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Transverse momentum dependent parton distribution and fragmentation
functions with QCD evolution
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(Received 31 January 2011; published 23 June 2011)

We assess the current phenomenological status of transverse momentum dependent (TMD) parton

distribution functions (PDFs) and fragmentation functions (FFs) and study the effect of consistently

including perturbative QCD (pQCD) evolution. Our goal is to initiate the process of establishing reliable,

QCD-evolved parametrizations for the TMD PDFs and TMD FFs that can be used both to test TMD

factorization and to search for evidence of the breakdown of TMD factorization that is expected for certain

processes. In this article, we focus on spin-independent processes because they provide the simplest

illustration of the basic steps and can already be used in direct tests of TMD factorization. Our calculations

are based on the Collins-Soper-Sterman (CSS) formalism, supplemented by recent theoretical develop-

ments which have clarified the precise definitions of the TMD PDFs and TMD FFs needed for a valid

TMD-factorization theorem. Starting with these definitions, we numerically generate evolved TMD PDFs

and TMD FFs using as input existing parametrizations for the collinear PDFs, collinear FFs, non-

perturbative factors in the CSS factorization formalism, and recent fixed-scale fits. We confirm that

evolution has important consequences, both qualitatively and quantitatively, and argue that it should be

included in future phenomenological studies of TMD functions. Our analysis is also suggestive of

extensions to processes that involve spin-dependent functions such as the Boer-Mulders, Sivers, or

Collins functions, which we intend to pursue in future publications. At our website [http://

projects.hepforge.org/tmd/], we have made available the tables and calculations needed to obtain the

TMD parametrizations presented herein.

DOI: 10.1103/PhysRevD.83.114042 PACS numbers: 12.38.Bx, 12.39.St, 12.38.Cy, 12.20.Ds

I. INTRODUCTION

The factorization theorems of perturbative QCD
(pQCD) have been instrumental in the successful applica-
tion of QCD theory to phenomenology. The standard col-
linear factorization formalism [1] makes use of
‘‘integrated’’ parton distribution functions (PDFs) and
fragmentation functions (FFs) which depend only on a
single longitudinal momentum fraction, while the small
momentum components, including the transverse compo-
nents, are integrated over in the definitions. The integrated
PDFs and FFs have consistent operator definitions in QCD,
with appealing interpretations in terms of parton-model
concepts. However, the standard collinear factorization
formalism relies on approximations that are only valid
for sufficiently inclusive observables. In order to address
many of the issues now at the forefront of research in QCD
and its role in hadron structure, pQCD factorization must
be extended to situations where the usual approximations
are not appropriate.

A transverse momentum dependent (TMD)-
factorization formalism goes beyond the standard factori-
zation framework by allowing the PDFs and FFs to depend
on intrinsic transverse momentum in addition to the usual

momentum fraction variables. As such, different sets of
approximations are needed in the factorization proofs. The
PDFs and FFs in a TMD-factorization formalism are re-
ferred to as TMD PDFs and TMD FFs (they are also called
‘‘unintegrated’’ or ‘‘ kT dependent’’) to distinguish them
from the more familiar integrated correlation functions of
collinear factorization. Henceforth, we will refer to TMD
PDFs and TMD FFs collectively as ‘‘TMDs.’’
The role of the intrinsic transverse momentum carried

by partons in high energy collisions is becoming increas-
ingly central in discussions of how to probe the details of
hadronic structure in high energy collisions. The useful-
ness of the TMD concept is evident from the large variety
of situations where it makes an appearance. Generally,
TMD factorization is needed to describe processes that
are sensitive to intrinsic parton transverse momentum.
The Drell-Yan (DY) process, single-inclusive deep inelas-
tic scattering (SIDIS), and back-to-back hadron production
in electron-positron annihilation at small transverse mo-
mentum are all classic examples of where TMD-
factorization formulas are frequently used. More recently,
TMD PDFs and FFs have been under intense study as
objects that carry information about the spin structure of
hadrons; the Boer-Mulders, Sivers, and pretzelosity func-
tions are all specific examples of TMD PDFs, while the
Collins function is an example of a TMD FF. For a recent
review of TMDs in spin physics, see Ref. [2]. In very high
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energy (small-x) resummation physics, where there is a
lack of kT ordering, the TMD gluon distribution is espe-
cially important, and similar issues must be dealt with.
Finally, TMD functions are useful tools in the construction
of Monte Carlo event generators, where the details of final
state kinematics are of interest.

While TMDs can potentially provide a much deeper
understanding of QCD and hadron structure, the theoretical
framework of TMD factorization is much more compli-
cated than the more standard collinear factorization. In
derivations of collinear factorization, there are important
cancellations that occur after integrations of parton mo-
mentum are carried out. With TMD factorization, the in-
tegrals over parton transverse momentum are left undone
in the definitions of the TMDs, and contributions that
would ordinarily cancel in a collinear factorization treat-
ment must be accounted for. Collins, Soper, and Sterman
(CSS) constructed a TMD-factorization formalism [3–5]
that deals with the main complications of transverse mo-
mentum dependence, and provides a systematic treatment
of pQCD over the full range of transverse momentum. The
CSS formalism has proven highly successful in specific
phenomenological applications such as in the calculation
of the transverse momentum distributions in DY processes
(see, for example, [6,7]), and is also well suited for the
production of back-to-back particles in eþe� annihilation.
The same methods are needed for the discovery of new
particles like the standard model Higgs boson [8–10].
Furthermore, extensions of the CSS TMD-factorization
formalism have been derived for SIDIS [11–13], and in-
cluding spin in Ref. [14].

However, the most common methods for applying the
CSS formalism are not ideally suited for studies that are
specifically oriented toward understanding the TMD PDFs
and TMD FFs themselves. Furthermore, the relationship
between the full pQCD treatment of factorization and
parton-model intuition has remained much less clear in
TMD factorization than in collinear factorization. This has
led to considerable confusion about how the study of
TMDs should be approached in pQCD. That confusion is
especially apparent from a comparison between current
applications of TMD factorization and collinear factoriza-
tion: While there have been extensive programs dedicated
to parametrizing and evolving the integrated PDFs and FFs
(making them indispensable and portable tools for phe-
nomenology), a generally agreed upon framework for deal-
ing with TMDs in an analogous way has not yet been
established. More disturbingly, there has been a persistent
lack of clarity or agreement regarding the definitions of the
TMDs. A suitable set of definitions must be dictated by the
requirements of factorization and universality, but the most
common and naive definitions lead to inconsistencies, in-
cluding unphysical divergences.

Over roughly the past decade, there has been steady
progress toward a better understanding of what is needed

[15–24]. The issue of finding the right definitions has now
been especially brought into focus by the recent work of
Collins [25,26]. The definitions for the TMDs in Ref. [25]
are uniquely determined by the requirements of factoriza-
tion, maximal universality, and internal consistency. (By
‘‘maximal universality’’ we mean that the same correlation
functions appear in a large number of processes.) The
confusion over definitions therefore appears to be solved.
With the new definitions, the implementation of evolution
via the CSS formalism is not modified significantly from
earlier treatments which means that existing parametriza-
tions of the nonperturbative parts can still be used.
However, they can now be understood as contributions to
separate, QCD-evolved TMDs. Moreover, as we will dis-
cuss in the next two sections, the new definitions have a
much more direct relationship with more intuitive, parton-
model based ways of viewing TMD factorization.
There has been much recent work devoted to parame-

trizing TMDs by assuming a parton-model picture of TMD
factorization and directly fitting cross section calculations
to experimental data [27–32]. This approach to TMD
phenomenology is often called the generalized parton
model (GPM) [33].
In addition, by working with nonperturbative models, it

is possible to study the general properties of the TMDs and
their relationships with each other. (See Ref. [34] and
references therein for an overview of this subject.) A
famous example is the illustration via model calculation
that the Sivers function is nonvanishing in SIDIS
[35,36].
However, most efforts to parametrize or model TMDs,

particularly the spin-dependent TMDs, have ignored the
role of evolution. For the unpolarized TMD PDFs there
have been detailed implementations of evolution (e.g.
[37,38]) However, even in the unpolarized case, the iden-
tification of the separate evolved TMDs and their relation-
ship with the fundamental definitions in a complete
treatment of factorization has remained unclear. The
main purpose of the present article is to initiate the process
of consistently including QCD evolution in parametriza-
tions and models of TMDs by following the definitions in
Ref. [25]. Addressing evolution is now an especially press-
ing task, given the very wide range of energy scales set to
be probed in experiments in the near future, from Jefferson
Lab (JLab) to the LHC. It has already been shown in
Refs. [39,40] that evolution (in the form of Sudakov sup-
pression) should be expected to be large. In our analysis,
we will illustrate how this follows from the evolution of the
individual TMDs. We also aim to facilitate the future
implementation of evolution in studies of TMDs by clar-
ifying the relationship between the parton-model descrip-
tion of TMD factorization and the CSS formalism. To this
end, we have made computations available at [41] that
illustrate how to obtain evolved TMDs given a choice of
nonperturbative starting input.
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An alternative approach to probing spin effect is to
consider higher twist collinear functions such as the
Qiu-Sterman function [42]. By taking transverse momen-
tummoments of cross sections it is possible to relate TMDs
to these higher twist functions [19]. See Ref. [43] for recent
work on the evolution of weighted spin-dependent corre-
lation functions.

Establishing reliable, evolved TMDs is also important
for testing factorization and searching for instances of
factorization breaking. Discussions of nonuniversality or
factorization breaking often bring in the concept of Wilson
lines (or gauge links), and the process dependent properties
that can be associated with them. Already when comparing
the Sivers function in SIDIS and the DY process, one must
account for a well-known sign flip that is due to the
reversed direction of the Wilson lines in these two pro-
cesses [44]. More recently, it has been shown that obtaining
consistent Wilson lines is even more problematic in
the hadroproduction of hadrons or jets (H1 þH2 ! H3 þ
H4 þ X). In such cases that require TMD factorization, it
was found that at a minimum the Wilson lines for separate
TMDs are highly complex and process dependent [45–47].
It was later shown in Ref. [48] that TMD factorization
generally breaks down completely in the hadroproduction
of hadrons. That is, separate TMDs cannot even be defined
for each external hadron regardless of what Wilson lines
are used in the definitions.

