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Abstract 
We present first measurements of the pseudorapidity and azimuth (η, φ) bin-
size dependence of event-wise mean transverse-momentum (pt) fluctuations√
for Au–Au collisions at sNN = 200 GeV. We invert that dependence to 
obtain pt autocorrelations on differences (ηt, φt) interpreted to represent 
velocity/temperature distributions on (η, φ ). The general form of the 
autocorrelations suggests that the basic correlation mechanism is parton 
fragmentation. The autocorrelations vary rapidly with collision centrality, 
which suggests that fragmentation is strongly modified by a dissipative 

http://stacks.iop.org/JPhysG/32/L37
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medium in the more central Au–Au collisions relative to peripheral or p–p 
collisions. 

(Some figures in this article are in colour only in the electronic version) 

Central Au–Au collisions at the Relativistic Heavy Ion Collider (RHIC) may generate a colour
deconfined medium (quark–gluon plasma or QGP) [1]. Some theoretical descriptions predict 
abundant low-pt gluon production in the early stages of high-energy nuclear collisions, with 
rapid parton thermalization as the source of that medium [2–4]. Particle yields, spectra and √
high-pt correlations from Au–Au collisions at sNN = 130 and 200 GeV provide tantalizing 
evidence that a coloured medium is produced [5–8]. Nonstatistical fluctuations of event-wise 
mean pt (pt) [9, 10] should help in determining the properties of that medium. A recent 
measurement of excess (pt) fluctuations in Au–Au collisions at 130 GeV [10] revealed a large 
excess of fluctuations compared to independent-particle pt production. The measurement was 
obtained at a single scale (bin size)—the STAR detector acceptance on (η, φ) for that analysis. 
Excess (pt) fluctuations studied with Monte Carlo simulations have been attributed to low-pt 

parton fragments (minijets) [11]. Measurements of (pt) fluctuations could help in illuminating 
the role of minijets in nuclear collisions. 

In this letter, we report the first measurements of the scale dependence of (pt) fluctuations. 
Moreover, by inversion of the scale-dependent (pt) variance distribution we obtain pt 

autocorrelations, projections of two-particle distributions on momentum difference variables 
(ηt, φt), where e.g. ηt ≡ η1 − η2 [12]. We compare the resulting pt correlation patterns to 
known azimuthal correlations (e.g., elliptic flow) and jet angular correlations. We consider the 
possibility that minijets, as local velocity correlations, provide a dominating contribution to pt 

correlations and quantify centrality dependencies which may describe in-medium modification √
of jet correlations. This analysis is based on sNN = 200 GeV Au–Au collisions observed 
with the STAR detector at the Relativistic Heavy Ion Collider (RHIC). 

In each heavy ion collision, and within some region on (η, φ) called a bin, a number 
of individual particle pts are sampled from local pt spectra. Local spectrum properties may 
deviate from the event-averaged pt spectrum differently at each point on (η, φ ) and differently 
in each event [13]. The bin-size (scale) dependence of excess event-wise (pt) fluctuations 
measured by variance difference tσ 2 (δη, δφ) reflects the correlation structure of the local pt :n 
pt spectrum properties [14]. Certain aspects of the correlation structure can be accessed 
when that scale dependence is inverted to obtain pt autocorrelations [12]: those aspects 
which depend on relative separation of pairs of points but not on absolute position on (η, φ). 
The pt autocorrelations for Au–Au collisions over a range of centralities, their structure and 
interpretation, are the main subjects of this paper. The next three paragraphs define the (pt)
fluctuation measure and outline the derivation of the integral equation which connects its scale 
variation to the corresponding autocorrelation distribution. These paragraphs may be omitted 
in a first reading. 

