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1 Introduction

The transverse momentum dependent distributions (TMD) offer the possibility to study

the structure of hadrons in great detail [1]. The TMD parton distribution functions (TMD-

PDF) and fragmentation functions (TMDFF) enter factorization theorems for cross sections

of such processes as Drell-Yan or semi-inclusive deep inelastic scattering (SIDIS) [2–5]. The

usage of the highest available perturbative input is important for the successful description

of the experimental data, and significantly increases the predictive power of the frame-

work [6, 7]. Recently, many efforts were made to evaluate elements of TMD factorization

theorem at NNLO. As a consequence, the evolution of TMD distributions has been cal-

culated at two and three loops [8–10] and the matching of unpolarized TMDPDFs and

TMDFFs have been calculated up to two loops respectively in [11–16] and in [16, 17]. The

status of the polarized distributions is weaker, given also a large number of different dis-

tributions. In this work, we consider transversity and pretzelosity (also called quadrupole)

TMD distribution, and we evaluate their twist-2 matching at two loop order.

Both these distributions have been recently subject of experimental, phenomenological

and theoretical investigations. The SIDIS data relevant for this extractions come mainly

from HERMES [18] and COMPASS [19, 20]. Recently also RHIC has provided data in

this direction [21] and we expect that transversity will be one of the central measurements

in future EIC and LHCSpin. The transverse momentum dependent transversity has been

extracted using SIDIS data by Anselmino et al. in [22–24] with Gaussian models without
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taking into account the TMD evolution. In refs. [25, 26] the lowest order evolution has been

considered. An issue of these extractions is the size of the theoretical error. The reduction

of it essentially requires the inclusion of the higher order perturbative information. The

detailed discussion on theoretical errors, their dependence on perturbative order and related

issues has been recently produced in [7]. Let us also mention here the attempts to constrain

the transversity distributions by Monte Carlo and lattice collaborations [27]. More work

in this sense is expected in the future. The transversity TMDFF is also an interesting and

practically important object, see [28] for a recent review. For what concern pretzelosity,

we mention here the recent analysis made in [29, 30]. According to this analysis, the

pretzelosity distribution is very small and practically consistent with a null value.

The one loop results for twist-2 TMDPDFs matching have been obtained recently by

our group in [31]. The transversity and pretzelosity belong to the set of TMD distributions

which in the regime of large transverse momentum or, equivalently, the small transverse

distance match on twist-2 functions. This fact allows us to perform the two-loop cal-

culations in a manner similar to [16]. Namely, we start from the operator definition of

transversely polarized TMD distribution and consider its quark matrix element perturba-

tively with successive matching on the collinear matrix element. The main parts of the

calculation practically coincide with the unpolarized case, apart from the algebraic struc-

tures and several new master integrals. The calculation is done in the δ-regulator scheme

introduced in [8]. The structure of ultraviolet and rapidity divergences is independent of

polarization, as it is predicted by TMD factorization theorem [2, 5], and confirmed by the

present calculation. Therefore, the renormalization of these divergences is done using the

universal TMD soft factor [8] and renormalization constants calculated in the unpolarized

case [16].

We anticipate here that the matching coefficient obtained for pretzelosity distribution

is zero both at one and two loops. This result is particularly surprising since in principle this

observable is expected to have a twist-2 contribution [31]. As a counterexample, we recall

that the linearly polarized gluon TMD, which has the same quadrupole tensor structure

has a matching coefficient different from zero already at one loop order [31]. So, the

theoretical result that we obtain is puzzling. Nonetheless, it confirms the phenomenological

and experimental analyses done in [29, 30].

For the case of transversity, we provide the matching results at next-to-next-to-leading

order (NNLO) both for TMDPDF and TMDFF cases. In the case of TMDFF, we also

report the NLO expression, which is missing in the literature to our knowledge. Thus,

with the result of this work, the transversity distribution is evaluated at the same level

of precision as the unpolarized distributions, and it is the first example of NNLO eval-

uation of polarized distribution in the TMD factorization formalism. Consequently, the

phenomenology for related observables can be developed with a similar level of precision.

We provide the essential notation in section 2 and more technical details of TMD

distributions in section 3. The results for transversity and pretzelosity TMDPDFs are

described in section 4 and 5 and the case of TMDFF is considered in section 6.
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2 Transversely polarized TMD distributions

The TMD distribution of the transversely polarized quark is

Φ
[iσα+γ5]
q←h (x, b) =

1

2

∫
dλ

2π
e−ixp

+λ

× 〈P, S|T̄{q̄(λn+ b)W̃ T
n (λn+ b)} iσα+γ5 T{W̃ T †

n (0)q(0)}|P, S〉, (2.1)

where index α is transverse and n is a light-like vector. The gauge links W̃ T
n (x) are

rooted at the position x and continue to the infinity along the direction n. We use the

standard notation for the light-cone components of vector vµ = nµv− + n̄µv+ + gµνT vν
(with n2 = n̄2 = 0, n · n̄ = 1). The superscript T in Wilson lines indicates that they

are incorporated by an additional transverse link at light-cone infinity, which ensures the

gauge invariance of the operator.