The complication in the case of the complete breakdown
of factorization is caused by a failure of the usual gauge
invariance/Ward identity arguments that are needed in a
factorization proof. A confirmation of this effect would point
to interesting new features of strong interaction physics,
given that the breakdown of factorization is in just the range
of kinematics where factorization would naively be expected
to hold. Calculations in a GPM framework [49–51] will be
needed for making predictions that can be compared with
experiment to test factorization and/or search for factoriza-
tion breaking. Furthermore, computations using the methods
in, for example, Refs. [52–54], can potentially help to
quantify and better understand the factorization breaking
mechanism. It may soon be possible to find experimental
evidence for factorization breaking, particularly in the analy-
sis of RHIC data. (See, for example, the recent analysis of
Refs. [55–58].) However, definitive tests of factorization or
factorization breaking can only become possiblewith amore
precise determination of the TMDs. Another motivation for
this article is therefore to begin the determination of TMD
parametrizations that should be used in tests of factorization
in the case of spin-independent hadroproduction of back-to-
back hadrons. Finally, in this paper we include some details
of the calculation of the evolution of the TMD PDFs that did
not appear in Ref. [25].

The paper is organized as follows: in Sec. II, a brief
background of TMD factorization is provided, and the
main complications that arise in the context of pQCD are

discussed. In Sec. III, we set up the notation, and in Sec. IV
we explain the definitions of TMD correlation functions. In
Sec. V, we discuss the evolution of the TMDs in terms of
the CSS formalism. We apply evolution to existing unpo-
larized quark TMD fits in Sec. VI, and we present some
numerical results. We conclude with an overview and a
discussion of future work in Sec. VII. In the appendices, we
provide some details of the perturbative parts of our
calculations.

II. THE DIFFERENT PICTURES OF TMD
FACTORIZATION

In this section we expand on the general remarks in the
Introduction by providing a very schematic overview of the
different ways TMD factorization is approached in phe-
nomenological applications. We discuss the relationship
between parton-model intuition and full pQCD while em-
phasizing the complications that can arise. We explain the
potential for confusion when evolution and soft factors are
included, and how this is solved by the use of fully con-
sistent definitions for the TMDs.

A. The generalized parton model

We start by considering the simplest parton-model pic-
ture of high energy collisions. There, the concept of a
TMD-factorization formula becomes very intuitive and
easy to state. The cross section is simply a partonic sub-
process, folded with TMD PDFs and TMD FFs. In SIDIS,
for example, the hadronic tensor is written as

W�� ¼ X
f

jH fðQÞ2j��

�
Z

d2k1Td
2k2TFf=pðx;k1TÞDh=fðz; zk2TÞ

� �ð2Þðk1T þ qT � k2TÞ: (1)

Here jH fðQÞ2j�� describes the hard partonic subprocess,

��q ! q, for scattering off a quark of flavor f as a function
of the hard scale Q. (It also includes any overall factors
needed to make the left side a proper hadronic tensor.) The
size of qT is a measure of the noncollinearity in the
process. Within the parton model, the TMDs Ff=pðx;k1TÞ
and Dh=fðz; zk2TÞ have simple probabilistic interpreta-

tions; Ff=pðx;k1TÞ, for example, is the probability density

for finding a quark of flavor f with momentum fraction x
and transverse momentum k1T inside the proton.
Equation (1) is closely analogous to the standard collinear
factorization theorem of inclusive processes [59]. The only
difference is that the TMD PDFs and FFs are allowed to
carry intrinsic transverse momentum.
The intuitive approach to TMD factorization embodied

by Eq. (1) forms the basis of much current TMD phenome-
nology. However, derivations of TMD factorization order
by order in real pQCD involve complications that are not
immediately apparent in parton-model reasoning. Indeed,
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some aspects of partonic intuition can quickly lead to
incorrect results if taken too literally. Furthermore, without
a complete derivation of factorization, the issue of univer-
sality (or nonuniversality) of the TMDs in Eq. (1) is much
less clear.

B. Divergences and soft factors

One issue is the appearance of extra divergences. In
addition to the standard UV divergences associated with
the renormalization of the theory, the TMD correlation
functions also contain so-called ‘‘light-cone’’ divergences.
They arise if the Wilson lines (gauge links) in the defini-
tions of the TMDs point in exactly lightlike directions. We
should note that the same light-cone singularities are not
present in the ordinary collinear correlation functions be-
cause they cancel in a sum over final state interactions,
which is possible due to integrations over the loop mo-
menta, including the kT integrals. Light-cone divergences
correspond to gluons moving with infinite rapidity in the
direction opposite the containing hadron, and are not regu-
lated by the use of an infrared cutoff, so they amount to a
real inconsistency in the definitions of TMDs. The most
naive definitions, therefore, are invalid, and modifications
are needed for a reliable factorization theorem. (See
Refs. [20,24] and references therein for a review of this
and other subtleties involved in defining consistent PDFs.)
The light-cone divergences need to be regulated, typically
by tilting the Wilson lines slightly away from the exactly
lightlike directions.

Furthermore, in a TMD-factorization formula the role of
soft gluons becomes important. (In this paper, ‘‘soft’’ refers
to nearly on-shell gluons with rapidity intermediate be-
tween the rapidities of the colliding hadrons and produced
jets.) They imply that another correlation function, a sepa-
rate soft factor, should be inserted into factorization for-
mulas like Eq. (1), in addition to the usual TMD PDFs and
FFs. Already, the appearance of a soft factor seems to
contradict the basic parton-model intuition.

The complications listed above, as well as a consistent
matching to collinear factorization at large transverse mo-
mentum, are accounted for in the CSS formalism [3–5].
With the Wilson lines tilted to remove light-cone diver-
gences, the factorization formula acquires new arbitrary
parameters. Predictive power is then recovered by a kind of
generalization of renormalization group techniques. The
resulting evolution equations may be thought of as describ-
ing the variation of the TMDs and the soft factors with
changes in the degree of tilt of the Wilson lines. Physically,
this corresponds roughly to a variation with respect to a
cutoff on the phase space available for recoil against soft
gluons.

C. Confusion over TMD definitions

While the CSS formalism has been very useful for past
phenomenological studies, the usual implementations bear

little surface resemblance to the generalized partonic pic-
ture we started out with in Eq. (1). For example, in
Ref. [38] (and similar applications of the CSS formalism
to the DY process), the effects of evolution are gathered
into separate factors, and it is not clear how they relate to
separate TMD PDFs. In other treatments (e.g., [13,60]),
factorization formulas for SIDIS are provided which con-
tain explicit evolved TMDs, but they also involve separate
explicit soft factors, and the hard part has explicit depen-
dence on light-cone divergence cutoff parameters.
Moreover, given the general observations that are reviewed
in Refs. [20,24,61], it is questionable whether the most
commonly quoted definitions of the TMDs are even fully
consistent.
The original work of Collins and Soper [3] used a non-

light-like axial gauge to regulate the rapidity divergences.
Later, Collins and Hautmann [15,16,20] proposed defini-
tions in which the main legs of the Wilson lines are light-
like, but in which there is a division by a special type of soft
factor which cancels the rapidity divergences. However,
these definitions continue to suffer from problems, includ-
ing the appearance of badly divergent Wilson line self-
energy contributions as discussed recently in Ref. [24] and
also utilized in the treatment of TMD PDFs in Ref. [23].
While many of these issues have typically been discussed
in the context of TMD PDFs, the same problems arise in
the treatment of FFs.
Finally, it has remained unclear how the TMDs that have

been used in past applications of evolution and the CSS
formalism are related to the TMDs of other approaches,
such as those based more on generalized parton-model
pictures. In parametrizations of TMDs, the role of the
soft factor is often not explicitly included and evolution
is ignored. Many other theoretical TMD studies continue to
quote definitions with exactly lightlike Wilson lines.
Knowledge of the operator definitions for the TMDs is
also needed for lattice TMD calculations [62,63], and in
model calculations. Clearly, a more unified treatment of
TMD factorization is necessary in order to bring together
these different approaches to the study of TMDs.

D. Consistent definitions, TMD factorization,
and evolution

What is needed, in addition to fully consistent TMD
definitions, is a formulation that retains as much as pos-
sible the basic factorized structure of Eq. (1), but which
appropriately includes evolution and the effects of soft
factors. Ideally, the situation should be closely analogous
to what already exists for collinear factorization. Namely, it
should be possible to clearly identify consistent and uni-
versal TMDs that can be tabulated or parametrized and
then reused in formulas like Eq. (1) to make predictions for
a wide variety of processes. Fortunately, this has been
achieved in the recent work of Ref. [25]. There, the facto-
rization formula for SIDIS takes the form
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W�� ¼ X
f

jH fðQ;�Þ2j��

�
Z

d2k1Td
2k2TFf=pðx;k1T ;�; �FÞ

�Dh=fðz; zk2T ;�; �DÞ�ð2Þðk1T þ qT � k2TÞ
þ YðQ;qTÞ þOðð�=QÞaÞ: (2)

The first term on the right-hand side of this equation
(responsible for the low-qT behavior) has exactly the
structure of the partonic TMD-factorization formula in
Eq. (1), apart from the scale dependence denoted by �,
�F, and �D. The arguments �F and �D will be discussed
more in the explanation of the TMD definitions in Sec. IV.
They are left over from the need to regulate light-cone
divergences, and should obey

ffiffiffiffiffiffiffiffiffiffiffi
�F�D

p �OðQ2Þ. In terms of
more familiar variables, they are defined as

�F ¼ 2M2
px

2e2ðyP�ysÞ (3)

and

�D ¼ 2ðM2
H=z

2Þe2ðys�yhÞ: (4)

Here, x and z are the usual Bjorken scaling and fragmen-
tation variables,Mp is the proton mass, andMh is the mass

of the produced hadron. The rapidities of the proton and
produced hadron are yp and yh, respectively. The rapidity

ys is an arbitrary low-rapidity cutoff parameter that sepa-
rates partons with large forward rapidity (in the proton
direction) from backward rapidity (in the produced hadron
direction). Variations of these functions with ys will be
determined by the evolution equations.