In this analysis, the detector acceptance is divided into macrobins with scales (δη, δφ). 
Each macrobin (scales represented by δx for brevity) contains in each event some integrated 
particle multiplicity n(δx ) and total pt(δx ) (scalar sum over particles in the bin). Rather 
than fluctuations of ratio (pt) ≡ pt/n (a source of systematic error), we study fluctuations √ 
of difference (pt − np̂t)/ n̄. The scale-dependent per-particle pt variance is defined by 
σ 2 (δx ) ≡ (pt(δx ) − n(δx ) ˆ n(δx ), where pt is the inclusive mean particle pt, n̄ ispt)2/ ¯ ˆpt :n 
the mean bin multiplicity, pt:n reads pt given multiplicity n and the overline represents an 
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average over all macrobins in all events [10]. The small-scale limit (n̄ = 1) of σ 2 (δx ) pt :n 

is σ p
2 
ˆt 

, the inclusive single-particle variance. The variance difference is then defined as 
tσ 2 (δx ) ≡ σ 2 (δx ) − σ 2 . Variation of tσ 2 on scales (δη, δφ ) corresponds to an pt :n pt :n p̂t pt :n 
integral equation which can be inverted to obtain pt autocorrelations on difference variables 
(ηt, φt), which compactly represent two-particle pt correlations on (η, φ ) [15] and permit 
direct interpretation of (pt) fluctuations in terms of physical mechanisms. 

The autocorrelation distribution is a powerful tool for accessing two-particle correlations 
under certain conditions well satisfied in relativistic nuclear collisions [15]. An autocorrelation 
compares a distribution f (x  )  to itself. It is effectively a projection by averaging of product 
distribution f (x1)·f (x2) on (x1, x2) onto the difference variable xt ≡ x1 −x2. In this analysis, 
we obtain the autocorrelation of the pt distribution on 2D space (η, φ). Autocorrelations can 
be determined by pair counting [15, 16] or by  inverting fluctuation scale dependence to form 
density ratios following the procedure in [12] first implemented in [17]. Here we use the latter 
method. 

We can relate variance measurements to autocorrelations in the following way. If a 
space x is partitioned into microbins of fixed size Ex , combined to form macrobins of 
variable size δx, the macrobin contents in σ 2 (δx ) can be expressed as microbin sums, pt :n  
e.g., pt(δx) = a pt,a  (Ex ), a being a microbin index. We can then express variance σ p

2 
t:n(δx ) 

as a double sum over microbin indices (a, b) on (x1, x2) of terms (pt − np̂t)a(pt − np̂t)b, 
which measure the covariance between bins a and b on x of pt fluctuations relative to np̂t 

[19]. As shown in [12, 17] we can rearrange the double sum into an outer sum over index k on 
difference variable xt ≡ x1 − x2 (e.g., η1 − η2, with microbin index k) and an inner sum over 
microbins on sum variable x1 + x2. The inner sum is pt difference autocorrelation tAk(pt:n) 
(‘difference’ referring to pt − np̂t). If self-pairs are excluded from the microbin sums, the pt 

difference autocorrelation corresponds to variance difference tσ 2 (δx ). We define reference pt :n 
2number autocorrelation Ak,ref (n) as the mean pair number n̄ in the kth microbin on xtk 

obtained by averaging products of mean particle numbers n̄a n̄b along the kth diagonal of 
(x1, x2), that is, with a − b = k. This reference is approximately equivalent to the mixed-pair 
reference autocorrelation which would be obtained by direct pair counting [12]. Ak,ref (n) is 
not obtained explicitly in this analysis, is instead an implicit part of the density ratio defined 
below and inferred by fluctuation inversion. Autocorrelation densities ρ(xt), defined e.g. by 
tAk(pt : n) ≡ E2tρ (pt : n; kEx ) and Ak,ref (n) = E2ρref (n; kEx ), are independent of microbin x x 
size. The required per-particle autocorrelation measure corresponding to tσ 2 (δx ) is density pt :n 

ratio tρ (pt:n)/ 
√ 

ρref (n) ≡ tA(pt:n)/Ex 
√ 

Aref (n) (units (GeV/c)2), which estimates the pt 

covariance per particle for a given separation on (η, φ), averaged over the acceptance51 . 
Within an O(1) constant factor, such density ratios have the form of Pearson’s correlation 
coefficient [18]: the average covariance for all pairs of bins with a given separation on (η, φ) 
relative to the geometric mean of Poisson number variances for those bin pairs. 