The transversely polarized TMD distribution is parameterized in terms of four TMD

parton distribution functions (TMDPDFs), which were originally introduced in momentum

space [32, 33]. For our purposes we need the equivalent parametrization in the position

space. It reads

Φ
[iσα+γ5]
q←h (x, b) = sαTh1(x, b)− iλbαMh⊥1L(x, b) (2.2)

+iεαµT bµMh⊥1 (x, b) +
M2b2

2

(
gαµT
2

+
bαbµ

b2

)
sTµh

⊥
1T (x, b),

where sT is the transverse part of the hadron spin, λ is helicity, M is the mass of hadron and

b2 = −b2 > 0. The detailed relation between momentum and position space definitions

can be found in [34, 35]. In this work we consider the functions h1, which is known as

TMD transversity distribution, and in the function h⊥1T , which is known as the pretzelosity

distribution. Note that the general Lorentz structure for a transversely polarized operator

is usually addressed as iσ+αγ5 = εανT σ+ν . However, at leading twist the transversity

and pretzelosity distributions have no mixture with gluon distributions and the common

practice is to eliminate the γ5 or εT from the definition of these operators. Thus, the Lorentz

structure for these two distributions is simply expressed using σα+. On the contrary, in a

longitudinally polarized operator there is mixture with gluons at leading twist and the γ5

cannot be dropped nor in definition nor in computations (see [31] for a discussion of the

different schemes for γ5 used in a NLO calculation of the helicity distribution).

The small-b operator product expansion (OPE) allows the systematic expansion of the

TMD operator in powers of b. The operators that are associated to the powers of b are

then classified by twists. The evaluation of the matrix element of the small-b OPE results

into an expression of the form

Φ
[iσα+γ5]
q←h (x, b) =

∑
f

[
Cαβq←f ;tw-2(b)⊗ hβ;tw-2

f←h

]
(x) (2.3)

+bβ
∑
f

[
Cαβγq←f ;tw-3(b)⊗ hγ;tw-3

f←h

]
(x) + . . . ,
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where h are collinear distributions, C are coefficient functions and ⊗ is the integral convo-

lution in the momentum fractions. The terms in eq. (2.3) incorporate all tensor structures

of the TMD distribution parametrization in eq. (2.2). Extracting particular tensors, one

can find the matching of individual TMDPDFs onto collinear functions. In particular, the

tensor structure of h1 and h⊥1T appears in the twist-2 term, while the tensor structure for

h⊥1L and h⊥1 can be produced only at the twist-3 [35]. In this work we concentrate on the

twist-2 contributions.

The OPE in transversely polarized case has exceptionally simple structure, since there

are no gluon operators. The only PDF that contribute to the matching of these twist-2

distributions is the collinear transversity PDF. Its expression reads [36]

sαTh1(x) =
1

2

∫
dλ

2π
e−ixp

+λ〈P, S|T̄{q̄(λn)[λn, 0] iσα+γ5 q(0)}|P, S〉. (2.4)

The PDF h1(x) can also be interpreted as the probability distribution to find a transversely

polarized quark in a hadron.

The coefficient functions of the OPE are dimensionless and the dependence on b enters

only via logarithms, or via dimensionless tensors. Generally, the twist-2 coefficient functions

can have structures ∼ gα,βT and ∼ bαbβ/b2. It is natural to decompose it as

Cαβq←f ;tw-2(x, b) = gαβT δCq←f (x,Lµ) +

(
gαβT

2(1− ε)
+
bαbβ

b2

)
δ⊥Cq←f (x,Lµ), (2.5)

here ε the parameter of dimension regularization (d = 4− 2ε), and

Lµ = ln

(
µ2b2

4e−2γE

)
. (2.6)

The pieces of this decomposition do not mix. In particular, the tensor in the second term

of eq. (2.5) has zero trace (in d = 4 − 2ε dimensions). Comparing the parametrization in

eq. (2.5) with the parametrization for TMD distributions we find that the matching for

individual TMDPDFs are

hq1(x, b) =

∫ 1

x

dy

y

∑
f=q,q̄

δCq←f

(
x

y
,Lµ

)
hf1(y) +O(b2), (2.7)

h⊥,q1T (x, b) =
2

b2M2

∫ 1

x

dy

y

∑
f=q,q̄

δ⊥Cq←f

(
x

y
,Lµ

)
hf1(y) +O(b2), (2.8)

where we explicitly express the Mellin convolution integral. In these formulas we also

suppress the scale dependence of functions which is discussed in details in the next section.

The sum over flavors runs only over non-singlet combinations, since there are no gluon

operator with transverse polarized configuration that could mix with the quarks.

The coefficient functions δC and δ⊥C can be evaluated perturbatively. Naturally, at

tree order ∼ a0
s, the coefficient function in eq. (2.5) is proportional to gαβT , and thus only

δC is non-zero. The terms proportional to ∼ bαbβ/b2 are generated by loop-diagrams and
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appear already at one-loop level [31]. In ref. [31] it has been found that the 1-loop contri-

bution to δ⊥C is zero in four dimensions, but it can be different from zero in dimensional

regularization at order O(ε). This observation suggests that potentially this contribution

does not vanish at two-loop level.

3 Evaluation of small-b OPE

In this section we discuss technical details of the matching procedure at the twist-2 level.

In particular, we present the properties of the operator under renormalization and discuss

the divergences that appear along the calculation. Since these details are universal for all

TMDPDFs, we do not specify them, but instead we use the generic notation Φ, that in the

context of this work mean h1 or h⊥1T .