The scale � is the standard renormalization group (RG)
scale. The TMD correlation functions, Ff=pðx;k1T ;�; �FÞ
and Dh=fðz; zk2T ;�; �DÞ, have definite and consistent

operator definitions. They include the effects from soft
gluons in such a way that no soft factor appears explicitly
in Eq. (2). Evolution can be implemented on
Ff=pðx;k1T;�; �FÞ and Dh=fðz; zk2T ;�; �DÞ indepen-

dently, and the basic steps closely follow the usual CSS
approach. We will discuss the definitions more in the next
section, but for now we mention that they solve most of the
theoretical problems summarized in Refs. [20,24] and
Sec. II C, including the appearance of light-cone divergen-
ces and Wilson line self-interactions.

The term YðQ; qTÞ accounts for the large-qT dependence
of the cross section, where the approximations needed for
TMD factorization break down. There, collinear factoriza-
tion becomes the appropriate framework. The error term is
suppressed by ð�=QÞa where a > 0. The first term on the
right side of Eq. (2) is valid up to corrections of order
ðqT=QÞa, but the YðQ;qTÞ is needed for a valid treatment of
factorization over the full range of qT .

The derivation of Eq. (2) within pQCD factorization,
with consistent definitions for the TMDs, is an important
breakthrough because it connects TMD studies from a

GPM framework with formal QCD and clarifies the mean-
ing of TMD evolution. We will use Eq. (2), along with the
associated definitions for the TMDs from Ref. [25] to
obtain momentum-space fits for use in phenomenology.
The nonperturbative input can be obtained from already
existing models or fits made at fixed scales. For the TMD
PDFs, much information about the nonperturbative input is
already available from fits that use the standard bT-space
formulation of the CSS formalism in the DY process.

III. SETUP AND NOTATION

We start by setting up the basic notation. In our con-
vention for light-cone variables, a four-vector V� ¼
ðVþ; V�;VTÞ has components

V� ¼ V0 � Vzffiffiffi
2

p VT ¼ ðVx; VyÞ: (5)

The z component picks out the forward direction. Note that
V2 ¼ 2VþV� � V2

T .
For the processes we are interested in, there are always

two relevant lightlike directions which we label uA and uB
and define to be

uA ¼ ð1; 0; 0tÞ uB ¼ ð0; 1; 0tÞ: (6)

In the SIDIS example, uA and uB characterize the direc-
tions of the incoming proton and the produced jet. A
Wilson line from a coordinate x to 1 along the direction
of a four-vector n is defined as usual:

Wð1; x;nÞ ¼ P exp

�
�ig0

Z 1

0
dsn � Aa

0ðxþ snÞta
�
: (7)

In these definitions, the bare fields and couplings are used,
P is a path-ordering operator, and ta is the generator for the
gauge group in the fundamental representation, with color
index a.
As discussed in the previous section, light-cone diver-

gences must be regulated by tilting the direction of the
Wilson line away from the exactly lightlike direction.
Therefore, we need to define another set of vectors nA
and nB analogous to Eq. (6) but slightly tilted, so that
they have rapidities yA and yB:

nA ¼ ð1;�e�2yA ; 0tÞ nB ¼ ð�e2yB ; 1; 0tÞ: (8)

Note that the tilted Wilson line directions are spacelike,
n2A ¼ n2B < 0. The use of spacelike directions for the
Wilson lines ensures maximum universality for the defini-
tions of the TMDs, as explained in Ref. [64]. In all of our

calculations, � is the standard MS mass scale in
dimensional regularization and the dimensional regulari-
zation parameter � is defined in the standard way as 2� ¼
4� d, where d is the dimension of space-time.
Though our results apply generally to the standard fac-

torizable processes, we will continue to use SIDIS as a
reference process for explaining the definitions. Let us
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also rewrite the TMD-factorization formula for SIDIS in
Eq. (2) as

W�� ¼ X
f

jH fðQ;�Þ2j��

�
Z

d2k1Td
2k2T�

ð2Þðk1T þ qT � k2TÞ
� Ff=pðx;k1T ;�; �FÞDh=fðz; zk2T ;�; �DÞ

¼ X
f

jH fðQ;�Þ2j��
Z d2bT

ð2�Þ2 e
�iqT �bT

� ~Ff=pðx;bT ;�; �FÞ ~Dh=fðz;bT ;�; �DÞ: (9)

Throughout this paper, it will be implicit that all momen-
tum components are in the hadron frame. (The hadron
frame is where both hadrons have zero transverse momen-
tum and is a natural frame for setting up the steps for
factorization.)

Hereafter, the YðQ;qTÞ term that appeared in Eq. (2) will
also be dropped because our primary interest is in the
qT � Q regime where TMD factorization is appropriate.
Also, we will drop any explicitþOðð�=QÞaÞ symbols. We
have written the TMD-factorization formula in coordinate
space in the second equation of (9) because it is simpler to
explain the coordinate space definitions of the TMDs and
their evolution. Later we will Fourier transform the TMDs
back to momentum space when we analyze them
numerically.

IV. DEFINITIONS OF THE TMDS

As explained in Sec. II, our calculations are based on the
formulation of TMD factorization explained in detail in
Ref. [25]. A repeat of the derivation is beyond the scope of
this paper. However, in order to put our later calculations
into their proper context, we will give an overview of the
basic features of the formalism in this and the next section.
We refer the reader directly to Ref. [25] for pertinent
details.

A. Soft-factor definition

We have already stressed in Sec. II C that the definitions
of the TMDs in Eq. (9) are not the often quoted matrix
elements of the form �hPj �c Wilson line c jPi with sim-
ple lightlike Wilson lines connecting the field operators.
Using such definitions in a factorization formula leads to
inconsistencies, including unregulated light-cone diver-
gences. Also, soft gluons with rapidity intermediate be-
tween the two nearly lightlike directions need to be
accounted for in the form of soft factors. Therefore, before
we can discuss the definitions of the TMDs that will
ultimately be used in Eq. (9), we must provide the precise
definition of the soft factor. In coordinate space it is an
expectation value of a Wilson loop:

~Sð0ÞðbT;yA;yBÞ¼ 1

Nc

h0jWðbT=2;1;nBÞyca
�WðbT=2;1;nAÞadWð�bT=2;1;nBÞbc
�Wð�bT=2;1;nAÞydbj0iNoS:I:: (10)

We have used the vectors in Eq. (8) to define the directions
of the Wilson lines so that, as long as yA and yB are finite,
the Wilson lines in Eq. (10) are non-light-like. The sub-
scripts a; b; c, and d are color triplet indices, and repeated
indices are summed over. The ‘‘(0)’’ subscript indicates
that bare fields are used. The soft factor contains Wilson
line self-interaction (S.I.) divergences that are very badly
divergent and are unrelated to the original unfactorized
graphs. They must therefore be excluded, and we indicate
this with a subscript ‘‘No S. I.’’. We emphasize, however,
that this is only a temporary requirement because all
Wilson line self-energy contributions will cancel in the
final definitions. Another potential complication, pointed
out in Refs. [18,19], is that exact gauge invariance requires
the Wilson lines to be closed by the insertion of links at
light-cone infinity in the transverse direction. However, the
transverse segments will not contribute in the final defini-
tions of the TMDs (at least in nonsingular gauges), so we
do not show them explicitly in Eq. (10). Again, the final
arrangement of soft factors will ensure a cancellation.
Rather than appearing as a separate factor in the TMD-

factorization formula, soft factors like Eq. (10) will be part
of the final definitions of the TMDs. Their role in the
definitions will be essential for the internal consistency
of the TMDs and their validity in a factorization formula
like Eq. (9).

B. TMD PDF and FF definitions

Now we turn to the definitions of the TMDs themselves,
starting with the unpolarized TMD PDF. The most natural
first attempt at an operator definition is obtained simply by
direct extension of the collinear integrated parton distribu-
tion, though with the Wilson line tilted to avoid light-cone
singularities. The operator definition is

~Funsub
f=P ðx;bT ;�; yP � yBÞ

¼ TrCTrD
Z dw�

2�
e�ixPþw�hPj �c fðw=2ÞWðw=2;1; nBÞy

� �þ

2
Wð�w=2;1; nBÞc fð�w=2ÞjPic;No S:I: (11)

This definition does not account for the overlap of the soft
and collinear regions, so we refer to it as the ‘‘unsub-
tracted’’ TMD PDF. Here w ¼ ð0; w�;bTÞ and yP is the
physical rapidity of the hadron. As usual, the struck quark
has a longitudinal plus-component of momentum kþ �
xPþ. The non-light-like direction of the Wilson line is
given by the nB vector defined in Eq. (8) so that the
light-cone divergences are regulated by the finite rapidity
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yB. As usual, the definition includes a trace over color. The
c subscript is to indicate that only connected diagrams are
included. Equation (11) reduces exactly to the most naive
definition of the TMD PDF when the lightlike limit of
yB ! �1 is taken. Indeed, in the final definition we will
take this limit, but then the role of the soft factors becomes
important.

While the definition in Eq. (11) is intuitively appealing,
modifications are needed in order to have a consistent
definition that can be used in a factorization formula like
Eq. (9). The complete definition for a quark f in proton P,
given in Refs. [25,26], is

~Ff=Pðx;bT ;�;�FÞ
¼ ~Funsub

f=P ðx;bT;�;yP�ð�1ÞÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sð0ÞðbT ;þ1;ysÞ
~Sð0ÞðbT;þ1;�1Þ~Sð0ÞðbT;ys;�1Þ

vuut ZFZ2: (12)

Here, the ‘‘1’’ arguments for the rapidity variables in the
unsubtracted PDF and the soft factors are meant in the
sense of a limit. All field operators are unrenormalized, and
ZF and Z2 are the PDF and field strength renormalization
factors, respectively. The soft factors on the right-hand side
of Eq. (12) contain rapidity arguments ys. It is an arbitrary
parameter which can be thought of as separating the ex-
treme plus and minus directions. It will be convenient to
express the dependence on ys via �F, defined in Eq. (3). On
the left-hand side of Eq. (12), the dependence on ys is
expressed via the dependence on �F.

Although we will not repeat the derivation that leads to
Eq. (12), we remark that the definition is unique given the
requirements that: (a) Factorization holds with maximal
universality for the TMDs. (b) No explicit soft factor
appears in the final factorization formula, Eq. (9).
(c) Self-interactions of the Wilson lines, and attachments
to gauge links at infinity cancel in the final definition.
(d) The Collins-Soper (CS) equations are homogeneous.

