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ABSTRACT

We suggested a simple model of a non-planar coronal loop (i.e. a loop with torsion). In this model the loop axis is a part of a helical
line. Using curvilinear coordinates where the loop axis is a coordinate line and the loop boundary is a coordinate surface we derived
the governing equation for the loop kink oscillations. When doing so we have used asymptotic method with the ratio of the loop
cross-section radius to the loop curvature radius as a small parameter. The governing equation is exactly the same as one obtained for
kink oscillations of a thin straight magnetic tube with the density varying along the tube. This implies that neither the loop curvature
nor the loop torsion can directly affect the eigenfrequencies of the loop kink oscillations. They can affect these eigenfrequencies only
indirectly through modifying the dependence of the density on the distance along the loop. The main effect of the loop torsion is on
the polarization of the loop oscillations. We found that, when we are moving along the loop, the polarization direction is rotating
together with the principal normal to the loop axis due to the loop torsion. The application of the obtained results to the interpretation
of observations of the loop kink oscillations with a node is discussed.
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1. Introduction

After the first observation of transverse coronal loop oscillations
by TRACE in 1998 this phenomenon remains in the focus of at-
tention of solar physicists. In the first theoretical studies of this
phenomenon a very simple model of a coronal loop was used
(see Ryutov & Ryutova 1976; Edwin & Roberts 1983). In this
model a coronal loop is considered as a straight homogeneous
magnetic cylinder. Later, more sophisticated models of coro-
nal loops were developed. These models take into account such
properties of the loops as the curvature, the density variation
along and across the loop, and the loop non-circular cross-
section. For a recent review of the theory of transverse oscil-
lations of coronal loops see, e.g., Ruderman & Erdélyi (2009).
However, in all these theories the loop was assumed to be con-
fined to a plane.

Recently Aschwanden et al. (2008) have used data from the
STEREO spacecraft to triangulate the positions of several coro-
nal loops and reconstruct their 3D geometry. As a part of their
analysis they considered whether the loops were planar and
found that seven loops were not confined to a plane. Hence, these
loops were not only curved, but they also had non-zero torsion.
This discovery puts on the agenda studying transverse oscilla-
tions of non-planar coronal loops.

In this paper we present the first theoretical study of kink
oscillations of non-planar loops. The paper is organized as fol-
lows. In the next section we describe the equilibrium for the non-
planar coronal loop used in our study. In Sect. 3 we introduce
the curvilinear coordinates used to derive the equation govern-
ing the loop kink oscillations. In Sect. 4 we derive the linear
ideal MHD equations and boundary conditions in the curvilin-
ear coordinates. In Sect. 5 we give the derivation of the govern-
ing equation. In Sect. 6 we study the variation of polarization of
the kink oscillation along the loop. In Sect. 7 we discuss possi-
ble applications of the developed theory to coronal seismology.
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Fig. 1. The auxiliary Cartesian and cylindrical coordinates. A typi-
cal magnetic field line is shown. Parts of this line that are above the
xy-plane are shown by solid lines, and those below the xy-plane by
dashed lines.

Section 8 contains the summary of the obtained results and our
conclusions.

2. Equilibrium

Let us introduce Cartesian coordinates x, y, z with the z-axis
in the vertical direction, and cylindrical coordinates �, ϕ, x (see
Fig. 1). The Cartesian and cylindrical coordinates are related by

x = x, y = � cosϕ, z = � sin ϕ. (1)

Consider the magnetic field B with the components given by

Bx =
q2B0

q2 +�2
, B� = 0, Bϕ =

q�B0

q2 +�2
, (2)
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where q is a constant. It is straightforward to obtain that

∇ × B =
2qB

q2 +�2
· (3)

It follows from this result that the magnetic field B is force-free
and can be used as an equilibrium magnetic field if we adopt
the cold plasma approximation. The parametric equations of the
magnetic field lines are given by

x = qϕ + x0, y = �0 cosϕ, z = �0 sin ϕ, (4)

where x0 and �0 are constants. All the magnetic field lines are
spirals with the same pitch equal to 2πq. This means that each
magnetic field line is invariant under the helical space transfor-
mation defined by

ϕ �→ ϕ + ϕ̃, x �→ x + qϕ̃, (5)

where ϕ̃ is an arbitrary constant. The magnetic field magnitude
is qB0(q2 + �2)−1/2. Since � = const. on a magnetic field line,
the magnetic field magnitude is also constant.