3.1 Renormalization of TMDPDF

The TMD operator has two types of divergences. The ultraviolet (UV) and rapidity di-

vergences. Both these divergences are renormalized by appropriate renormalization con-

stants [5]. Consequently, the renormalized, and hence physical, TMDPDF depends on two

scales. Traditionally, UV renormalization scale is denoted by µ and the rapidity renormal-

ization scale is denoted by ζ. The renormalized TMDPDF has the form

Φren(x, b;µ, ζ) = Z(µ, ζ|ε)R(b, µ, ζ|ε, δ)Φunsub.(x, b|ε, δ), (3.1)

where we explicitly show the dependence on regularization parameters. In particular, ε is

the parameter of dimensional regularization (d = 4 − 2ε) and regularizes UV divergences,

which are renormalized by the factor Z. The δ is the parameter of δ-regularization [8, 16],

and R is the rapidity renormalization factor. The singularities in ε and δ cancels in the

product of eq. (3.1). The renormalization factors are independent of the Lorentz structure

but they change according the parton color representation. The renormalization factors Z

and R are intertwined and it is important to specify in which order the divergences are

subtracted. Here we work in the scheme where renormalization of rapidity divergences is

made prior to the renormalization of UV divergences. The final result for Φren is of course

independent of the subtraction order.

The renormalization factors are scheme dependent. For the UV renormalization we use

the MS-scheme. To specify the renormalization scheme for rapidity divergences we recall

that within the TMD factorization theorem the rapidity divergences are compensated by

the soft factor [2, 5, 37]. The soft factor is defined as following

S(b) =
Trcolor

Nc
〈0|
[
ST †n S̃Tn̄

]
(b)
[
S̃T †n̄ STn

]
(0)|0〉, (3.2)

where Sn and S̃n̄ stand for soft Wilson lines along n and n̄ (for the precise definition of W T

and S̃T see e.g. [16]). The factors R introduced in eq. (3.1) also renormalize the soft factor,

such that the whole factorization expression is finite, see the proof and detailed derivation
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in [5]. It can be shown that within a properly defined scheme the renormalized soft factor

is trivial, i.e.

R(b, µ, ζ|ε, δ+)S(b|ε, δ+, δ−)R(b, µ, ζ̄|ε, δ+) = 1, (3.3)

where δ± regularize rapidity divergences in the corresponding direction. In this scheme the

rapidity renormalization factor has an exceptionally simple form [3, 5, 8]

R(b, µζ|ε, δ+) = S−1/2

(
b|ε, δ

+

2p+

√
ζ,

δ+

2p+

√
ζ

)
. (3.4)

Such a scheme is very natural since it does not leave any remnant of soft factor in the fac-

torization theorem, and therefore, coincides with other popular schemes of rapidity renor-

malization, e.g. with the one suggested in [2]. Although here we adopt the δ-regularization

notation, these expressions could be translated to other regularization schemes, e.g. the

translation dictionary of δ-regularization to the regularization by tilted Wilson lines is

given in [38].

3.2 Scaling properties

The dependence on renormalization scales is given by the pair of evolution equations

µ2 d

dµ2
Φren(x, b;µ, ζ) =

γF (µ, ζ)

2
Φren(x, b;µ, ζ), (3.5)

ζ
d

dζ
Φren(x, b;µ, ζ) = −D(µ, b)Φren(x, b;µ, ζ). (3.6)

The anomalous dimensions are defined via the corresponding renormalization constants.

A detailed study of this system has been recently presented in ref. [7]. The values of

anomalous dimensions are known up to three-loop order inclusively [9, 10, 39, 40].

The transversity PDF evolves with the DGLAP kernel evolution equation

µ2 d

dµ2
hq1(x, µ) =

∑
f=q,q̄

∫ 1

x

dy

y
δPq←f

(
x

y

)
hf1(y, µ), (3.7)

where the kernel δP is known up to two loop order [41, 42]. Combining together

eq. (3.5), (3.6) with eq. (3.7) we obtain the evolution properties of the matching kernels.

They are

µ2 d

dµ2
δCq←f (x,Lµ, lζ) =

∑
f ′=q,q̄

∫ 1

x

dy

y
δCq←f ′

(
x

y
,Lµ, lζ

)(
γV (µ, ζ)

2
δff ′δ(ȳ)−δPf ′←f (y)

)
,

(3.8)

ζ
d

dζ
δCq←f (x,Lµ, lζ) =−D(µ, b)δCq←f (x,Lµ, lζ), (3.9)

where lζ = ln(µ2/ζ). The analogous expression holds for δ⊥C coefficient function. In

perturbation theory, the expression for the coefficient function can be presented as

δCf←f ′(x,Lµ, lζ) =

∞∑
n=0

ans

n+1∑
k=0

n∑
l=0

Lkµ llζ δC
(n;k,l)
f←f ′ (x), (3.10)

– 6 –
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where as = g2/(4π)2. The coefficients δC(n;k,l) with k + l > 0 are fixed order-by-order

with the help of the renormalization group equations in eq. (3.8), (3.9). The expressions

for these coefficients in their generic form up to two-loop are given, e.g. in ref. [17] (see

appendix D.1) or in ref. [6] (see appendix B.2). The explicit expressions for the transversity

function are presented in the supplementary file. Thus, the only non-trivial part to evaluate

is δC(n;0,0).

