically contrasts the clas-
sical notion of monotonic (with respect to the driving
rate) freezing of a system under fast periodic driving –
a faster driving would give it lesser time to react and
hence would leave it more frozen. Quantum simulation

of transverse Ising chain has already been realized ex-
perimentally – the phenomenon should be amenable to
experimental verification within the said set-up and sim-
ilar others for quantum simulation.
(ii) In the response dynamics, we observe emergence of
a single, distinct timescale TQ (in addition to the time-
scale of the driving) in the long-time limit. This dis-
tinct oscillation decays much slower than other oscilla-
tions, following a 1/

√
n (n =number of sweeps) envelop.

Dominance of a single non-trivial frequency in the re-
sponse is surprising, since the system is driven with pulses
with high (compared to the intrinsic energy scale given
by the spin-spin interaction J) amplitude and frequency.
We show that this surviving time-scale represents oscil-
lations of the non-local momentum modes lying within a
neighborhood of a unique point in the momentum space
(k = π/2 here), where the contributions from the neigh-
boring modes adds up constructively. For all other parts
of the momentum space such interferences are destruc-
tive, leading to mutual cancellation of oscillations of the
neighboring modes.

Acknowledgments: The authors are grateful to An-
dre Eckardt, Joseph Samuel and Supurna Sinha for valu-
able comments. AD acknowledges the support of U.S.
Department of Energy through the LANL/LDRD Pro-
gram. SD acknowledges financial support from CSIR
(India).

∗Correspondences should be addressed to AD (arnab-
das@pks.mpg.de).

[1] A. Das, Phys. Rev. B 82, 172402 (2010).
[2] A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalat-

tore Rev. Mod. Phys. 83 863 (2011); J. Dziarmaga, Adv.
Physics 59, 1063 (2010).

[3] A. Chandra, A. Das and B. K. Chakrabarti, Quan-
tum Quenching, Annealing and Computation, LNP 802,
Springer (2010).

[4] W. H. Zurek, U. Dorner, and P. Zoller, Phys. Rev.
Lett. 95, 105701 (2005); B. Damski, Phys. Rev. Lett.
95, 035701 (2005); J. Dziarmaga, Phys. Rev. Lett. 95,
245701 (2005).

[5] T. W. B. Kibble, Topology of cosmic domains and strings
J. Phys. A 9, 1387 (1976); W. H. Zurek, Nature 317, 505
(1985).

[6] A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett.
95 260404 (2005).

[7] A. Eckardt and M. Holthaus, EPL 80, 550004 (2007).
[8] M. Lewenstein et al., Adv. Phys 56 243 (2007).
[9] I. Buluta and F. Nori, Science 326 108 (2009).

[10] B. Kraus, Phys. Rev. Lett. 107, 250503 (2011).
[11] K. Kim et. al., New J. Phys. 13 105003 (2011); K. Kim

et. al., Nature 465 590 (2010).
[12] A. Friendenauer et. al., Nat. Phys. 4, 757 (2008).
[13] B. K. Chakrabarti, A. Dutta and P. Sen (1996), Quantum

Ising Phases and Transitions in Transverse Ising Mod-
els, Springer-Verlag, Heidelberg; S. Sachdev, Quantum
Phase Transition, Cambridge University Press (2001); S.
Dattagupta, Paradigm Called Magnetism, World Scien-
tific (2008).

[14] A. Eckardt and M. Holthaus, Phys. Rev. Lett. 101
245302 (2008); F. Pellegrini et. al., Phys. Rev. Lett. 107,
060401 (2011); S. Miyashita, H. De Raedt, and B. Bar-
bara Phys. Rev. B 79 104422 (2009); M. G. Bason et.
al., Nature Phys. 8 147 (2012).

[15] D. H. Dunlap and V. M. Kenkre, Phys. Rev. B 34 3625
(1986).

[16] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi Phys.
Rev. Lett. 67 516 (1991).

[17] M. Grifoni and P. Hänggi, Phys. Rep. 304 229 (1998).
[18] A. Eckardt et. al., Phys. Rev. A 79, 013611 (2009).
[19] E. Arimondo et. al., Adv. Atomic Mol. Phys. (in press;

arXiv:1203.1259v2).
[20] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N.Y.)

16, 407 (1961).
[21] A. Mostafazadeh, J. Phys A 31 9975 (1998).
[22] A. Eckardt and M. Holthaus, J. Phys.: Conf. Ser. 99

012007 (2008).
[23] S. Mondal, D. Pekker and K. Sengupta,

http://arxiv.org/abs/1203.1259


8

arXiv:1204.6331v2.
[24] Y. Pomeau and P. Resibois, Phys. Rep. 19, 63 (1975).
[25] A. Das, K. Sengupta, D. Sen and B. K. Chakrabarti,

Phys. Rev. B 74 144423 (2006).

[26] A. Das, (unpublished).
[27] A. Sacchetti, J. Phys. A 34, 10293 (2001).
[28] A. Das and R. Moessner, arXiv:1208.0217v1 (2012).

http://arxiv.org/abs/1204.6331
http://arxiv.org/abs/1208.0217

	I Introduction
	II The Model and the Dynamics
	III Dynamical Many-Body Freezing (DMF)
	IV Long-lived Solitary Oscillation: The Survivor of Destructive Interferences
	V Summary
	 References