The magnetic field lines are frozen in the dense photospheric
plasma at z = z0. One of the magnetic field lines corresponding
to x0 = 0 and �0 = R > |z0| in Eq. (4) is the magnetic loop axis.
Its equation is

x = qϕ, y = R cosϕ, z = R sinϕ, ϕ ∈ [ϕ0, π − ϕ0], (6)

where ϕ0 = arcsin(z0/R). The loop axis crosses the plane z = z0
at points with the coordinates
(
qϕ0,

√
R2 − z2

0, z0

)
,

(
qπ − qϕ0, −

√
R2 − z2

0, z0

)
. (7)

The curvature and torsion of the loop axis are equal to R(q2 +
R2)−1 and q(q2 + R2)−1 respectively. We should point out that
one needs to make a clear distinction between the loop torsion
and twist. The loop torsion is related to the shape of the loop
axis. It measures the loop non-planarity. The twist is related to
the behaviour of the magnetic field lines in the vicinity of the
loop axis. A straight loop is twisted if the magnetic field lines
are helical in the vicinity of its axis. How to distinguish be-
tween twisted and non-twisted magnetic loops when they are
not straight? We know that, in the case of a straight loop, the
magnetic twist creates the electrical current along the loop. We
can extend this relation between the magnetic twist and electri-
cal current to curved loops and give the following definition: a
magnetic loop is twisted if there is the electrical current parallel
to the loop axis and untwisted otherwise. It follows from Eq. (3)
that there is the electrical current parallel to the loop axis in our
model. Hence, in the equilibrium that we consider here, the mag-
netic loop is twisted.

The loop axis (or its extension if z0 > 0) crosses the xy-
plane at the point (0,R). Let us take the plane Π0 orthogonal
to the loop axis (or its extension) at this point and consider the
circle C0 of radius a centered at (0,R), a � R. The magnetic
field lines crossing the plane Π0 at points on the circle C0 form
the tube boundary. The plasma density is equal to ρi inside the
loop and ρe outside. Both ρi and ρe can vary along the loop, but
they do not vary in the directions perpendicular to the loop axis.
Note that we obtain a particular case of a loop with the shape of
a half-torus if we take q = 0 and ϕ0 = 0. The kink oscillations of
such a loop have been studied by Van Doorsselaere et al. (2004)
analytically and Terradas et al. (2006) numerically (see also the
review by Van Doorsselaere et al. 2009).
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Fig. 2. The sketch of the equilibrium state. The ends of the magnetic
tube are assumed to be frozen in a dense photospheric plasma. The axis
of the magnetic loop is shown by the thick line. Introducing curvilinear
coordinates is illustrated.

Fig. 3. The projection of a loop on the horizontal xy-plane. The solid,
dashed and dashed-dotted lines correspond to q/R = 0.2, 0.1 and 0.05
respectively.

Let us make the helical space transformation defined by
Eq. (5). Recall that any magnetic field line is invariant under
this transformation. In particular, this implies that the magnetic
field line containing the tube axis is mapped in itself. Since the
helical transformation is an orthogonal transformation, it maps
the plane Π0 into a plane Π that is orthogonal to the loop axis
at the point of their intersection. The circle C0 is mapped in a
circle C of radius a in the plane Π centered at the point of inter-
section of Π with the loop axis. Since any magnetic field line is
mapped into itself, any point on C is at the same time on the tube
boundary. Hence, C is the intersection of Π with the loop bound-
ary, which implies that the loop cross-section is everywhere a
circle of radius a centered at the loop axis. The magnetic loop
is schematically shown in Fig. 2. In Fig. 3 the projections of
the loops on the horizontal plane are shown for different values
of q/R. We can see that these projections resemble the letter S,
which is why the non-planar loops are often called the S-shape
loops.

3. Curvilinear coordinates

We introduce the small parameter ε = a/R. In what follows we
only consider perturbations that decay far from the loop with
the characteristic scale of decay equal to a. Hence we study the
plasma motion only inside the loop and in the loop vicinity out-
side the loop. As a result we need the curvilinear coordinates
that only cover the spatial domain elongated in the direction of
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the loop axis and with the size of a few a in the directions or-
thogonal to the loop axis.