There is an analogous definition for the TMD FF. The
unsubtracted version, analogous to Eq. (11), is

~Dunsub
H=f ðz;bT ;�;yA�yhÞ

¼X
X

1

4Nc;f

TrCTrD
1

z

Z dw�

2�
eik

þw�h0j�þWðw=2;1;nAÞ

�c fðw=2Þjh;Xihh;Xj �c fð�w=2Þ
�Wð�w=2;1;nAÞyj0ic;NoS:I:: (13)

Now yh is the physical rapidity of the produced hadron or
jet. The complete definition of the TMD FF with the soft
factors included is

~DH=fðz;bT ;�; �DÞ
¼ ~Dunsub

H=f ðz;bT ;�;þ1� yhÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sð0ÞðbT ; ys;�1Þ
~Sð0ÞðbT ;þ1;�1Þ~Sð0ÞðbT;þ1; ysÞ

vuut ZDZ2: (14)

Again there is dependence on the soft rapidity ys. For the
FF, the energy cutoff scale �D is related to the soft rapidity
scale ys via Eq. (4).
Equations (12) and (14) are the correct TMDs for the

TMD-factorization formula in Eq. (9) as well as for eþe�
annihilation with back-to-back jets. Up to a flip in the
direction of the Wilson line from future to past pointing,
which is important for accounting for a sign flip in certain
types of TMDs, the TMD PDF in (12) is also relevant for
the Drell-Yan process. In this section we have clarified the
meaning of the energy parameters �F and �D, which were
already discussed in Secs. II and III. Together, Eqs. (3) and
(4) give

ffiffiffiffiffiffiffiffiffiffiffi
�F�D

p 	 Q2. They are in principle arbitrary, and
the full factorization formula in Eq. (9) is exactly indepen-
dent of the choice of ys (and therefore

ffiffiffiffiffiffi
�F

p
and

ffiffiffiffiffiffi
�D

p
).

However, different choices are needed for each factor in
Eq. (9) in order to optimize the convergence properties of
the perturbation series. To obtain the TMDs appropriate for
different scales, we must appeal to evolution equations
which are the subject of Sec. V.

C. The role of soft factors

Admittedly, the final definitions in Eqs. (12) and (14)
appear rather complex. While detailed derivations are be-
yond the scope of this paper, it is nevertheless worthwhile
to make a few intuitive remarks about how these definitions
arise in a treatment of factorization. A much more detailed
treatment is found in Ref. [25].
For now we simplify the notation for the TMDs by

dropping all arguments and symbols not directly related
to Wilson line rapidities. The cross section can then be
written (schematically) as

d� ¼ jH j2 ~FunsubðyP � ð�1ÞÞ � ~Dunsubðþ1� yhÞ
~Sðþ1;�1Þ :

(15)

The ~FunsubðyP � ð�1ÞÞ and ~Dunsubðþ1� yhÞ are the same
unsubtracted TMDs from Eqs. (11) and (13). They each
describe the distribution of gluons in their relevant col-
linear direction, but they also both account for soft gluons
with nearly zero rapidity. Therefore, the soft factor
~Sðþ1;�1Þ in the denominator is needed to remove
double counting. Since theWilson lines in the unsubtracted
TMDs are lightlike in the plus and minus directions, re-
spectively, they also include rapidity divergences. Thus,

the role of the ~Sðþ1;�1Þ is also to cancel these rapidity
divergences. Although Eq. (15) properly accounts for all
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soft and collinear regions and deals with the divergences,
it is not factorized. Because of the rapidity divergences,
it is immediately clear that ~FunsubðyP � ð�1ÞÞ and
~Dunsubðþ1� yhÞ are not separately well defined, and in
the full formula they are entangled via the soft denomina-
tor. To get a factorized structure for Eq. (15), with each
factor individually well defined, a natural first step to try is
simply to separate the soft factor into a product of two
factors:

d�¼jH j2 ~F
unsubðyP�ð�1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sðþ1;�1Þ
q ~Dunsubðþ1�yhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sðþ1;�1Þ
q : (16)

One is then tempted to identify the factors on either side of
the ‘‘�’’ with the TMD PDF and the TMD FF. However,
these definitions still contain uncanceled divergences. In
each factor, the rapidity divergence in the numerator is not
completely canceled by the square root rapidity divergence
in the denominator, and new rapidity divergences are in-
troduced by the Wilson line pointing in the opposite direc-
tion. So the next modification of Eq. (15) is to write

d�¼ jH j2 ~F
unsubðyP�ð�1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sðþ1;�1Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1;�1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1;�1Þ

q

� ~Dunsubðþ1� yhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1;�1Þ

q

¼ jH j2 ~F
unsubðyP�ð�1ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Sðþ1;�1Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1; ysÞ~Sðys;�1Þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1; ysÞ~Sðys;�1Þ

q

� ~Dunsubðþ1� yhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1;�1Þ

q

¼ jH j2
8><
>: ~FunsubðyP�ð�1ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1; ysÞ

~Sðþ1;�1Þ~Sðys;�1Þ

vuut
9>=
>;

�
8><
>: ~Dunsubðþ1� yhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðys;�1Þ

~Sðþ1;�1Þ~Sðþ1; ysÞ

vuut
9>=
>;:
(17)

After the first equality, we have simply multiplied and

divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~Sðþ1;�1Þ

q
. After the second equality,

we have used the group relation ~SðyA; yCÞ /
~SðyA; yBÞ~SðyB; yCÞ, which follows from the evolution equa-
tions for the soft factor—see, e.g., Ref. [25], Chapter 10.
[In fact, this expression should also include an overall
factor that depends on rapidity yB. But this cancels in
Eq. (17) between the numerator and denominator and
does not affect our argument.] This allows for a separation

of the soft factors into pieces that have rapidity divergences
only in the plus or only in the minus directions, with any
other rapidity divergences cut off by the arbitrary scale ys.
By rearranging the soft factors, everything can then be
grouped into the factors on the last two lines. In each
factor, all spurious divergences cancel, and we arrive at
the separately well-defined TMDs in braces. These corre-
spond to the definitions in Eqs. (12) and (14).
To summarize, the lightlike Wilson lines are needed in

each separate unsubtracted TMD of Eq. (15), but the con-
tribution from gluon attachments to a Wilson line where
the gluon has nearly the same rapidity as the Wilson line
does not correspond to any real physics. To cancel these
spurious contributions to the cross section, there must be an
equal number of both plus-pointing and minus-pointing
lightlike Wilson lines in the numerator and denominator,
as is the case in Eq. (15). Applying this same requirement
to the separate TMDs (a TMD PDF and a TMD FF, in our
case) leads uniquely to the definition in the last two lines of
Eq. (17) and Eqs. (12) and (14). Compare this with the
situation in Ref. [65]. There, as in our Eq. (15), the needed
cancellations occur in the full cross section expression, but
not in the individual TMD factors. To get separately con-
sistent TMDs, the steps summarized in Eq. (17) are needed.

V. EVOLVED TMDS

The evolution of the TMDs follows from their defini-
tions, Eqs. (12) and (14). We start with the evolution of the
TMD PDF. The energy evolution is given by the CS
equation for Eq. (8):

@ ln ~Fðx;bT ;�; �FÞ
@ ln

ffiffiffiffiffiffi
�F

p ¼ ~KðbT ;�Þ; (18)

where the function ~KðbT;�Þ is defined as

~KðbT;�Þ ¼ 1

2

@

@ys
ln

�~SðbT ; ys;�1Þ
~SðbT ;þ1; ysÞ

�
: (19)

Equation (18) follows directly from differentiating Eq. (12)
with respect to

ffiffiffiffiffiffi
�F

p
and using the definition of ~KðbT;�Þ.

Note that it is ~SðbTÞ rather than ~Sð0ÞðbTÞ that appears in

Eq. (19). Thus, it is important to account for the UV
renormalization factors ZFZ2 in Eq. (12).
The RG equations for both ~Fðx;bT ;�; �FÞ and ~KðbT;�Þ

are also needed. They are

d ~KðbT;�Þ
d ln�

¼ ��Kðgð�ÞÞ (20)

and

d ln ~Fðx;bT ;�; �FÞ
d ln�

¼ �Fðgð�Þ; �F=�2Þ: (21)

The functions �Kðgð�ÞÞ and �Fðgð�Þ; �F=�2Þ are the
anomalous dimensions of ~KðbT ;�Þ and ~Fðx;bT ;�; �FÞ,
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respectively. Using Eqs. (18)–(21), the energy evolution of
�F can be derived:

�Fðgð�Þ; �F=�2Þ ¼ �Fðgð�Þ; 1Þ � 1

2
�Kðgð�ÞÞ ln�F

�2
:

(22)

At small-bT , Eq. (12) can itself be calculated within a
collinear factorization formalism [3]. Namely, it separates
into a perturbatively calculable hard scattering coefficient
and an integrated PDF, convoluted over momentum
fraction:

~Ff=Pðx;bT ;�; �FÞ
¼ X

j

Z 1

x

dx̂

x̂
~Cf=jðx=x̂; bT ; �F;�; gð�ÞÞfj=Pðx̂;�Þ

þOðð�QCDbTÞaÞ: (23)

The functions fj=Pðx̂;�Þ are the ordinary integrated PDFs

and the ~Cf=jðx=x̂; bT ; �F;�; gð�ÞÞ are the hard coefficient

functions, which are provided to first order in Appendix A.
The last term denotes the error, which grows large when
bT * ��1

QCD.

At large bT , the perturbative treatment of the bT depen-
dence is no longer reliable. In momentum space, this
corresponds to the breakdown of the perturbative treatment
of the kT dependence at small kT . It is in this region that the
concept of TMD factorization, incorporating TMDs with
intrinsic nonperturbative transverse momentum, becomes
very important.