For this 2D scaling analysis, we generalize δx → (δη, δφ) to obtain the per-particle 
conditional pt variance difference (also defining difference factor tσpt :n [10]) as the 2D 
discrete integral equation 

2tσ (mδEη, nδEφ ) ≡ 2σ ̂ tσpt :n(mδEη, nδEφ )pt :n pt 

mδ ,nδ� tρ (pt : n; kEη, l  Eφ ) = 4 EηEφ Kmδ nδ ;kl J , (1) 
ρref (n; kEη, lEφ )k,l=1 

√51 pt correlation measure tρ (pt:n)/ ρref (n) is related to the number-correlation measure in [15, 16] by  √ √¯ N(r̂ − 1) � 2tηtφ ρref tρ /ρref � 24tρ (n)/ ρref (n). It is also related to single-particle conditional distribution 
1/NtrigdN/dtφ [6] but invokes no trigger condition. 
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with kernel Kmδ nδ ;kl ≡ (mδ − k + 1/2)/mδ · (nδ − l + 1/2)/nδ . This integral equation can √
be inverted to obtain autocorrelation density ratio tρ / ρref as a per-particle pt correlation 
measure on (ηt, φt) from the scale dependence of (pt) fluctuations represented by variance 
difference tσ 2 (δη, δφ) [12, 19].pt :n 

Data for this analysis were obtained with the STAR detector [20] using a 0.5 T uniform 
magnetic field parallel to the beam axis. Event triggering and charged-particle measurements 
with the time projection chamber (TPC) are described in [20]. Track definitions, tracking 
efficiency and background corrections, event and track quality cuts and primary-particle 
definition are similar to those described in [10, 21] for 130 GeV. While there are quantitative 
differences between the two energies and detector configurations, the better quality of full
magnetic-field tracking at 200 GeV tends to more than offset the effect of larger track densities 
there compared to the half-field tracking at 130 GeV. The difference between backgrounds is 
a few per cent of the total track yield (larger for 200 GeV) and is included in the corrections. 
Tracks were accepted with pseudorapidity in the range |η| < 1, transverse momentum in 
the range pt ∈ [0.15, 2] GeV/c and 2π azimuth, defining the detector acceptance for this 
analysis. Particles identification was not implemented. Eleven centrality classes were defined 
as fractions of σtot (nine equal fractions from 90% to 10%, the top 10% being further divided in 
half). The centralities specified below, rounded to the nearest 5%, are within 2% of the defined 
values. Centralities were determined using the uncorrected number N of charged particles in 
|η| < 1 [22]. 

Figure 1 (left panels) shows the scale dependence of variance difference tσ 2 (δη, δφ) pt :n 
in equation (1) for 3 of the 11 centralities analysed. The scale axes are divided into microbins: 
16 on pseudorapidity scale δη and 24 on azimuth scale δφ. Variance differences typically 
increase monotonically with δη but have more complex behaviour on δφ. Measurements of √
difference factor tσpt :n at sNN = 130 GeV reported in [10] correspond to the single point 
at the STAR acceptance scale (2, 2π)  for each centrality. To access the underlying dynamics, 
we extract the corresponding autocorrelation distributions. Figure 1 (right panels) shows 2D 
autocorrelations (by construction symmetric about ηt, φt = 0) inferred from fluctuation scale 
dependence in the left panels by inverting equation (1) [12]. Autocorrelations have distinct 
same-side (|φt| < π/2) and away-side (|φt| > π/2) components. For peripheral collisions 
(top-right panel), the same-side peak appears to be nearly symmetric on (ηt, φt), however, cf 
the peak widths in figure 3. In general, the correlation structure evolves rapidly with centrality. 

Errors for (pt) fluctuation measurements in figure 1 (left panels) are discussed in [10]. 
Statistical errors for those variance differences are typically less than 0.001 (GeV/c)2 for all 
scales and centralities. The inversion process (effectively a differentiation, which acts as a 
‘high-pass’ filter) tends to exaggerate small-wavelength noise on the autocorrelation. Control 
of that noise during inversion requires a standard procedure called regularization, in which 
each bin of tρ / 