To obtain the curvilinear coordinate system we first intro-
duce polar coordinates in the Π0 plane. It follows from the para-
metric equation of the loop axis Eq. (6) that the vector

l = (q,−R sinϕ,R cosϕ) (8)

is tangent to the loop axis or its extension. Then the equation of
the plane Π0 is

qx + Rz = 0. (9)

Introduce new Cartesian coordinates x1, y1, z1 related to the old
ones by

x1 =
Rx − qz√
R2 + q2

, y1 = y, z1 =
qx + Rz√
R2 + q2

· (10)

In the new coordinates the equation of plane Π0 is z1 = 0, so
that x1 and y1 are Cartesian coordinates inΠ0. Now we introduce
the polar coordinates r and θ in Π0 related to x1 and y1 by

x1 = r cos θ, y1 = R + r sin θ. (11)

In these polar coordinates the equation of circle C0 of radius a�
R in the plane Π0 centered at x1 = 0, y1 = R is r = a. Inverting
the relations Eq. (10) we obtain that, for any point (x, y, z) ∈ Π0,

x =
Rr cos θ√

R2 + q2
, y = R + r sin θ, z = − qr cos θ√

R2 + q2
· (12)

To obtain the curvilinear coordinates of arbitrary point (x̄, ȳ, z̄)
we do the following. First we take the magnetic field line L that
passes through this point. It intersects the plane Π0 at the point
with the polar coordinates r, θ (see Fig. 2). These are the first and
second curvilinear coordinates of the point (x̄, ȳ, z̄). To obtain the
third curvilinear coordinate we take the plane Π orthogonal to
the loop axis and containing (x̄, ȳ, z̄). It crosses the loop axis at
the point corresponding to the value ϕ̄ of the parameter ϕ. Then
the curvilinear coordinates of (x̄, ȳ, z̄) are (r, θ, ϕ̄).

Now we obtain the expressions of x̄, ȳ and z̄ in terms of r,
θ and ϕ̄. Let L cross Π0 at the point (xc, yc, zc). The parametric
equation of L is given by Eq. (4) where we will write ϕ′ instead
of ϕ so as not to mix the parameter onLwith the third coordinate
of the curvilinear coordinate system. It follows from Eq. (4) that
ȳ2 + z̄2 = �2

0 = const. Then, on L,

ȳ2 + z̄2 = �2
0 = y

2
c + z2

c = (R + r sin θ)2 +
q2r2 cos2 θ

R2 + q2

= R2 + 2Rr sin θ + r2 q2 + R2 sin2 θ

R2 + q2
· (13)

L intersects the plane Π0 when ϕ′ = ϕ′c. Then, in accordance
with Eqs. (4) and (13),

xc = qϕ′c + x0, yc = �0 cosϕ′0, zc = �0 sin ϕ′0. (14)

On the other hand, it follows from Eq. (12) that

xc =
Rr cos θ√

R2 + q2
, yc = R + r sin θ, zc = − qr cos θ√

R2 + q2
· (15)

Using Eqs. (14) and (15) we obtain

x0 =
Rr cos θ√

R2 + q2
− qϕ′c, cosϕ′c =

R + r sin θ
�0

,

sin ϕ′c = −
qr cos θ

�0

√
R2 + q2

·
(16)

The tangent vector to the loop axis at the point of its intersection
with Π is given by Eq. (8) with ϕ̄ substituted for ϕ. Then the
equation of this plane is

q(x − x̄) − R sin ϕ̄(y − ȳ) + R cos ϕ̄(z − z̄) = 0. (17)

The coordinates of the point of intersection are given by Eq. (6)
with ϕ̄ substituted for ϕ. They satisfy Eq. (17), so that

qx̄ = q2ϕ̄ + R(ȳ sin ϕ̄ − z̄ cos ϕ̄). (18)

The point (x̄, ȳ, z̄) corresponds to ϕ′ = ϕ̄′. Then it follows from
Eqs. (4) and (16) that

x̄ = q(ϕ̄′ − ϕ′c) +
Rr cos θ√

R2 + q2
, ȳ = �0 cos ϕ̄′, z̄ = �0 sin ϕ̄′. (19)