3.3 Evaluation of matching coefficient at NNLO

In order to find the expression for the matching coefficients, we evaluate the matrix elements

with free quark states. The spinor indices of the in/out-going quarks can be contracted with

iσ−βγ5, since it is the only non-vanishing spinor structure at twist-2. The resulting tensor

diagram can be projected on tensor structures of transversity or pretzelosity. The obtained

result is then compared with the matched expressions in eq. (2.7), (2.8). Schematically, we

deal with the equation

Φf←q(x, b) =
∑
f ′=q,q̄

δCf←f ′ ⊗ h1;f ′←q(x), (3.11)

where h1;f ′←q(x) are the PDF evaluated on free-quark states. This equation can be solved

recursively starting from the first non-zero contribution.

Evaluating Feynman diagrams we keep the momentum of quark collinear, pµ = p+n̄µ.

This choice of kinematics significantly simplifies the calculation. In particular, it implies

that b2 is the only (Lorentz invariant) scale that is presented in the diagrams. Since the

scaleless loop-integrals are zero in the dimensional regularization, many diagrams vanish.

For example, this is the case of all pure virtual correction diagrams. Also all loop-integrals

contributing to PDF are zero. Thus the only non-zero part of h1(x) is the renormalization

constant. That is, the needed expression for PDF evaluated on quarks is a pure singularity,

which can be found using renormalization group equations. It reads

h
[0]
f←f ′(x) = δff ′δ(1− x), h

[1]
f←f ′(x) = −

δff ′

ε
δP

[1]
f←f (x), (3.12)

h
[2]
f←f ′(x) =

1

2ε2

(∑
r=q,q̄

δP
[1]
f←r ⊗ δP

[1]
r←f ′ +

β0

2
δP

[1]
f←f ′

)
(x)− 1

2ε
δP

[2]
f←f ′(x),

where δP [n] are perturbative coefficients of transversity DGLAP kernel at ans -order [41, 42],

and β0 = 11
3 CA −

2
3Nf is the QCD β-function. Note that δP

[1]
q←q̄(x) = 0.

The evaluation of TMD is made using the δ-regularization, which is described in details

in [8, 16]. It is a very convenient form of regularization, in particular, because it allows a

clear separation of divergences. The outcome of each diagram at NNLO has a generic form

diag. = (b2)2ε

(
f1(x, ε) +

(
δ+

p+

)ε
f2(x, ε) +

(
δ+

p+

)−ε
f3(x, ε) (3.13)

+ ln

(
δ+

p+

)
f4(x, ε) + ln2

(
δ+

p+

)
f5(x, ε)

)
.
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where the functions fi are regulated in the limit x → 1 with +-distributions. The second

and the third terms here represent the IR divergence. Therefore, the functions f2 and f3

exactly cancel in the sum of all the diagrams (and this fact can be also traced in the sum

of sub-classes of diagrams). The last two terms represent the rapidity diverging pieces and

thus the functions f4 and f5 are canceled by the rapidity renormalization factor. Altogether

these cancellations serve as a good intermediate check of the computation.

Summing together the diagrams we obtain the un-subtracted expression for TMDPDF

on free-quark states. Let us denote it as

Φunsub.
f←f ′ = Φ

[0]unsub.
f←f ′ δff ′ + asΦ

[1]unsub.
f←f ′ δff ′ + a2

sΦ
[2]unsub.
f←f ′ +O(a3

s), (3.14)

and it is UV and rapidity divergent. Starting from eq. (3.1) the renormalization procedure

reads (here we omit the suffix ren for simplicity)

Φ
[0]
f←f ′ = Φ

[0]unsub.
f←f ′ (3.15)

Φ
[1]
f←f ′ = Φ

[1]unsub.
f←f ′ −

S[1]Φ
[0]unsub.
f←f ′

2
+
(
Z [1]
q − Z

[1]
2

)
Φ

[0]unsub.
f←f ′ (3.16)

Φ
[2]
f←f ′ = Φ

[2]unsub.
f←f ′ −

S[1]Φ
[1]unsub.
f←f ′

2
−
S[2]Φ

[0]unsub.
f←f ′

2
+

3S[1]S[1]Φ
[0]unsub.
f←f ′

8

+
(
Z [1]
q − Z

[1]
2

)Φ
[1]unsub.
f←f ′ −

S[1]Φ
[0]unsub.
f←f ′

2


+
(
Z [2]
q − Z

[2]
2 − Z

[1]
2 Z [1]

q + Z
[1]
2 Z

[1]
2

)
Φ

[0]unsub.
f←f ′ , (3.17)

where superscript in square brackets indicates the perturbative order of a quantity. In this

expression we have Z = Z−1
2 Zq with Z2 the quark-field renormalization constant, and Zq

the TMD renormalization constant. The expression for them can be found e.g. in [16]. The

soft function up to NNLO in δ-regularization is calculated in [8].

4 Matching of transversity TMD distribution at NNLO

The evaluation of the transversity matching coefficient is very similar to the evaluation

of the unpolarized matching coefficient made in [16]. The main difference, which only

simplifies the evaluation, is the absence of the mixing with the gluon operator.