While the bT dependence at large bT cannot be calcu-
lated directly in pQCD, the scale dependence can still be
handled with the evolution equations (18)–(22). But a

prescription is needed for matching the large and small
bT behavior. The most common matching procedure was
developed in Ref. [66]. It replaces bT in the hard part of the
calculation by a function,

b �ðbTÞ � bTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2T=b

2
max

q : (24)

This definition of b�ðbTÞ is constructed so that it is equal to
bT when bT is small, while smoothly approaching an upper
cutoff bmax when bT becomes too large. The value of bmax

is typically chosen to be of order�1 GeV�1 and should be
thought of as characterizing the boundary of the perturba-
tive region of the bT dependence.
In the calculation of the hard coefficient in Eq. (23), the

appropriate size for the scale � is determined by the size
of b�ðbTÞ. Hence, we define the scale,

�b ¼ C1

b�ðbTÞ : (25)

The parameter C1 is chosen to optimize the perturbation
expansion. For all our calculations, we will use C1 ¼
2e��E . At large bT in the final expression for the evolved
TMD PDF, the effect of the deviation between bT and b� in
~Ff=Pðx;bT;�; �FÞ and ~KðbT ;�Þ will be accounted for by

extra nonperturbative, but universal and scale-independent,
functions.
Applying the evolution equations in Eqs. (18)–(22),

using the collinear factorization treatment for small bT

from Eq. (23), and implementing the matching procedure
of Eq. (24) allows the TMD PDF to be written with
maximum perturbative input in terms of evolution from
fixed starting scales:

~F f=Pðx;bT ;�; �FÞ ¼
X
j

Z 1

x

dx̂

x̂
~Cf=jðx=x̂; b�;�2

b; �b; gð�bÞÞfj=Pðx̂; �bÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{A

� exp

�
ln

ffiffiffiffiffiffi
�F

p
�b

~Kðb�;�bÞ þ
Z �

�b

d�0

�0

�
�Fðgð�0Þ; 1Þ � ln

ffiffiffiffiffiffi
�F

p
�0 �Kðgð�0ÞÞ

��zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{B

� exp

�
gj=Pðx; bTÞ þ gKðbTÞ ln

ffiffiffiffiffiffi
�F

p
ffiffiffiffiffiffiffiffi
�F;0

p
�zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{C

; (26)

This is our master equation for fitting TMD PDFs while
incorporating evolution. For a much more detailed expla-
nation of the steps summarized above and leading to
Eq. (26), we again refer the reader to Ref. [25], especially
Chapters 10 and 13. The steps for evolving are very similar
to traditional applications of the CSS formalism, but now
they are applied to separate, individual TMDs. The scales
used in the evolution are chosen to minimize the size of

higher order corrections in the perturbatively calculable
parts. We have labeled three separate factors by ‘‘A,’’ ‘‘B,’’
and ‘‘C’’ to aid in the detailed discussion that will appear in
the next section. The ~Cf=jðx=x̂; b�;�2

b; �b; gð�bÞÞ,
~Kðb�;�bÞ, �Fðgð�0Þ; 1Þ, and �Kðgð�0ÞÞ functions are all
perturbatively calculable for all bT . They are provided to
order 	s in Appendices A and B. On the first line,
fj=Pðx̂; �bÞ is the ordinary integrated PDF from collinear
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factorization. The functions gj=Pðx; bTÞ and gKðbTÞ
describe the nonperturbative bT behavior in
~Ff=Pðx;bT ;�; �FÞ and ~KðbT ;�Þ, respectively. They are
scale independent and universal. The function gKðbTÞ is
notably independent of the species of external hadrons.
Our definition of the factor gj=Pðx; bTÞ differs slightly from
what is used in [25] because it has absorbed a term equal to
gKðbTÞ lnð

ffiffiffiffiffiffiffiffi
�F;0

p
=xMpÞ. This will allow us to choose an

arbitrary starting scale �F;0 for the evolution in
ffiffiffiffiffiffi
�F

p
.

We are ultimately interested in the momentum-space
TMD which is just the Fourier transform of the coordinate
space TMD PDF in Eqs. (12) and (26),

Ff=Pðx;kT ;�; �FÞ ¼ 1

ð2�Þ2
Z

d2bTe
ikT �bT

� ~Ff=Pðx;bT ;�; �FÞ: (27)

Once Eq. (26) has been parametrized, Ff=Pðx;kT ;�; �FÞ
can be determined directly by a numerical Fourier
transform.

Exactly analogous steps hold for the TMD FF. It is
related to ~KðbT;�Þ by

@ ln ~Dðz;bT;�; �DÞ
@ ln

ffiffiffiffiffiffi
�D

p ¼ ~KðbT ;�Þ: (28)

There is also an RG equation analogous to Eq. (21), with
anomalous dimension �Dðgð�Þ; �D=�2Þ:

d ln ~Dðz;bT ;�; �DÞ
d ln�

¼ �Dðgð�Þ; �D=�2Þ: (29)

For the small-bT region, the collinear factorization treat-
ment of Eq. (14), analogous to Eq. (23), gives

~DH=fðz;bT ;�; �DÞ
¼ X

j

Z 1

z

dẑ

ẑ3�2�
~Cj=fðz=ẑ; bT ; �D;�; gð�ÞÞdh=jðẑ;�Þ

þOðð�QCDbTÞaÞ: (30)

The analogue of Eq. (26) for the TMD FF is

~DH=fðz;bT ;�; �DÞ
¼ X

j

Z 1

z

dẑ

ẑ3�2�
~Cj=fðz=ẑ; b�;�2

b; �b; gð�bÞÞdH=jðẑ; �bÞ

� exp

�
ln

ffiffiffiffiffiffi
�D

p
�b

~Kðb�;�bÞ þ
Z �

�b

d�0

�0

�
�Dðgð�0Þ; 1Þ

� ln

ffiffiffiffiffiffi
�D

p
�0 �Kðgð�0ÞÞ

��
exp

�
gh=jðz; bTÞ

þ gKðbTÞ ln
ffiffiffiffiffiffi
�D

p
ffiffiffiffiffiffiffiffi
�D;0

p
�
: (31)

As with the TMD PDF, the perturbative parts of Eq. (26)
have been calculated to order 	s and are supplied for
reference in the appendices. [Note the factor of ẑ2��3 that
appears in the integration measure in Eq. (31) as compared
to the x̂�1 factor that appears in Eq. (26); this is due to
differences in normalization of the integrated PDFs and
FFs.] The nonperturbative function gKðbTÞ is the same in
both the TMD PDF and FF. The function gh=jðz; bTÞ de-
scribes the nonperturbative large-bT behavior that is spe-
cific to a fragmentation function for parton j and hadronH.
The momentum-space TMD FF is defined to be

DH=fðz; zkT;�; �DÞ ¼ 1

ð2�Þ2
Z

d2bTe
�ikT �bT

� ~DH=fðz;bT ;�; �DÞ: (32)

Note that the standard momentum-space definition has zkT

as the transverse momentum argument rather than kT .
The important result of this section is that we now have

expressions for the evolved TMD quark PDF and FF that
can be used in Eq. (2), which in turn has a very similar
structure to the generalized parton-model picture in Eq. (1).

VI. IMPLEMENTING EVOLUTION

We now discuss explicit calculations of evolved
momentum-space TMDs. Given some nonperturbative in-
put for the large-bT behavior at some fixed scales, we can
calculate the TMDs at different scales by directly calculat-
ing Eqs. (26)–(31). We will discuss the TMD PDF and FF
cases separately.

A. TMD PDFs

We first analyze the TMD PDF by discussing each factor
labeled in Eq. (26) separately. The first factor (the A factor)
matches the TMD PDF to a collinear treatment in the small
bT � 1=�QCD limit. As with standard collinear factoriza-

tion, it involves a hard part, which in this case is the

coefficient function ~Cf=j, and a collinear factor, which is

just the standard integrated PDF. At lowest order in a
calculation of the coefficient function, the A factor is
simply fðx;�bÞ. The first factor on the second line, the B
factor, is an exponential of quantities that can all be calcu-
lated perturbatively. They are the CS kernel ~Kðb�;�bÞ at
small bT , the anomalous dimension �F of the TMD PDF,
and the anomalous dimension �K of the CS kernel. The last
factor, the C factor, implements the matching between the
small and large bT dependence. The function gj=Pðx; bTÞ
parametrizes the nonperturbative large-bT behavior that is
intrinsic to the proton, while gKðbTÞ parametrizes the non-
perturbative large-bT behavior of ~KðbT ;�Þ. The function
gj=Pðx; bTÞ is universal, but in principle depends on the

external hadron. The function gKðbTÞ is both universal and
independent of the species of external hadrons. Note that,
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while the description of the bT behavior becomes non-
perturbative at large bT , there is still perturbatively calcu-
lable evolution for the TMD coming from the B factor.

For doing calculations, a choice for the numerical values
of �F and �D in Eqs. (26)–(31) is needed. Since

ffiffiffiffiffiffiffiffiffiffiffi
�F�D

p 	
Q2, we will treat the PDFs and FFs symmetrically and useffiffiffiffiffiffi
�F

p ¼ ffiffiffiffiffiffi
�D

p ¼ Q. (In principle, slightly different choices
may be preferred in specific applications, but this will be

sufficient for now.) Also, we relabel
ffiffiffiffiffiffiffiffi
�F;0

p ¼ ffiffiffiffiffiffiffiffi
�D;0

p �
2Q0.

It is instructive to investigate the relationship between
the parton-model expectation and Eq. (26). In standard
collinear factorization for processes integrated over trans-
verse momentum, the parton-model description of the
integrated PDF is recovered by dropping all order-	s con-
tributions to the DGLAP evolution kernel, reproducing the
Bjorken scaling property of the parton model. In collinear
factorization, the parton model can be understood as the
zeroth order contribution to the full pQCD factorization
result. In the TMD PDF case, however, if all order-	s or
higher contributions to Eq. (26) are dropped, then the TMD
PDF becomes

~Ff=Pðx;bT ; �F;�Þ ! fj=PðxÞ exp
�
gj=Pðx; bTÞ þ gKðbTÞ

� ln
Q

2Q0

�
: (33)

Usually, a Gaussian model is used in a partonic description
of the TMD PDF like Eq. (1). So we write gj=Pðx; bTÞ as
�g1b

2
T=2 and gKðbTÞ as�g2b

2
T=2. Then Eq. (33) becomes

fj=PðxÞ exp
�
�
�
g1 þ g2 ln

Q

2Q0

�
b2T
2

�
: (34)

This is almost the Gaussian/parton-model form of the
TMD PDF. However, there is still scale dependence com-
ing from the coefficient of the gKðbTÞ function. This dif-
ference from the collinear case is due to the fact that, while
the DGLAP evolution kernels vanish when order-	s terms
are neglected, the evolution kernel in Eq. (19) is nonvan-
ishing at zeroth order because of the nonperturbative con-
tribution at large bT . TMD factorization therefore differs in
a significant qualitative way from collinear factorization in
that the naive expectation from the parton-model picture is
not exactly recovered even in a zeroth order treatment—
there is still potentially large scale dependence at large bT .
This can have a large effect on the small-kT scale depen-
dence of the TMDs, as already noted in Refs. [39,40]. In
particular, if g1 � g2, then it can be seen from Eq. (34)
that the TMD PDF becomes extremely sensitive to Q near
Q� 2Q0 and at large bT . In the momentum-space TMD
PDF, the evolution corresponds to rapid suppression at
small kT , of order kT � 1 GeV, with increasing Q. The
effect can be observed in the small-kT region of the curves
in Fig. 1.