Substituting these expressions in Eq. (18) we obtain the equation
determining ϕ̄′,

q2(ϕ̄′ − ϕ̄ − ϕ′c) +�0R sin(ϕ̄′ − ϕ̄) = − qRr cos θ√
R2 + q2

· (20)

This equation cannot be solved analytically. However it does not
cause any problem because we do not need this in what follows.
As we have already mentioned, we use the curvilinear coordi-
nates only in the vicinity of the loop, at distances not exceeding
a few a. Hence, it suffices to obtain only approximate expres-
sions of Cartesian coordinates in terms of r, θ and ϕ that are
linear with respect to r. To do this first we note that, in the zero
order approximation, i.e. when r = 0, it follows from Eqs. (13)
and (16) that �0 = R and ϕ′c = 0. Then the solution to Eq. (20)
is ϕ̄′ = ϕ̄. In fact, this result is obvious because, when r = 0, L
coincides with the loop axis and (x̄, ȳ, z̄) coincides with the point
of intersection of Π with the loop axis.

In the next order approximation we obtain from Eqs. (13)
and (16)

�0 ≈ R + r sin θ, ϕ′c ≈ −
qr cos θ

R
√

R2 + q2
· (21)

Then we look for the approximate solution to Eq. (20) in the
form ϕ̄′ = ϕ̄ + cr, where c is a constant to be determined.
Substituting this expression in Eq. (20) and using Eq. (21) we
easily find c to obtain

ϕ̄′ ≈ ϕ̄ − qr cos θ

R
√

R2 + q2
· (22)

Substituting Eqs. (21) and (22) in Eq. (19) and dropping the bar
we finally arrive at

x = qϕ +
Rr cos θ√

R2 + q2
+ O

(
ε2
)
,

y = R cosϕ + r sin θ cosϕ +
qr cos θ sin ϕ√

R2 + q2
+ O

(
ε2
)
,

z = R sinϕ + r sin θ sin ϕ − qr cos θ cosϕ√
R2 + q2

+ O
(
ε2
)
,

(23)

where ε = a/R and O(ε2) indicates higher terms with respect
to r starting from quadratic. The relations Eq. (23) will be used
in the next section to write down the linearized equations of the
ideal MHD in the curvilinear coordinates.
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4. Equations and boundary conditions

The aim of this section is to derive the governing equations
and boundary conditions written in the curvilinear coordinates.
We start this derivation from introducing the stretching variable
σ = ε−1r/R. It is convenient to introduce this variable because,
in what follows, we consider only the vicinity of the magnetic
tube where r/R = O(ε). Hence, from now on, the curvilinear co-
ordinates are σ, θ, ϕ. To be able to use the Einstein summation
rule for repeating indices we also introduce another notation for
the curvilinear coordinates,

u1 = σ, u2 = θ, u3 = ϕ. (24)

Now we need to calculate the components of the metric tensor.
Let us introduce vector X = (x, y, z), and calculate the derivatives
of X with respect to ui. Using Eq. (23) we obtain

∂X
∂σ
= εR

(
R cos θ√
R2 + q2

, sin θ cosϕ +
q cos θ sin ϕ√

R2 + q2
,

sin θ sin ϕ − q cos θ cosϕ√
R2 + q2

)
+ O(ε2), (25)

∂X
∂θ
= εσR

(
− R sin θ√

R2 + q2
, cos θ cosϕ − q sin θ sin ϕ√

R2 + q2
,

cos θ sin ϕ +
q sin θ cosϕ√

R2 + q2

)
+ O(ε2), (26)

∂X
∂ϕ
=

(
q, −R sinϕ − εσR sin θ sinϕ +

εσqR cos θ cosϕ√
R2 + q2

,

R cosϕ + εσR sin θ cosϕ +
εσqR cos θ sin ϕ√

R2 + q2

)
+ O(ε2). (27)

Using Eqs. (25)–(27) and recalling that

gi j =
∂X
∂ui
· ∂X
∂u j

,

we obtain the following expressions for the covariant compo-
nents of the metric tensor,

g11 = ε
2R2 + O(ε3), g12 = O(ε3),

g13 = O(ε2), g22 = ε
2σ2R2 + O(ε3),

g23 = O(ε2), g33 = R2 + q2 + O(ε).