√ 
ρref is treated as a χ2 fitting parameter, incorporating a smoothing term with 

corresponding Lagrange multiplier into the χ2 expression [12, 17]. Autocorrelation errors 
then have two components: statistical noise which survives smoothing and systematic error 
due to image distortion by smoothing. Statistical errors on the autocorrelation are estimated 
by inverting the noise estimate for tσ 2 . The per-bin rms statistical error which survives pt :n 

smoothing is about 0.0002 (GeV/c)2 for all autocorrelations. The smoothing distortion, 
estimated by passing data through the inversion process twice and comparing the resulting two 
autocorrelation versions [12, 17], typically peaks at about 5% of the maximum autocorrelation 
value at points of maximum gradient. Correlation amplitudes inferred from model fits (see 
below) were corrected for tracking inefficiencies and background contamination [10]. An 
overall systematic error of ±14% for corrected amplitudes reflects uncertainty in extrapolation 
of variance-difference measurements to the true number of primary particles in the acceptance. 
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Figure 1. Left panels: tσ 2 (GeV/c)2 distributions on scale (δη, δφ) for three centrality bins: pt :n 
80–90% of total cross section (top panel), 45–55% of total cross section (middle panel) and 0–5% 
of total cross section (bottom panel). Right panels: corresponding autocorrelations on difference 
variables (ηt, φt). 

In figure 2, monopole (constant offset), dipole cos(φt) and quadrupole cos(2φt) 
components (sinusoids evident in figure 1, right panels) have been subtracted from the 
autocorrelations for centralities (80–90, 45–55, 20–30 and 0–5%) by minimizing residuals 
of the three components on the away side (|φt| > π  /2) and for |ηt| ∼ 2 (minimizes 
influence of away-side peak structure). The full-φ-acceptance fluctuations in figure 1 (left 
panels) are determined only by the minijet structure and the monopole component; the dipole 
and quadrupole components integrate to zero at δφ = 2π . Since one interpretation of pt 

correlations is that they reflect velocity correlations of local particle source velocities, the 
quadrupole component from this analysis may constitute the first observation of elliptic flow 
as a true velocity phenomenon. 
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Figure 2. Distributions of tρ/ ρref (ηt, φt) for 80–90% (upper left), 45–55% (upper right), 
20–30% (lower left) and 0–5% (lower right) of total cross section. Monopole (constant), dipole 
and quadrupole components have been subtracted. 

The subtracted autocorrelations retain three structures localized on both ηt and φt: 
a same-side positive peak, a same-side negative peak (apparent as the regions of negative 
correlation immediately adjacent to the positive peak on φt) and an away-side peak. The near
side negative peak cannot be a result of incorrect subtraction of the multipole components. The 
latter have by definition no structure (are constant) on ηt, whereas the negative near-side peak 
is highly structured (a peak rising symmetrically to zero) on ηt. The near-side positive peak, 
in the absence of alternative explanations, is interpretable as a velocity correlation associated 
with semi-hard parton scattering (minijets). Those three pt correlation structures comprise the 
main subject of this paper. 

In figure 2, we observe that the three peak features vary strongly in shape and amplitude 
with collision centrality. For the more central collisions, we observe that the same-side positive 
peak is substantially elongated along ηt and significantly narrowed along φt. We quantify 
those observations with model fits. The autocorrelations in figure 2 were fitted with the model 
function defined in equation (2), a sum of near-side positive peak B1, near-side negative peak 
B2 (signed number) and away-side peak B3, each with the same form,       

3 τηi τφi     ηt   φt − δi3π  
F = Bi exp −  √  −  √  , (2)     

i=1 2σηi 2σφi

where δi3 is a Kronecker delta. This function includes exponents τ as shape parameters. 
In contrast to a Gaussian (τ ≡ 2), which best describes near-side peaks for number 
autocorrelations [16], best-fit exponents for these pt autocorrelations were found to be 
τη1 = τη3 = τφ1 = 1.5 ± 0.1, with τφ2 = 2.5 ± 0.1, τφ3 = 1.9 ± 0.1 and τη2 = 1.7 ± 0.1 (for  
all centralities). Widths for near-side negative and away-side peaks varied (respectively, from 
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Figure 3. Correlation amplitudes (left panel) plotted versus mean participant path length ν. 
Solid dots are for positive near-side peaks and solid triangles are for negative near-side peaks. 
Open circles are for away-side peaks. Positive-peak widths (right panel) are plotted on ν for 
pseudorapidity (solid triangles) and azimuth (open circles). Curves guide the eye (see the text). 
Dotted, dashed and dash-dotted lines represent Hijing results. 

peripheral to central) nearly linearly over the ranges 0.75 < ση2 < 1.1 ± 0.1, 0.9 < ση3 < 
1 ± 0.1, σφ2 ∼ 2.1 ± 0.2 and 2.4 > σφ3 > 1.5 ± 0.1. 