Once the A and B and C factors are known, it becomes
straightforward to calculate the Fourier transform in
Eq. (27). Of these, the A factor is the most cumbersome
to deal with because it requires numerical integrals over x
that involve integrated PDFs. The integrated PDFs them-
selves need to be imported from previous fits. In our
calculations, we obtain the A factor in Eq. (26) by using
the Martin-Stirling-Thorne-Watt (MSTW) PDFs [67],

along with the MS coefficient functions calculated in
Appendix A. To facilitate future calculations, we have
made separate tables for the A factor available for each
quark flavor [41]. The B factor, up to order 	s, is straight-
forward to calculate directly using the anomalous dimen-
sions provided in Appendix B.
All that is then needed to obtain Eq. (27) is a model or a

fit of the nonperturbative bT behavior of the C factor. For
our calculations, we appeal to currently available fits. In
principle, fitting the nonperturbative parts, gj=Pðx; bTÞ and
gKðbTÞ, requires knowledge of the complete ðx;bTÞ plane
at different values of Q and for each flavor. There have
been extensive efforts over the past several decades to
determine these parameters from experiments, most com-
monly from fits to DY processes. Currently, the most de-
tailed global fits use the Brock-Landry-Nadolsky-Yuan
(BLNY) form for the full nonperturbative bT dependence,
which leads to a factor in the full cross section equal to [38]

exp

�
�
�
g1 þ g2 ln

Q

2Q0

þ g1g3 lnð100xAxBÞ
�
b2T

�
: (35)

The variables xA and xB are the usual momentum fraction
variables of the annihilating quark and antiquark. This
almost gives the simple form in Eq. (34), but now there
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FIG. 1 (color online). The up quark TMD PDF for Q ¼ ffiffiffiffiffiffiffi
2:4

p
,

5.0, and 91.19 GeV and x ¼ 0:09. The upper plot shows the
result of using the BLNY fit in Eq. (38) with bmax ¼ 0:5 GeV�1

while the lower panel shows the BLNY fit obtained with
bmax ¼ 1:5 GeV�1. The solid maroon, dashed blue, and red
dot-dashed curves are for Q ¼ ffiffiffiffiffiffiffi

2:4
p

, 5.0, and 91.19 GeV, re-
spectively. (See online version for color.)
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is a term in the exponent with explicit x dependence. In the
p �p cross section, two C factors appear; one with a function
gj=Pðx; bTÞ for the probability of finding a quark in a

proton, and the other with a function g �j= �Pðx; bTÞ for finding
an antiquark in an antiproton. Assuming flavor indepen-
dence, the symmetric role of the PDFs in the DY factori-
zation formula allows for an immediate identification of
the C-factor contribution to the TMD PDF in Eq. (26):

exp

�
�
�
g2
2

ln
Q

2Q0

þ g1

�
1

2
þ g3 lnð10xÞ

��
b2T

�
: (36)

The fits of Ref. [38] found g1 ¼ 0:21 GeV2, g2 ¼
0:68 GeV2, and g3 ¼ �0:6, using Q0 ¼ 1:6 GeV using
data from Refs. [68–73]. However, these fits mix data for
p �p, pp, and pCu scattering which means that it must be
assumed that the nonperturbative functions gj=Pðx; bTÞ,
g �j=Pðx; bTÞ, and gj=Cuðx; bTÞ are similar. This is not a

serious problem at large Q because then the Q behavior
comes mainly from the gKðbTÞ function which is indepen-
dent of external hadrons. However, we also want our TMD
PDF to be valid at smallerQ & Q0 scales, relevant to many
SIDIS experiments. Our strategy then is to match the
BLNY fit to the recent scale-independent Gaussian fits
by Schweitzer, Teckentrup, and Metz (STM) [32]. Using
HERMES SIDIS data [74,75] for hxi ¼ 0:09, hQ2i 	
2:4 GeV2, and z > 0:2, they find

Ff=Pðx;kTÞ ¼ ff=PðxÞ exp½�k2T=hk2Ti

�hk2Ti

(37)

with hk2Ti ¼ ð0:38� 0:06Þ GeV2. To recover this in our fit,
we modify the BLNY parametrization in Eq. (36) by
rewriting it as

exp

�
�
�
g2
2

ln
Q

2Q0

þ g1

�
1

2
þ g3 ln

�
10

xx0
x0 þ x

���
b2T

�
:

(38)

If x0 	 0:02, then Eq. (38) approximately matches the

STM fit for x ¼ 0:09 and Q ¼ ffiffiffiffiffiffiffi
2:4

p
GeV, but reduces to

the BLNY fit at larger Q and smaller x. We note that the x
and bT dependence does not quite factorize in these TMD
fits. Indeed, the form of the gj=Pðx; bTÞ is not required

by the formalism to factorize into separate x and bT

dependence.
We now have a fit that includes the scale dependence of

the QCD evolution in Eq. (26), and whose bT dependence
matches two previously performed fits for different regions
of kinematics. For illustration, we have plotted in Fig. 1 the
TMD PDF of the up-quark for the small, medium, and

large values of Q ¼ ffiffiffiffiffiffiffi
2:4

p
, 5, and 91.19 GeV and with

x ¼ 0:09. We have made the plot run over a range from
kT ¼ 0 to 6 GeV, typical for studies of TMD functions.
[Recall, however, that without the Y term of Eq. (2) the
TMD PDF by itself only has a simple interpretation
for kT � Q.] Comparing the curves, it is clear that the

evolution in Q is a large effect, leading to more than an
order of magnitude of suppression at small kT , and a broad
tail at larger kT . Numerical computations that produce
plots like Fig. 1 are available at Ref. [41]. The large bT
cutoff, bmax, should be small enough to exclude the non-
perturbative large bT regime from the perturbative part of
the TMD PDF, but it is otherwise arbitrary. In fits, different
choices of bmax can lead to very different values for the
nonperturbative parameters because changing the size of
bmax effectively reshuffles contributions to the TMD PDF
between the different factors in Eq. (26). It turns out that
the bmax ¼ 0:5 GeV�1 value from the BLNY fit is rather
small. In other words, this choice of bmax restricts the
perturbative part of the calculation to a range in bT that
is significantly smaller than the range where perturbative
methods are still reasonable. The analysis in Ref. [76]
has found that bmax ¼ 1:5 GeV�1 is preferred, and the
parameters for the BLNY fit in Eq. (35) become g1 ¼
0:201 GeV2, g2 ¼ 0:184 GeV2, and g3 ¼ �0:129. By us-
ing the newer parameters from Ref. [76], we can again
construct a TMD PDF parametrization from the BLNY
form that matches the STM fit at smallQ by using Eq. (38).
With the newer parameters we find that x0 ¼ 0:009 is
needed to fit to the STM parametrization at small kT .
One reason that we prefer the smaller bmax for the

present paper is that our present analysis includes only
the order-	s contributions to the perturbatively calculable
parts, so it is important that higher order contributions are
small. In practice, higher order contributions can have a
large effect, especially at small and intermediate kT . We
estimate the size of the theoretical error in our analysis by
redoing the calculation for the parametrization with the
larger value of bmax ¼ 1:5 GeV�1, and using the parame-
ters of Ref. [76]. The result is the lower panel in Fig. 1. By
comparing the upper and lower plots, it can be seen that the
curves differ by a maximum of about a factor of 2 for the
large Q curve. (By running the calculation for different
values of x, we have verified that this is generally true for x
between about 0.01 and 0.2.) The largest difference is for
the Q ¼ 5 GeV curves. This is because for Q ¼ 5 GeV
evolution effects become significant, but the different val-
ues of x0 needed for the curves to match at Q0 lead to a
significant difference in kT dependence.
In the future, it will be possible to decrease the theoreti-

cal uncertainty in the TMD PDF parametrization by in-
cluding higher orders in the perturbative parts of the
calculation, and by using improved fits based on newly
available data.
It is also instructive to investigate the effect of the

separate A, B, and C factors in Eq. (26). In Fig. 2, we
have again plotted the TMD PDF for Q ¼ 91:19 GeV. In
addition, we show the effect of replacing the A factor by
simply the lowest order, unevolving result, fðx;�bmax

Þ
(blue dashed curve), and the effect of replacing the B factor
by one (maroon dash-dotted curve). (The color version is
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online.) The dashed curves show that simply using
fðx;�bmax

Þ instead of the full A factor is typically a very

good approximation in the small-kT limit of the TMD PDF.
This significantly simplifies the calculation of the TMD
PDF in cases where the very small-kT region is the main
contribution of interest. (However, it should be reempha-
sized that the full A factor is needed for a complete
description of the cross section over all qT up to order
Q.) Neglecting the B factor introduces a substantial error at
small kT and completely removes the large-kT tail. We
have compared the calculations for the two different bmax

values, 0:5 GeV�1 and 1:5 GeV�1, in the upper and lower
plots. As could be expected, the effect of setting B ¼ 1 is
substantially larger in the bmax ¼ 1:5 GeV�1 case where
the role of higher orders is more important.

It is common in TMD studies to use Gaussian parame-
trizations like Eq. (37). An attractive feature of such an
approach is that the TMD has a simple and well-defined
integral over all kT , and the standard integrated PDF is
obtained simply by integrating the TMD PDF. Moreover,
the Gaussian form makes the calculation of weighted
structure functions simple. Therefore, it is useful to inves-
tigate how well a Gaussian form describes the shape of the
TMD, and over what range of transverse momentum.
(However, we recall that the actual relationship between
integrated and TMD PDFs is more complicated, as already
evidenced by the broad tail in Fig. 2.) To give an example
of such a comparison, and to study the effect of the tail in
fits of the TMD PDF at large Q, we have replotted the
Q ¼ 91:19 GeV curves from Fig. 1 in Fig. 3, but now we
include Gaussian fits. From the plots it can be seen that at
large-Q the Gaussian shape continues to do a reasonable
job of describing the very small kT behavior (less than a

few GeV), but since it completely neglects the tail at large
kT tail it underestimates the size of the typical kT .
To investigate the role of the tail, we calculated the

integral of the TMD PDF over kT , weighted by k2T ,

�k 2
T ¼

Z
d2kTk

2
TFðx;kTÞ; (39)

and we compared the result of using the Gaussian fit with
the result obtained by numerically integrating the original
Q ¼ 91:19 GeV curve (the solid curve in Fig. 3). For the
original curve, Eq. (39) is quite ill defined because of the
large-kT tail. In addition, the contribution from very large
kT is outside the region where a TMD-factorization de-
scription alone is valid, and the Y term becomes important.
Nevertheless, it is possible to get a sense of the effect of the
tail on typical values of kT by integrating up to a cutoff that
is large, but still significantly less than Q. For the TMD
PDFs in Fig. 3, we choose an upper cutoff of 20 GeV.