(28)

We see that the curvilinear coordinate system is non-orthogonal.
The covariant components of the metric tensor are the elements
of a 3 × 3 matrix. The determinant of this matrix is given by

g = ε4σ2R4(R2 + q2) + O(ε5). (29)

In what follows we use the co- and contravariant components of
vector ξ, (ξ1, ξ2, ξ3) and (ξ1, ξ2, ξ3), and the same for vectors b
and B. It is obvious from the description of the curvilinear coor-
dinate system that any magnetic field line is defined by equations
σ = const. and θ = const., so that any magnetic field line is a
ϕ-coordinate line. Since B is tangent to a magnetic field line, it
follows that its contravariant components are

B1 = 0, B2 = 0, B3 =
B√
g33

, (30)

where B is the magnetic field magnitude given by

B =
qB0√

q2 +�2
=

qB0√
q2 + R2

+ O(ε). (31)

Using Eqs. (28) and (31) we obtain

B3 =
qB0

q2 + R2
+ O(ε). (32)

Now it follows from the identity |B|2 = BiBi = B3B3 that

B3 = qB0 + O(ε). (33)

In our analysis we will use the expression for the vector prod-
uct of two vectors, and for a curl of an arbitrary vector (e.g.
Korn & Korn 1961; Riley et al. 2002)

(u × w)i =
√
gεi jkv

jwk, (∇ × u)i =
1√
g
εi jk ∂vk

∂u j
· (34)

Here εi jk = ε
i jk are the Levi-Civita symbols. Recall that εi jk = ±1

if all the indices are different, and εi jk = 0 if at least two indices
are equal.

Let us introduce the physical components of the displace-
ment vector, ξ = (ξr, ξθ, ξϕ). These components are related to the
contravariant components by

ξr =
√
g11 ξ

1, ξθ =
√
g22 ξ

2, ξϕ =
√
g33 ξ

3. (35)

In what follows we consider ξr and ξθ as quantities of the order
of unity. Then it follows from Eq. (28) that ξ1 = O(ε−1) and
ξ2 = O(ε−1). These estimates inspire us to introduce the scaled
contravariant components of the displacement,

ξ̄1 = εξ1, ξ̄2 = εξ2. (36)

For the covariant components we have with the aid of Eq. (28)
that

ξ1 = g1 jξ
j = O(ε), ξ2 = g2 jξ

j = O(ε). (37)

In accordance with these estimates we introduce the scaled co-
variant components of the displacement,

ξ̄1 = ε
−1ξ1, ξ̄2 = ε

−1ξ2. (38)

To describe the plasma motion we use the ideal linear MHD
equations in the cold plasma approximation,

ρ
∂2ξ

∂t2
=

1
μ0

(∇ × b) × B +
1
μ0

(∇ × B) × b, (39)

b = ∇ × (ξ × B). (40)

It follows from Eq. (30) and the first equation in Eq. (34) that
(u × B)3 = 0 for any vector u. Then, taking into account Eq. (3),
we immediately conclude that the third covariant component of
the right-hand side of Eq. (39) is zero. This implies that ξ3 = 0.
Now, using the identity ξ3 = g31ξ

1 + g32ξ
2 + g33ξ

3 and Eqs. (28)
and (36) we obtain ξ3 = O(ε).

Using Eqs. (30) and (34), and the identity

εi jkεklm = δ
i
lδ

j
m − δi

mδ
i
l, (41)

we obtain from Eqs. (40)

bi =
1√
g

∂

∂u3

(
Bξi

√
g

g33

)
− δi

3√
g

∂

∂u j

(
Bξ j

√
g

g33

)
· (42)
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Let us introduce the perturbation of the magnetic pressure,

P =
1
μ0

B · b = 1
μ0

Bibi =
Bb3

μ0
√
g33
· (43)

Using Eq. (42) and the relation bi = gi jb j we obtain

P =
B

μ0
√
g

(
g3i√
g33

∂

∂u3
− √g33

∂

∂ui

) (
Bξi

√
g

g33

)
· (44)

Using Eqs. (28) and (36), and the estimate ξ3 = O(ε) we reduce
Eq. (44) to

P = −ε
−1B
μ0

√
g33

g

[
∂

∂u1

(
Bξ̄1

√
g

g33

)

+
∂

∂u2

(
Bξ̄2

√
g

g33

)]
+ O(ε). (45)