The best-fit amplitudes for all peaks, corrected for background contamination and tracking 
inefficiency (21–38% for these 200 GeV data, increasing from minimum to maximum 
centrality) [10], and widths for the near-side positive peak are plotted in figure 3 versus 
mean participant path length ν. 52 The vertical line to the right of each panel indicates the 
estimated limit of ν for Au–Au collisions, corresponding to b ∼ 0 and Npart/2 ∼ 191. 
The fitted peaks are strongly localized on ηt and are very different in shape from the 
ηt-independent sinusoid components subtracted from autocorrelations in figure 1 (right 
panels) to form those in figure 2. There is therefore negligible cross-talk between the two types 
of fitting functions. The difference between fitting the data in figure 1 (right panels) including 
sinusoids in the model function and the data in figure 2 with equation (2) is less than the stated 
errors in the fit parameters. Residuals from fitted peak structures were typically less than 2% 
of the near-side peak amplitude. The peak amplitudes increase with centrality to a maximum 
value and then decrease sharply for the most central collisions. The near-side positive-peak 
width on ηt increases monotonically with centrality, while that on φt decreases. The rising 
part of the B1 data is consistent with both a straight line ∝ (ν − 1) and a curve ∝ ν1.6 .√ 

The autocorrelation density ratio tρ (pt:n)/ ρref (n) measures relative covariances 
(proportional to Pearson’s correlation coefficient) of (pt) fluctuations at pairs of points on 
(η, φ) separated by (ηt, φt). The autocorrelation distribution reveals the average shape of 
localized structures which may appear in different places on (η, φ ) in different events, and 
possibly in only some events, but which have some shape stability over an event ensemble. 
We observe substantial (0.01–0.1) pt covariances which can be interpreted as local transverse-
velocity and/or temperature fluctuations correlated at pairs of points on (η, φ). As with 
the separation of temperature and transverse-flow aspects of inclusive single-particle pt 

distributions, temperature and velocity correlations may also be distinguished as to source 
mechanism if mass identification is implemented in pt fluctuation/correlation analysis. 

The structures in figures 1 (right panel) and 2 can be compared to signature angular 
correlations for high-pt parton fragments: a same-side 2D peak at the origin ( jet cone) and an 

52 ν estimates the mean participant path length in number of encountered nucleons [22]. 



L46 Letter to the Editor 

away-side ηt-invariant ridge on φt (apparent as such only in 2D analyses like this one). The 
correlations in figure 1 (upper-right panel) have exactly that structure and agree in detail with 
the Hijing correlations described below which are known to represent low-pt jets, providing 
strong evidence that the dominant source of pt correlations for p–p and peripheral Au–Au 
collisions is low-pt parton fragments. For low-pt partons, the away-side ridge in figure 1 
(upper-right panel) is not distinguishable from one lobe of a sinusoid and is thus removed 
in the multipole subtraction to obtain figure 2. The same-side positive peak then represents 
the conventional jet-cone structure, albeit in pt rather than angular correlations. We can then 
argue that the same features for more central Au–Au collisions continue to derive from low-pt 

partons, but with modifications by a coloured dissipative medium. 
The model-fit results in figure 3 illustrate the dramatic changes in figure 2 structure 

with collision centrality. Focusing on the near-side positive peak, the width on φt falls by 
30%, whereas the width on ηt increases by 60%. Those trends are qualitatively similar to 
equivalent measurements of angular correlations [16], where the large width increase on ηt 

was interpreted as due to strong coupling of low-pt partons to the longitudinally expanding 
coloured medium. The ση variation is much less for pt correlations, suggesting that elongation 
of parton fragment distributions on η involves lower-pt particles with increasing ηt. The near
side peak for pt correlations is significantly non-Gaussian, the sharper peak represented by 
exponent τ = 1.5 (the correspondent for angular correlations is a Gaussian with τ = 2). 