The LO contribution expression for transversity TMDPDF is

h
[0]
1f←f ′(x) = δ(1− x)δff ′ . (4.1)

Substituting it in eq. (3.11), we find the LO matching coefficient

δC
[0]
f←f ′ = δC

(0;0,0)
f←f ′ (x) = δff ′δ(1− x). (4.2)

Using it as a starting expression for iteration we obtain

δC
[1]
f←f ′ = h

[1]
1;f←f ′(x, b)− h[1]

1;f←f ′(x), (4.3)

δC
[2]
f←f ′ = h

[2]
1;f←f ′(x, b)−

∑
r

δC
[1]
f←r ⊗ h

[1]
1;r←f ′(x)− h[2]

1;f←f ′(x). (4.4)

– 8 –
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Some intermediate expressions, such as renormalization constants, un-subtracted and sub-

tracted expressions, can be found in the supplementary Mathematica file. Here we present

only the final result of the evaluation.

The NLO expression for matching coefficient reads

δC
[1]
f←f ′(x, b) = CF δff ′

(
− 4xLµ

(1− x)+
+ δ(x̄)

(
−L2

µ + 2Lµlζ − ζ2

))
, (4.5)

where the (. . .)+-distribution is defined as usual

(f(x))+ = f(x)− δ(1− x)

∫ 1

0
dyf(y). (4.6)

This result agrees1 with the ones obtained in refs. [31, 38, 43]. It is easy to see that

logarithmic part of eq. (4.5) satisfies renormalization group equation eq. (3.8), (3.9). The

finite part is

δC
(1;0,0)
f←f ′ (x) = −CF ζ2δff ′δ(x̄). (4.7)

Note, that in order to evaluate NNLO matching coefficient one needs the terms suppressed

by ε, since they interfere with the singularities of the PDF, and produce a non-zero finite and

1/ε contribution to eq. (4.4). The complete expression at all orders of ε can be found in [31].

The expression for δC [2] is lengthy. Since the only non-trivial part is the finite part

δC(2;0,0) we restrict to it here. The logarithmic part can be restored using the renormal-

ization group, and in the explicit form it is given in the supplementary Mathematica file.

At NNLO we have the mixing with anti-quark operator, therefore, the matching is split

into two channels

δC
(2;0,0)
f←f ′ (x) = δff ′δC

(2;0,0)
q←q (x) + δff̄ ′δC

(2;0,0)
q←q̄ (x), (4.8)

where

δC(2;0,0)
q←q (x) = C2

F

{
δp(x)

[
4Li3(x̄)− 20Li3(x)− 4lnx̄Li2(x̄) + 12lnxLi2(x) (4.9)

+2ln2x̄ lnx+ 2lnx̄ ln2x+
3

2
ln2x+ 8lnx+ 20ζ3

]
− 2lnx̄+ 4x̄

}
+CFCA

{
δp(x)

[
8Li3(x)− 4Li3(x̄) + 4lnx̄Li2(x̄)− 4lnxLi2(x)

− ln3x

3
− 11

6
ln2x− 76

9
lnx+ 6ζ3 −

404

27

]
+ 2lnx̄+

14

3
x̄

}
+CFNf

{
δp(x)

[
ln2x

3
+

10

9
lnx+

56

27

]
− 2x̄

3

}
+δ(x̄)

[
C2
F

5ζ4

4
+ CFCA

(
5ζ4 −

77

9
ζ3 −

67

6
ζ2 +

1214

81

)
+CFNf

(
14

9
ζ3 +

5

3
ζ2 −

164

81

)]
,

1The calculation made in [43] is made in a non-standard MS-scheme. And for this reason, the coefficient

presented in [43] is different from eq. (4.5) by ζ2δ(x̄) term.
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δC
(2;0,0)
q←q̄ (x) =

(
C2
F −

CFCA
2

){
δp(−x)

[
8Li3

(
1

1 + x

)
− 8Li3

(
x

1 + x

)
(4.10)

+4Li3(x2)− 4lnxLi2(x2) + 4ln2xln(1 + x)− 4lnxln2(1 + x)

−2

3
ln3x− 4ζ3

]
+ 2x̄

}
.

Here,

δp(x) =
2x

1− x
, (4.11)

is the regular part of LO DGLAP kernel. In this expression the singularity at x → 1 is

treated as the (. . .)+-distribution. These expressions are one of the main result of this work.

It is intriguing to observe that the parts of eq. (4.9), (4.10) enclosed by the square

brackets literally coincide with corresponding parts for the unpolarized matching coefficient,

see [16] eqs. (7.3) and (7.8). In other words, the matching coefficient has the form

C(2;0,0)(x) = P [1](x)F1(x) + F2(x) + δ(x̄)F3, (4.12)

where P [1](x) is LO DGLAP kernel, for the corresponding PDF. Then we observe that the

function F1(x) and the constant F3 are the same for unpolarized and transversity kernels

(for both flavor channels). Such behavior is expected since the contributions proportional

to 1/(1 − x), as well as δ(x̄) contributions, that primary form the LO DGLAP kernel,

comes from the diagrams where the quarks interact with the Wilson lines. Such diagrams

are insensitive to the polarization structure of the operator. The rest of diagrams are not

singular in the limit x → 1, and thus form a regular contribution. For more detailed

discussion on the internal structure of transversity kernel see [42].