Using Eqs. (34) and (41) we obtain

[(∇ × b) × B]i = B j ∂bi

∂u j
− B j ∂b j

∂ui
· (46)

With the aid of Eqs. (30) and (43) we reduce this expression to

[(∇ × b) × B]i = −μ0
∂P
∂ui
+

B√
g33

∂bi

∂u3

+
μ0P
√
g33

B
∂

∂ui

(
B√
g33

)
· (47)

Using Eqs. (3) and (28)–(30), the first equation in Eq. (34), and
the relation � = R + O(ε) we obtain

[(∇ × B) × b]i =
2ε2qR2Bσ

q2 + R2
εi3 jb

j[1 + O(ε)]. (48)

Substituting Eqs. (47) and (48) in Eq. (39), taking into account
that, in accordance with Eqs. (28), (29) and (31), the ratio of the
last term on the right-hand side of Eq. (47) to the first term is of
the order of ε, and using Eq. (38) yields

ρ
∂2ξ̄1

∂t2
= −ε−1 ∂P

∂σ
+

ε−1B

μ0

√
q2 + R2

∂b1

∂ϕ

− 2εqR2Bσ
μ0(q2 + R2)

b2 + O(ε), (49)

ρ
∂2ξ̄2

∂t2
= −ε−1 ∂P

∂θ
+

ε−1B

μ0

√
q2 + R2

∂b2

∂ϕ

+
2εqR2Bσ
μ0(q2 + R2)

b1 + O(ε). (50)

It follows from Eqs. (49) and (50) that P = O(ε). Then it follows
from Eqs. (28) and (45) that

1√
g

[
∂

∂u1

(
Bξ̄1

√
g

g33

)
+

∂

∂u2

(
Bξ̄2

√
g

g33

)]
= O(ε2). (51)

Using Eqs. (28), (29), (31) and (51), the estimate ξ3 = O(ε), and
the relation bi = gi jb j we obtain from Eq. (42)

bi =
ε−1B√
q2 + R2

∂ξ̄i

∂ϕ
+ O(1), (i = 1, 2), (52)

b1 =
εBR2√
q2 + R2

∂ξ̄1

∂ϕ
+ O(ε2), b2 =

εBR2σ2√
q2 + R2

∂ξ̄2

∂ϕ
+ O(ε2).

(53)

Substituting Eqs. (52) and (53) in Eqs. (49) and (50) we trans-
form them to

ρ
∂2ξ̄1

∂t2
= −ε−1 ∂P

∂σ
+

B2R2

μ0(q2 + R2)
∂2ξ̄1

∂ϕ2

− 2qR2B2σ

μ0(q2 + R2)3/2

∂ξ̄2

∂ϕ
+ O(ε), (54)

ρ
∂2ξ̄2

∂t2
= −ε−1 ∂P

∂θ
+

B2R2σ2

μ0(q2 + R2)
∂2ξ̄2

∂ϕ2

+
2qR2B2σ

μ0(q2 + R2)3/2

∂ξ̄1

∂ϕ
+ O(ε). (55)

Let us introduce the length along the loop axis,

s =
√

q2 + R2 (ϕ − ϕ0). (56)

Using Eqs. (28), (35), (36) and (38) we obtain the relations

ξ̄1 =
ξr

R
+ O(ε), ξ̄2 =

ξθ
Rσ
+ O(ε),

ξ̄1 = Rξr + O(ε), ξ̄2 = Rσξθ + O(ε).
(57)

Substituting Eqs. (57) in (51), (54)and (55), using Eqs. (28)
and (56), and returning to the original variable r, we obtain in
the leading order approximations with respect to ε the following
system of equations,

∂(rξr)
∂r
+
∂ξθ
∂θ
= 0, (58)

∂2ξr

∂t2
− V2

A
∂2ξr

∂s2
= −1

ρ

∂P
∂r
− 2qV2

A

q2 + R2

∂ξθ
∂s

, (59)

∂2ξθ

∂t2
− V2

A
∂2ξθ

∂s2
= − 1

rρ
∂P
∂θ
+

2qV2
A

q2 + R2

∂ξr

∂s
· (60)

Note that the plasma density ρ and VA in general depend on s.
This system of equations has to be supplemented with the bound-
ary conditions. It is straightforward to show that the normal vec-
tor to the tube boundary is given by n = er + O(ε). Hence, in
the leading order approximations with respect to ε, we can take
n = er. The normal component of the displacement is approxi-
mately equal to ξr . Recall that the equation of the tube boundary
in the curvilinear coordinates is r = a. Let us introduce the jump
of a function f across the boundary,

[[ f ]] = lim
δ→+0
{ f (a + δ) − f (a − δ)}.