The amplitude B1 of the near-side positive peak increases by a factor of 4 or more with 
centrality, but falls off rapidly for the most central collisions, in contrast to the subtracted 
monopole term which increases monotonically to mid centrality and then remains constant 
with further centrality increase. Since the relative covariance could also be interpreted (with 
strong assumptions) as a number of correlated pairs per particle in the system, the increase 
of B1 may indicate that the number of correlated pairs from minijets increases relative to 
the total multiplicity. If the system were composed only of independent minijets (with no 
soft particle production), the autocorrelation density ratio (and variance difference) would be 
independent of system size (minijet number). The observed increase with system size could 
then result from a larger number of low-pt partons, a larger mean fragment multiplicity for 
each parton, or both. The other correlation structures, the negative same-side and positive 
away-side peaks, are unique to pt correlations and will be considered in detail in a follow-up 
publication. The presence of the negative near-side peak means that the variance difference, 
as an integral fluctuation measure, significantly underestimates the relative amount of minijet 
structure. 

An equivalent analysis of (pt) fluctuations in Hijing collisions [17] indicates that the near
side peak shapes for Hijing (quench on or quench off) are nearly symmetric on (ηt, φt), with 
shape described by single exponent τ = 1.7 ± 0.1. The combination of same-side 2D peak 
and away-side 1D azimuthal ridge observed in that analysis supports the interpretation that the 
basic source of those pt correlations is low-pt parton fragments or minijets, consistent with the 
basic pQCD jet model in Hijing. The centrality dependence of the amplitudes of the Hijing 
near-side peak for quench-on (default) and quench-off collisions is represented, respectively, 
by dotted and dashed lines in figure 3 (left panel). The lines in the right panel correspond to 
Hijing default (quench on) same-side peak widths. The amplitude (width) centrality trends 
for default Hijing are similar: modest variations linear with path length ν. The differences 
between quench-on and quench-off results from central Au–Au collisions for amplitudes and 
widths, representing pQCD modelling of in-medium parton energy loss, are ∼ 10%. 

Comparing Hijing to the present analysis in figure 3, we note that there are at least 
three instances of qualitative disagreement between Hijing and RHIC data. First, for very 
peripheral Au–Au collisions (and therefore nucleon–nucleon collisions) the Hijing same-side 
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peak (jet cone) is symmetric on angle, whereas the data are quite asymmetric. Thus, there is 
already disagreement with data at the level of parton fragmentation in elementary collisions. 
Second, the centrality dependencies of the amplitudes and widths of the same-side peak are 
qualitatively different from data: in some cases even the sign of the variation is wrong. Third, 
the amplitude of the same-side Hijing peak is qualitatively less than that for data in mid-central 
collisions. The last is especially surprising when comparing quench-off Hijing (dashed line in 
the left panel) to data. The quench-off Hijing option in principle models jet production from 
a linear superposition of N–N collisions combined with a Glauber model of a transparent 
nucleus. That model should provide an upper limit for jet structure in A–A collisions. Yet 
the same-side peak amplitude for quench-off Hijing is 2–3 times less than that for mid-central 
RHIC Au–Au collisions which are observed to be highly opaque to minijets in the central 
region. Finally, we observe no evidence in Hijing data for the same-side negative peak which 
is a prominent new feature of RHIC data. The perturbative treatment of parton energy loss in 
Hijing appears to disagree strongly with the observed process for the minimum-bias partons 
which dominate pt correlations in Au–Au collisions. 

In conclusion, we have for the first time measured the scale dependence of (pt)
fluctuations on (δη, δφ) in heavy ion collisions. We have inverted those distributions to obtain 
autocorrelation distributions on corresponding difference variables (ηt, φt) which reveal the 
correlation structure of the local properties of a two-particle pt distribution, specifically a 
combination of local transverse velocity and temperature. Inferred autocorrelations reveal 
complex pt correlation structure in Au–Au collisions at RHIC, including peaked structures 
attributed to minijets which vary strongly with collision centrality. We observe that pt 

autocorrelations provide unique access to minijet structure down to very low pt and probe 
the detailed interplay between low-pt partons and the dissipative coloured medium. Further 
studies with identified particles may separately characterize the local velocity and temperature 
structures of heavy ion collisions. 
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