5 Matching of pretzelosity distribution at NNLO

The calculation for the matching of the pretzelosity TMDPDF over the transversity inte-

grated PDF is in principle similar to the one of the transversity TMDPDF. In this case

one has a different projector, see eq. (2.5),

bµbν

b2 +
gµνT

2(1− ε)
, (5.1)

to be compared to gµνT used in the transversity calculation. Moreover the relation

σµ+

(
bµbν

b2 +
gµνT

2(1− ε)

)
σ−ν = 0. (5.2)

allows a simplification of many diagrams. In particular, the diagrams with a non-interacting

quark line are exactly zero, according to the expression (5.2). This feature reduces the

number of diagrams that we have to calculate for the pretzelosity TMD distribution. The

pretzelosity projector is built as a sum of two terms. The first one is gµνT and it is the

same as in the transversity calculation. As the topology of the diagrams is the same in
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both cases the integrals that appear in the calculation of the diagrams are also the same.

The first term of the projector is bµbν/b2 and this implies new types of master integrals,

that has scalar products (b · q)2 in the numerator (here, qµ is a loop-momentum). Such

structures appears due to the convolution of a generic diagram with open indices with the

projector (5.1).

The small-b expression for the matching of the pretzelosity distribution is written in a

form equivalent to the transversity case,

h⊥1T,f←f ′(x, b) =
∑

r=q,q̄,q′

[
δ⊥Cf←r(b)⊗ δfr←f ′

]
(x) +O(b2). (5.3)

Note, that the collinear function in eq. (5.3) is the transversity PDF. As in the transversity

case, at NLO we have only the quark-to-quark channel, and at NNLO we have quark-to-

quark and quark-to-antiquark channels.

Due to eq. (5.2), the un-subtracted pretzelosity distribution is zero at LO, i.e.

δ⊥Φ[0](x) = 0. Consequently, the LO matching coefficient is also zero, i.e. δ⊥C
[0]
q←q(x) = 0.

This fact induces a simplification in the renormalization of the pretzelosity TMDPDF at

NLO, demanding the absence of any divergences at this order. Moreover, due to the ab-

sence of the tree order collinear counterpart for the matching procedure the pretzelosity is

suppressed by as. As a result, the expression for the matching coefficient is given solely by

the one-loop TMD matrix element

δ⊥C [1]
q←q(x, b) = δ⊥Φ[1]

q←q(x, b) = −4CFB
εΓ(−ε)x̄ε2. (5.4)

We see that the obtained matching coefficient is ε-suppressed, so, in the limit ε → 0 it

is zero, i.e. δ⊥C
[1]
q←q(x, b) = 0. This result is given in [31]. According to eq. (5.4), the

pretzelosity distribution is suppressed numerically however this result does not ensure that

a non-trivial coefficient can be obtained at higher orders.

The nullity of the LO pretzelosity distribution and the ε-suppressed behavior of the

NLO contribution yields in a simple expression for the renormalized pretzelosity TMDPDF

at NNLO

h
⊥[2]
1T,f←f = δ⊥Φ

[2]
f←f ′ −

S[1]δ⊥Φ
[1]
f←f ′

2
+
(
Z [1]
q − Z

[1]
2

)
δ⊥Φ

[1]
f←f ′ (5.5)

In this expression it is important to keep all ε-terms of δ⊥Φ
[1]
f←f ′ , since they are multi-

plied by factors with leading 1/ε2-behavior (the TMD renormalization factor, and soft

factor). Thus, these terms produce 1/ε singularities, despite the suppressed behavior of

δ⊥Φ
[1]
f←f ′ . Naturally, these terms cancel the corresponding ultraviolet singularities of the

un-subtracted TMD matrix element. We have also checked the exact cancellation of in-

frared divergences, and rapidity divergences. It is interesting to trace the distribution of

the contributions between diagrams with different color factor. There are four types of

contribution

δ⊥Φ
[2]
f←f ′ = C2

FAF + CF

(
CF −

CA
2

)
AFA +

CFCA
2

AA + CFNfAN . (5.6)
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The contribution AN is ε-suppressed in a similar manner as the one-loop expression. The

contribution AF is canceled by the renormalization factor entirely up terms suppressed in

ε. Thus, the only non-zero contribution to the TMD matrix element comes from AFA and

AA, which we find to be equal up to higher powers of ε. So, concluding we have found

AF =
S[1]δ⊥Φ

[1]
f←f ′

2
−
(
Z [1]
q − Z

[1]
2

)
δ⊥Φ

[1]
f←f ′ +O(ε), (5.7)

AFA = AA +O(ε), AN = O(ε). (5.8)

Therefore, the contribution proportional to CA disappears from the final expression, despite

only these diagram are non-trivial. The resulting TMD matrix element in the pretzelosity

channel is proportional to C2
F only, and it reads

h
⊥[2]
1T,q←q = −4C2

F (x̄ (3 + 4lnx̄) + 4xlnx) +O(ε), (5.9)

h
⊥[2]
1T,q←q̄ = 0. (5.10)

Expanding eq. (5.3) up to order a2
s we obtain the following expressions for matching

coefficient

δ⊥C [2]
q←q(x, b) = h

[2]
1T,q←q(x, b)−

[
δ⊥C [1]

q←q(b)⊗ δf [1]
q←q

]
(x) (5.11)

δ⊥C
[2]
q←q̄(x, b) = 0. (5.12)

The convolution term that appears in eq. (5.11) is different from zero because the

NLO matching coefficient is ε-suppressed but the NLO transversity integrated PDF is

ε-divergent. So, the result for the convolution term is finite,[
δ⊥C [1]

q←q(b)⊗ δf [1]
q←q

]
(x) = −4C2

F (x̄ (3 + 4lnx̄) + 4xlnx) , (5.13)

which is the same that we get in eq. (5.9). Using eq. (5.11) we obtain a null value for the

NNLO pretzelosity to transversity matching coefficient. So,

δ⊥C
[2]
q←f (x, b) = 0 +O(ε), (5.14)

where f = q, q̄.