The perturbation of the total pressure and the normal component
of the displacement have to be continuous at the boundary. These
conditions are written as

[[P]] = 0, [[ξr]] = 0 at r = a. (61)

Note that, since the equilibrium magnetic field is inhomoge-
neous, we have to impose the condition that the Lagrangian per-
turbation of the total pressure is continuous at the boundary.
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However, the equilibrium magnetic field and its partial deriva-
tives with respect to r, θ and s are continuous at the boundary.
This implies that the jump in the Lagrangian perturbation of the
total pressure coincides with the jump in the Eulerian perturba-
tion of the total pressure. Finally, since the magnetic field lines
are frozen in the dense photospheric plasma at the loop ends, we
have

ξr = ξθ = 0 at s = 0, L, (62)

where

L =
√

q2 + R2 (π − 2ϕ0) (63)

is the length of the loop. The system of Eqs. (58)–(60) together
with the boundary conditions Eqs. (61) and (62) will be used in
the next section to derive the governing equation for the loop
kink oscillations.

5. Derivation of governing equation

The aim of this section is to derive the governing equation for
kink oscillations. It follows from Eq. (58) that ξr and ξθ can be
written in terms of one function,

ξr =
1
r
∂ψ

∂θ
, ξθ = −∂ψ

∂r
· (64)

Substituting these expressions in Eqs. (59) and (60) and elimi-
nating P from the obtained equations using cross-differentiation
we obtain the equation for ψ,

∂2F
∂t2
− V2

A
∂2F
∂s2
= 0, F = r

∂

∂r
r
∂ψ

∂r
+
∂2ψ

∂θ2
· (65)

It follows from Eqs. (62) and (64) that

ψ = 0 at s = 0, L. (66)

In what follows we only consider eigenmodes of kink oscilla-
tions and take the displacement proportional to exp(−iωt). Then
the first equation in Eq. (65) reduces to

∂2F
∂s2
+
ω2

V2
A

F = 0. (67)

This equation describes Alfvén oscillations of individual mag-
netic field lines. We assume that the eigenfrequencies of kink
oscillations do not coincide with any local Alfvén frequency.
Then Eq. (67) has only a trivial solution, F = 0. Therefore ψ
satisfies the equation

r
∂

∂r
r
∂ψ

∂r
+
∂2ψ

∂θ2
= 0. (68)

We restrict our analysis to kink oscillations and take ψ propor-
tional to exp(iθ), so that this equation reduces to

r
∂

∂r
r
∂ψ

∂r
− ψ = 0. (69)

Substituting Eq. (64) in Eq. (60) we obtain

P = ρ

⎛⎜⎜⎜⎜⎝irV2
A
∂3ψ

∂r∂s2
+ irω2 ∂ψ

∂r
+

2qV2
A

q2 + R2

∂ψ

∂s

⎞⎟⎟⎟⎟⎠ · (70)

Using Eqs. (64) and (70) we rewrite the boundary conditions
Eq. (61) at r = a in terms of ψ,

[[ψ]] = 0 at r = a, (71)

⎡⎢⎢⎢⎢⎣
⎡⎢⎢⎢⎢⎣ρ
⎛⎜⎜⎜⎜⎝V2

A
∂3ψ

∂r∂s2
+ ω2 ∂ψ

∂r
− 2iqV2

A

a(q2 + R2)
∂ψ

∂s

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎦ = 0 at r = a. (72)

The solution to Eq. (69) regular at r = 0, vanishing as r → ∞,
and satisfying Eq. (71) is straightforward,

ψ = Ψ(s)

⎧⎪⎨⎪⎩ r, r < a,

a2/r, r > a,
(73)

where, at present, Ψ(s) is an arbitrary function satisfying Ψ(s) =
0 at s = 0, L. Substituting Eq. (73) in Eq. (72) and taking into
account that [[ρV2