For the Gaussian fit, we find
ffiffiffiffiffi
�k2T

q
¼ 6 GeV for bmax ¼

0:5 GeV�1 and
ffiffiffiffiffi
�k2T

q
¼ 4 GeV for bmax ¼ 1:5 GeV�1.

(The difference is due to the slightly different ranges in
kT where a Gaussian is a good fit.) For the original curve,

with the upper cutoff on kT of 20 GeV, we find
ffiffiffiffiffi
�k2T

q
¼

15 GeV for both bmax ¼ 0:5 GeV�1 and bmax ¼
1:5 GeV�1. Hence, for both values of bmax, the tail leads
to at least a factor of 2 increase in the typical kT .

B. TMD FFs

The nonperturbative input for the FFs is much less con-
strained by existing analyses. However, the function
gKðbTÞ in Eq. (26) for the TMD PDF is the same function
that appears in Eq. (31) for the TMD FF. Therefore, given a
fit for the TMD FF at a particular scale, one can use the
same gKðbTÞ, along with the anomalous dimensions and
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coefficient functions calculated in Appendices A and B, to
estimate the evolution to different scales. For the starting
scale, we again appeal to the fit of Ref. [32] which uses a
Gaussian form,

DH=fðz;KTÞ ¼ dH=fðzÞ exp½�K2
T=hK2

Ti

�hK2

Ti
; (40)

where KT is the hadron transverse momentum in the pho-
ton rest frame. Again fitting the HERMES data, for SIDIS
in the kinematical range, hxi ¼ 0:09, hQ2i 	 2:4 GeV2,
and z > 0:2, they find that hK2

Ti ¼ ð0:16� 0:01Þ GeV2.
One can write the transverse components of the photon-
frame hadron momentum KT in terms of the transverse
components of the hadron-frame parton momentum kT as
KT ¼ �zkT . The analogue of Eq. (34) for the FF has an
extra 1=z2 so that when all order 	s corrections are
dropped the FF reads

~DH=fðz; bT ; �F;�Þ ! 1

z2
dH=fðzÞ

� exp

�
�½g01 þ g2z

2 ln
Q

2Q0

�
b2T
2z2

�
:

(41)

Equating this to the inverse Fourier transform of Eq. (40),
we identify the factor in brackets as

g01 þ g2z
2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4 GeV

p
2Q0

	 hK2
Ti
2

	 0:08 GeV:

From this relation we can extract a value for g01. The factor
multiplying�b2T in Eq. (41) can then be identified with the
nonperturbative exponential factor in Eq. (31). Using
Refs. [77–80] for the integrated FFs, we can then calculate
the TMD FF using Eq. (31). We have repeated the analysis
of the TMD PDF for a TMD FF of a charged pion frag-
menting from an up quark. Figure 4 shows the TMD FF for

different energy scales, Q ¼ ffiffiffiffiffiffiffi
2:4

p
, 5, and 91.19 GeV. By

comparing different energy scales, one can immediately
see the effect of including perturbative evolution in the
definitions of the TMD FFs from the high kT tails the TMD
FFs acquire. We have also repeated the analysis of evalu-
ating the TMD FF for different values of bmax ¼ 0:5 and
1:5 GeV�1 and we find a similar error estimate as in the
case of the TMD PDF. The comparison is shown again in
Fig. 4. Note that in Fig. 4 we have plotted the TMD FF as a
function of the hadron transverse momentum KT rather
than parton transverse momentum kT .

We also investigated how well a Gaussian function fits
the perturbatively evolved TMD FF. As with the TMD
PDF, the Gaussian fit does not adequately capture the
effects of perturbative evolution for the TMD FF.
The contribution of the kT tail is smaller in the case of
the TMD FF. This can be understood by comparing the kT
dependence of a TMD PDF with a TMD FF. The TMD FF
is less broad in kT than a TMD PDF and therefore drops

faster with a smaller kT tail. To quantify this we have
once more calculated a typical kT using Eq. (39) both
for the Gaussian fit and the actual TMD FF. For bmax ¼
0:5 GeV�1 we find that for the Gaussian fit

ffiffiffiffiffi
�k2T

q
¼

1:74 GeV while for the actual TMD FF
ffiffiffiffiffi
�k2T

q
¼ 2:15 GeV

which gives a relative difference of 23.5%. For the case of

bmax ¼ 1:5 GeV�1 the values are
ffiffiffiffiffi
�k2T

q
¼ 1:06 GeV for the

Gaussian fit and
ffiffiffiffiffi
�k2T

q
¼ 1:85 GeV for the actual TMD FF

with a larger relative difference of 73.5%.

VII. DISCUSSION AND CONCLUSIONS

Factorization theorems provide the bridge between ab-
stract field theoretical concepts and phenomenology, and
are responsible for giving pQCD its great predictive power.
The parton distribution and fragmentation functions, which
arise naturally from the factorization derivations, play a
central role in relating formal pQCD to parton-model con-
cepts. A precise understanding of the definitions, evolu-
tion, and universality properties of these correlation
functions is what enables calculations in pQCD to make
accurate first principles predictions.
While the standard formalism of collinear factorization

has proven extremely useful for sufficiently inclusive pro-
cesses, the more sophisticated formalism of TMD factori-
zation is needed for processes in which the intrinsic
transverse momentum of the partons becomes important.
As has already been widely discussed, there are a number
of technical and conceptual subtleties involved in arriving
at good definitions for the TMDs that are consistent with
factorization. These issues include the need to regulate and
deal with rapidity divergences and achieve a cancellation
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of spurious Wilson line self-energies. The subtleties in-
volved in defining TMDs have largely been clarified and
resolved in Ref. [25], which provides definitions that are
consistent with the requirements of factorization, and dem-
onstrates the relationship with the usual CSS formalism.

While considerable effort has been devoted to imple-
menting CSS evolution in unpolarized scattering, the re-
sulting parametrizations are often not framed in the
language of TMD PDFs. By contrast, for polarization
dependent TMDs, there has been very little work done in
implementing evolution in the parametrization of experi-
mental data. Up to this point, these functions have only
been probed over a very narrow range of scales so that
evolution has not been a major issue. However, for future
progress in understanding the role of quark and gluon
degrees of freedom in hadronic structure, it will be impor-
tant to remedy this situation. Ideally, there should be
collections of tabulated fits to the TMDs that incorporate
evolution, and which can be directly related to the field-
theoretic definitions of the correlation functions, analogous
to what has already existed for some time in collinear
factorization.

We have started this process by recasting previously
performed fits [32,37,38] of unpolarized TMD PDFs and
TMD FFs in terms of the TMD definitions of Ref. [25].
This provides a much clearer connection between the
formalism of evolution and generalized parton model ap-
proaches, and provides practical TMD parametrizations
that can be used directly in TMD calculations. We have
also completed the derivation of the lowest order anoma-
lous dimensions and coefficient functions for the TMD
PDF. At our website [41], we have supplied tables and
interpolation routines for the parts of the quark TMD PDFs
and FFs that can be described using collinear factorization
[the ‘‘A factors’’ in Eqs. (26) and (31)] for each flavor of
quark, as well as sample calculations that give plots like
Fig. 1.

We have confirmed the important observation that evo-
lution has a strong quantitative effect on the TMDs and
therefore should be included in future phenomenological
applications of TMD factorization, particularly given the
range of energy scales that are set to be probed in the
future. Another reason to have reliable fits of TMDs,
including evolution, is that it opens the possibility to
identify instances of factorization breaking effects of the
type discussed in Refs. [45–48]. Recognizing factorization
breaking effects will be an important next step in expand-
ing our understanding of pQCD phenomenology. Even in
unpolarized scattering, there is a possibility to use parame-
trizations like those presented in this paper to test the
factorization hypothesis. Recent RHIC data [57,58], for
example, may be useful for such an analysis.

Nevertheless, much work remains to be done. The theo-
retical uncertainty in the TMD fits can be reduced
by including higher orders in the calculations of the

anomalous dimensions, the K kernel, and the collinear
coefficient functions. Moreover, as new data from experi-
ments like those taking place at the LHC, RHIC, JLab, and
a possible electron-ion collider are made available and
analyzed, it will be possible to obtain improved fits.
Already, there are data from ATLAS [81] which can
potentially help to improve the quality of fits for the un-
polarized TMDs. TMD effects can also be studied in an
eþe� collider as recently discussed in Ref. [40]. A number
of theoretical issues with the evolution formalism itself
also remain unsettled. For instance, the precise form of the
matching function for between perturbative and nonpertur-
bative transverse momentum regimes in Eq. (24) is some-
what arbitrary and better prescriptions may be possible.
Along similar lines, a truly optimal choice of bmax may be
different from the values we have used here. One possi-
bility may be to formulate the evolution directly in mo-
mentum space.
One of the most important next steps is to extend the

analysis presented in this paper to the Sivers and Boer-
Mulders functions, which are needed for clarifying the spin
structure of hadrons. Efforts to address polarization depen-
dent situations can utilize existing fixed-scale fits (such as
[27–32,51]). In such cases, a careful treatment of the
matching between large and small transverse momenta
will also be important [82]. Furthermore, it will be impor-
tant to establish the relationship be evolved TMDs and the
evolution of weighted functions such as those treated in
Ref. [43].
Fits of the gluon TMD PDF that include CSS evolution

will be also be needed, especially in tests of factorization.
See [83,84] for recent work related to evolution and gluon
resummation in the context of gluon PDFs. In addition,
recent calculations in Ref. [85] have shown how to
probe linearly polarized gluons in heavy quark production,
and the universality properties of the gluon TMD PDF
have been clarified in Ref. [86]. For processes that
probe the gluon TMDs, some important details of the
TMD-factorization theorems have yet to be completely
understood. The issue of so-called ‘‘superleading regions’’
in the factorization theorems that use the gluon distribution
[87] still needs to be clarified in the TMD case.
Furthermore, for processes that involve several final state
hadrons, such as eþ p ! H1 þH2 þ X, the separation of
the soft factor into universal square root factors as in the
definitions in Eqs. (12)–(14) is not straightforward.
Following a naive analysis like in Sec. IVC seems to
suggest that extra soft factors are needed, and that a more
complicated factorization structure is required.
These are all issues we intend to pursue in a continuation

of the TMD project.