We stress once more that the cancellation that lead to the zero result has a non-trivial

structure. Because the topologies of diagrams that contribute to convolution term in (5.11)

and to the TMD matrix element (5.9) are completely different. In the first case, these are

ladder diagrams, while in the second case we have diagrams with tree-gluon vertex and non-

planar diagrams. All this indicates the presence of a not yet understood concept behind

these cancellations, and it suggests that such cancellations take a place at higher orders as

well. Therefore we conjecture that

δ⊥Cq←f (x, b) = 0, (5.15)

at all orders of perturbation theory. To support this conjecture we also performed the

calculation of the matching coefficient in the large-Nf approximation using the same ap-

proach as in ref. [44]. We obtained that the resummed expression is also ε-suppressed. It

gives additional confirmation of the conjecture in eq. (5.15).
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6 Matching of transversity TMD fragmentation function at NLO

and NNLO

The transversely polarized TMDFFs can be treated similarly to the case of transversely

polarized TMDPDF.Despite the different origin and interpretation of these distributions,

their perturbative treatment is analogous. Therefore, in this section we collect only the

necessary definitions and results, and we do not provide the intermediate details.

The unsubtracted transversity TMDFFs are defined with the following hadronic ma-

trix elements,

∆
[iσα+γ5]
q→N (z, b) =

1

4zNc

∑
X

∫
dλ

2π
e−ip

+λ/z

× 〈0|T
[
W̃ T †
n qj

]
a

(nλ+ b)|P, S;X〉iσα+γ5〈P, S;X|T̄
[
q̄i W̃

T
n

]
a

(0)|0〉,

which can be parameterized by the form factor decomposition

∆
[iσα+γ5]
q→h (z, b) = sαTH1(z, b)− iλbαMH⊥1L(z, b) (6.1)

+iεαµT bµMH⊥1 (z, b) +
M2b2

2

(
gαµT
2

+
bαbµ

b2

)
sTµH

⊥
1T (z, b),

where again sT is the transverse part of the hadron spin, λ is helicity, M is the mass of

hadron and b2 = −b2 > 0. We recall that the parametrization presented here is valid for

produced hadrons with spin-1/2. For the scalar or pseudo-scalar produced hadrons, the

functions, H1, H⊥1L and H⊥1T are absent. The transversity TMDFF is represented by the

function H1. The matching onto the fragmentation function is done as

Hq
1(z, b) =

∫ 1

z

dy

y3−2ε

∑
f=q,q̄

δCq→f
(
z

y
,Lµ

)
Hf

1 (y) +O(b2). (6.2)

The factor z2−2ε is added to meet the common normalization of collinear FF function, that

is defined as

sαTH1(x) =
z1−2ε

4Nc

∑
X

∫
dλ

2π
e−ip

+λ/z (6.3)

×〈0|T
[
W̃ T †
n qj

]
a

(nλ)|P, S;X〉iσα+γ5〈P, S;X|T̄
[
q̄i W̃

T
n

]
a

(0)|0〉,

where the γ5 can be dropped as in the TMDPDF case. The evolution kernels for the

collinear FFs are known at two loops [41, 42].

The main difference in evaluation of TMDFFs in comparison to TMDPDFs is the origin

of parton momentum in diagrams, which is incoming in the PDF case, and outgoing in the

FF case. Therefore, the expressions for TMDFFs could be obtained by the application of

the crossing symmetry x→ z−1 at the diagram level. This, however, should be done with

caution since there is a brunch cut for x > 1, which should be transformed into a branch

cut for z > 1. Additionally, one should take into account the zε factors that are present
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in definitions of FFs, and that mix in the ε-expansions with various contributions. For

the detailed discussion on relation between PDFs and FFs see [45] and references within.

To avoid these complications, we re-evaluate the PDF master integrals with x→ z−1 and

reassemble the final result. The LO matching of transversity TMDFF is elementary

δC[0]
f→f ′ = δff ′δ(z̄). (6.4)

Therefore, the renormalization properties of the FF case are similar to the case of PDFs

and the matching procedure follows the same pattern as in the unpolarized case [16]. For

this reason we skip the details of evaluation and present the final result.

For the presentation of the NLO and NNLO coefficient functions we introduce again

logarithmic decomposition (see eq. (3.10))

δCf→f ′(z,Lµ, lζ) =

∞∑
n=0

ans

n+1∑
k=0

n∑
l=0

Lkµ llζ δC
(n;k,l)
f→f ′ (z). (6.5)

The terms accompanied by logarithms, i.e. with k + l > 0 can be restored with renor-

malization group equation. For completeness, we present these lengthy expressions in the

supplementary material (as a Mathematica file). The finite part of the coefficients at NLO

is given by

z2δC(1;0,0)
f→f ′ (z) = CF (4lnz δp(z)− δ(z̄)ζ2)δff ′ , (6.6)

where

δp(z) =
2z

1− z
, (6.7)

is the LO DGLAP kernel for the transversity FF. At NNLO we have the same mixing with

anti-quark operator. The matching is split into two channels

δC(2;0,0)
f→f ′ (z) = δff ′δC(2;0,0)

q→q (z) + δff̄ ′δC
(2;0,0)
q→q̄ (z), (6.8)

where,

z2δC(2;0,0)
q→q (z) = C2

F

{
δp(z)