ACKNOWLEDGMENTS

We especially thank J. Collins for many useful discus-
sions regarding his book. Helpful comments were also

TRANSVERSE MOMENTUM DEPENDENT PARTON . . . PHYSICAL REVIEW D 83, 114042 (2011)

114042-15



provided by C. Aidala, D. Boer, M. Buffing, A. Metz, and
P. Mulders. We thank P. Nadolsky for discussions of the
BLNY fits, and G. Watt for help in implementing the
MSTW parton distribution functions. Support was pro-
vided by the research program of the ‘‘Stichting voor
Fundamenteel Onderzoek der Materie (FOM)’’, which is
financially supported by the ‘‘Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO)’’. M. Aybat
also acknowledges support from the FP7 EU-program
HadronPhysics2 (Contract No. 2866403). All Feynman
graphs were made using JAXODRAW [88].

APPENDIX A: COEFFICIENT FUNCTIONS

In this Appendix, we present the steps for calculating the

collinear coefficient functions [the ~Cf=jðx=x̂; b�;
�2

b;�b; gð�bÞÞ functions in the A factor of Eq. (26)]. We

first briefly review the steps, presented in Ref. [25], for the
case of the TMD FFs. Then we explain the extension to the
analogous case for the TMD PDFs.

In perturbation theory, the FF in Eq. (13) itself obeys a
collinear factorization theorem [3], valid for small bT . The
collinear part is just the standard integrated FF. Writing the
factorization as ~D ¼ d � C, we have to first order

~D ½1
 ¼ d½0
 � ~C½1
 þ d½1
 � ~C½0
: (A1)

The superscripts label the order in perturbation theory.

Using d½0

j=j0 ðzÞ ¼ �jj0�ðz� 1Þ for the lowest order inte-

grated FF, one finds

~C ½1

j=fðz;bTÞ ¼ ~D½1


j=fðz;bTÞ �
d½1
j=fðzÞ
z2�2�

; (A2)

for the first order FF coefficient function. To get the col-
linear coefficient function, all that is needed then is to
calculate the first order expression for the unintegrated

FF ~D½1

j=fðz;bTÞ and for the integrated case dj=fðzÞ. Since

~C½1

j=fðz;bTÞ is independent of the species of external had-

ron, the calculation can be done for the special case of a
quark hadronizing to a gluon.

The order Oðg2Þ diagram is shown in Fig. 5. There is no
leading contribution from the soft region and, hence, no

need to subtract soft-factor contributions. Calculating the
first order TMD FF gives

~D½1

g=qðz;bTÞ ¼ g2�2�CF

ð2�Þ4�2�z

Z
dk�d2�2�kTe

ikT �bT

� 2��ððk� pÞ2Þ 1
4

Tr
P
j
�þk�jðk�pÞ�jk

ðk2Þ2

¼ g2ð4�2�2Þ�CF

8�3

Z d2�2�kTe
ikT �bT

k2T

�
�
1þ ð1� zÞ2 � �z2

z3

�
: (A3)

The corresponding integrated FF is calculated in nearly the
same way, except that bT is set to zero and the 1=z factor in
the definition (13) is changed to z2��1 in the integrated

case. Also, an MS counterterm is needed to remove the
resulting UV divergence. The result is

d½1
g=qðzÞ ¼
g2ð4�2�2Þ�CF

8�3

Z d2�2�kT

k2T

�
1þð1� zÞ2� �z2

z1þ2�

�

� g2CFð4�Þ�
8�2�ð1��Þ�

�
1þð1� zÞ2

z

�
: (A4)

Performing the kT integrals and putting all the terms to-
gether in Eq. (A2) gives the collinear coefficient function,

~Cg=j0 ðz;bT ;�; �D=�
2Þ

¼ 	sCF

2�z3

�
2½1þ ð1� zÞ2


�
ln

�
2z

bT�

�
� �E

�
þ z2

�

þOð	2
sÞ: (A5)

For the TMD FF of a quark hadronizing to a quark, the
diagrams are shown in Fig. 6, along with the soft subtrac-
tion factors in Fig. 7 that are needed according to the
definition in Eq. (8). Apart from the need to include soft-
factor contributions, the steps are analogous to those that
led to Eq. (A5) The integrated FF is found again using

Fig. 6 along with MS counterterms. The result is

~Cj=j0 ðz;bT ;�; �D=�
2Þ

¼ �j0j�ð1� zÞ þ �j0j
	sCF

2�

�
2

�
ln

�
2z

�bT

�
� �E

�

�
��

2

1� z

�
þ
þ 1

z2
þ 1

z

�
þ 1

z2
� 1

z
þ �ð1� zÞ

�
�
� 1

2
½lnðb2T�2Þ � 2ðln2� �EÞ
2 � ½lnðb2T�2Þ

� 2ðln2� �EÞ
�
ln

�
�D
�2

���
þOð	2

sÞ: (A6)

k

k−p

p

FIG. 5. One-loop diagram used contributing to the TMD FF
and the integrated FF of a quark fragmenting to a gluon.
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Again, the details for the above FF calculation can be
found in Ref. [25].

The steps for calculating the order-Oðg2Þ contributions
to the collinear coefficient functions for the TMD PDFs are
analogous to the steps used in the TMD FF case, with some
minor changes. We provide them here, presented for the
first time in the context of TMDs. The results should be
equivalent to calculations already done in the CSS formal-
ism, up to possible changes in scheme. For the TMD PDF,
the analogue of Eq. (A2) is

~C ½1

j=fðx;bTÞ ¼ ~F½1


j=fðx;bTÞ � f½1
j=fðxÞ: (A7)

The difference in factors of longitudinal momentum frac-
tion in the second term comes from the different normal-
ization in Eq. (30) as compared with (23). Again, we may
perform the calculation for on-shell external partons. Using
the diagram in Fig. 8, for the TMD PDF of a quark inside a
gluon one has

~F½1

q=gðx;bTÞ

¼� Tfg
2�2�

ð2�Þ4�2�ð1��Þ
Z
dk�d2�2�kTe

�ikT �bT2��ððp�kÞ2Þ

�1

4

P
polTrð�þk�pðk�pÞ��pkÞ

ðk2Þ2

¼g2ð4��2Þ�Tf

8�2�ð1��Þ
Z 1

0

d2�2�kT

k2T
e�ikT �bT

�
1�2xð1�xÞ

1��

�
;

(A8)

FIG. 7. One-loop diagrams for the soft-factor contributions of Eq. (31). Hermitian conjugate graphs are also needed but are not
shown.

k k

p pp

k

k−p

k−p
l

(a) (b) (c)

FIG. 6. One-loop diagrams contributing to the TMD FF and the integrated FF of a quark fragmenting into a quark.

k

k−p
p

FIG. 8. One-loop diagram contributing to the TMD PDF and
the integrated PDF for a quark inside a gluon.
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where �
�
p is the polarization vector for the initial state

gluon and we sum and average over all possible polar-
izations. The integrated PDF is found again by setting
bT ¼ 0 in the above equation and adding the appropriate

MS counterterm for the resulting UV divergence. This
gives

f½1
q=gðxÞ ¼
g2ð4��2Þ�Tf

8�2�ð1� �Þ
Z 1

0
dk2T

k�2�
T

k2T

�
1� 2xð1� xÞ

1� �

�

� g2ð4��2Þ�Tf

8�2�ð1� �Þ� ½1� 2xð1� xÞ
: (A9)

Using Eqs. (A7)–(A9) and evaluating the kT integrals,
gives the TMD PDF collinear coefficient function for
finding a quark of flavor j0 in a gluon at order 	s,

~Cj0=gðx;bT;�; �F=�
2Þ

¼ 	sTf

2�

�
2½1� 2xð1� xÞ


�
ln

�
2

bT�

�
� �E

�

þ 2xð1� xÞ
�
þOð	2

sÞ: (A10)

Finally using diagrams in Fig. 9 together with the soft
subtraction terms in Fig. 7 for the TMD PDF for finding a
quark of flavor j0 in a quark of flavor j and again the

diagrams in Fig. 9 together with the MS UV counterterms
for the integrated quark PDF, we find to order 	s,

~Cj0=jðx;bT ;�; �F=�
2Þ

¼ �j0j�ð1� xÞ þ �j0j
	sCF

2�

�
2

�
ln

�
2

�bT

�
� �E

�

�
��

2

1� x

�
þ
� 1� x

�
þ 1� xþ �ð1� xÞ

�
�
� 1

2
½lnðb2T�2Þ � 2ðln2� �EÞ
2 � ½lnðb2T�2Þ

� 2ðln2� �EÞ
 ln
�
�F
�2

���
þOð	2

SÞ: (A11)

APPENDIX B: ANOMALOUS DIMENSIONS

All calculations of anomalous dimensions defined in
Eqs. (21), (21), and (29) use dimensional regularization

with the MS scheme. The anomalous dimension of the
quark TMD PDF up to order 	s is

�Fð�; �F=�
2Þ ¼ 	s

CF

�

�
3

2
� ln

�
�F
�2

��
þOð	2

sÞ: (B1)

At order 	s, the quark TMD FF anomalous dimension is
the same as for the TMD PDF. We note that these results
are consistent with what is found in, e.g., Ref. [61] using
different methods.
The CS kernel, in Eq. (18), up to order 	s in bT space is

~Kð�; bTÞ ¼ �	sCF

�
½lnð�2b2TÞ � ln4þ 2�E
 þOð	2

sÞ:
(B2)

The anomalous dimension of ~K [see Eq. (20)] is up to order
	s,

�Kð�Þ ¼ 2
	sCF

�
þOð	2

sÞ: (B3)
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