[
40Li3(z)− 4Li3(z̄) + 4lnz̄Li2(z̄)− 16lnzLi2(z)− 40

3
ln3z (6.9)

+18ln2zlnz̄ − 2ln2z̄lnz +
15

2
ln2z − 8 (1 + ζ2) lnz − 40ζ3

]
+4z̄(1 + lnz) + 2z(lnz̄ − lnz)

}
+CFCA

{
δp(z)

[
4Li3(z̄) + 12Li3(z)− 4lnz̄Li2(z̄)− 8lnzLi2(z) + 3ln3z

−4lnz̄ln2z − 11

6
ln2z − 12ζ2lnz +

70

3
lnz + 2ζ3 −

404

27

]
+

14

3
z̄ − 2zlnz̄ − 2(1− 2z)lnz

}

– 14 –



J
H
E
P
0
7
(
2
0
1
8
)
1
7
2

+CFNf

{
δp(z)

[
ln2z

3
− 10

3
lnz +

56

27

]
− 2

3
z̄

}
+ δ(z̄)

{
5

4
ζ4C

2
F

+CFCA

[
1214

81
− 67

6
ζ2 + 65ζ4 −

77

9
ζ3

]
+ CFNf

[
− 164

81
+

5

3
ζ2 +

14

9
ζ3

]}
,

z2δC(2;0,0)
q→q̄ (z) =

(
C2
F −

CFCA
2

){
δp(−z)

[
8Li3

(
1

1 + z

)
− 8Li3

(
z

1 + z

)
(6.10)

−4Li3
(
z2
)

+ 16lnzLi2 (z)− 4lnzLi2
(
z2
)
− 4lnzln2(1 + z)

−12ln2zln(1 + z) + 6ln3z + 4ζ3

]
+ 2z̄

}
.

The singularity at z → 1 is understood as a (. . .)+-distribution (4.6). Similarly to the PDF

case, the expressions enclosed by square brackets in eq. (6.9), (6.10) literally coincide with

the ones of the unpolarized fragmenting function case, (see eq. (7.11) and (7.17) in [16]).

In other words, it can be written the form (4.12), and the functions F1(z) and F3 coincide

for polarized and unpolarized cases.

We have not evaluated the pretzelosity TMDFF, because its calculation is rather in-

volved. However, we have no doubts that it matching coefficient is zero at NNLO alike the

matching of pretzelosity TMDPDF.

7 Conclusions

In this work, we have studied the twist-2 matching of transversity and pretzelosity (or

quadrupole) TMD distributions. We have derived the matching coefficients for these distri-

butions at next-to-next-to-leading order (NNLO) in the strong coupling. We have checked

that the renormalization of rapidity divergences works exactly in the same way as for

unpolarized distributions, as it is predicted by the transverse momentum dependent fac-

torization theorem. The present calculation has a structure similar to the one of the NNLO

matching of unpolarized TMDs made in [16]. In the article, we present only the finite part

of the coefficient functions, while the logarithmic part can be restored with the renormal-

ization group equations. The full result, including the logarithmic part, is also reported in

the supplementary material (as a Mathematica file).

In the case of transversity, we have considered both the TMDPDF and the TMDFF

cases. We have found several analogies and identities between the matching coefficients

of transversity and unpolarized distributions, that can serve as a cross-check of both re-

sults. The matching coefficients for transversity (given in eqs. (4.8), (4.9), (4.10) and

eq. (6.8), (6.9), (6.10)) can be readily used in phenomenological applications. A recent

review of the phenomenology of transversity in fragmentation can be found in [28]. Our

result is the first calculation of the NNLO matching for transversely polarized TMD op-

erator. To our knowledge the NLO matching coefficient for transversity TMDFF (6.6)) is

also calculated here for the first time. We stress that this is also the first NNLO evaluation

of the matching for a polarized TMD distribution. Therefore, given the result of this work,

the transversity TMD distribution is known to the same perturbative order as unpolarized

distributions. This fact is important to establish phenomenologically the universality of

TMD evolution.
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For the pretzelosity, we have found that the expected two-loop matching coefficient

is actually zero, despite the fact that the matrix element over free quark for pretzelos-

ity distribution is non-zero. It is an unexpected result, since the analogous quadrapole

distribution in the gluon sector (namely linearly polarized TMD gluon distribution) has a

non-zero matching already at one-loop level. We have also checked that the LO of large-Nf

expansion (given by diagrams with an arbitrary number of fermion bubble insertions, for

details see [6]) is also null. Although these facts do not demonstrate completely that the

twist-2 part of pretzelosity is zero at all orders in perturbation theory, certainly they are

an evidence of this statement. We conjecture that the pretzelosity distribution does not

match the twist-2 distribution, and thus has the leading matching only at the twist-4 level.

At the moment we have not found an argument to justify this fact beyond the present

calculation. Nevertheless, it agrees with the phenomenological and experimental results

that suggest a highly suppressed pretzelosity distribution [29, 30]. We have performed the

calculation of pretzelosity only for the case of TMDPDF, nonetheless, we expect the same

result for the TMDFF.
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