A]] = [[B2/μ0]] = 0 we obtain the governing
equation for Ψ(s),

d2Ψ

ds2
+
ω2

C2
k

Ψ = 0, C2
k =

2B2

μ0(ρe + ρi)
· (74)

Since the plasma density varies along the loop, Ck is a function
of s. The function Ψ satisfies the boundary conditions

Ψ = 0 at s = 0, L. (75)

Equations (74) and (75) constitute the boundary-value prob-
lem that determines the frequencies of the fundamental mode
and overtones of kink oscillations of the curved non-planar
loop. This boundary-value problem coincides exactly with the
boundary-value problem determining the frequencies of kink os-
cillations of a straight magnetic loop with the density varying
along the loop (see Dymova & Ruderman 2005). Hence, the loop
curvature and non-planarity does not affect directly the frequen-
cies of kink oscillations. This result can be expected on the phys-
ical ground because, in the leading order approximation with re-
spect to ε, we neglect both the curvature and torsion of the tube.
This effectively reduces the problem to studying kink oscilla-
tions of a straight tube. However, the loop curvature and non-
planarity can affect the oscillation frequencies indirectly because
they determine the dependence of ρe and ρi on s.

It follows from Eqs. (64) and (73) that ξr = iΨ and ξθ = −Ψ
inside the tube. These relations imply that both ξr and ξθ are
independent of r inside the tube. Then ξ is also independent of r
inside the tube, so that, in the leading order approximation with
respect to ε, the tube oscillates as a solid.

Equation (74) describes only the eigenmode dependence
on s. We managed to factor out the radial dependence because ρi

and ρe are independent of r. As a result, in the leading order ap-
proximation with respect to ε, the Alfvén speed inside the loop
and outside the loop in the loop vicinity is independent of r.
However the magnetic field magnitude is not constant. In ac-
cordance with Eq. (2) it is equal to qB0(q2 + �2)−1/2. Hence it
varies from B0 at � = 0 to 0 as � → ∞. This implies that, in
our model, there is the fundamental Alfvén continuum [0, ωA f ]
and the Alfvén continuum for every overtone, [0, ωAn], where
n = 1, 2, . . . We do not give the expressions for ωA f and ωAn

because they are not used in what follows. It can be shown that
the frequency of the fundamental kink mode is less than ωA f ,
and the frequency of the nth overtone is less than ωAn, which
implies that there is the Alfvén resonance. This should cause the
resonant damping of the loop kink oscillations. However the res-
onant surface is at the distance of the order of R � a from the
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loop, where the oscillation amplitude is extremely small. As a
result the resonant damping is very weak and can be neglected.

Since the Alfvén frequency is tending to zero as � → ∞, at
some distance from the loop the eigenmode is leaky, which also
should cause the oscillation damping. However, once again, the
wave leakage occurs at distances of the order of R � a from the
loop, where the oscillation amplitude is extremely small. As a
result the damping due to leakage is also very weak and can be
neglected.

6. Polarization of kink oscillations

As we have already mentioned the non-planarity practically
does not affect the frequencies of kink oscillations. The main
effect of non-planarity resides in changing the polarization of
kink oscillations. In this section we discuss possible observa-
tional signatures of this change of polarization. The following
analysis is a generalization of the analysis of the kink mode
polarization in the case of straight magnetic tube given by
Ruderman & Erdélyi (2009) (see Sect. 3 of that paper).

It is impossible to obtain any information about the polariza-
tion of kink eigenmodes directly from Eq. (74) because, when
deriving Eq. (74), we canceled out the dependence on t and θ
taking all variables proportional to exp(−iωt+ iθ). We need to re-
store this dependence. To do this we write ψ = rΨ(s) exp(−iωt+
iθ) inside the loop. It is obvious that we obtain the same Eq. (74)
if we take ψ = rΨ(s) exp(±iωt ± iθ) with any combinations of
the signs. Hence the general solution is the linear combination
of four different exponents. However the coefficients at these ex-
ponents are not arbitrary: they have to satisfy the condition that
ψ is a real function. It is easy to show that, under this restriction,
the most general form of ψ is

ψ = rΨ(s)
{exp(iθ)[A1 exp(−iωt) + A2 exp(iωt)]}, (76)

where 
 indicates the real part of a quantity, and A1 and A2
are arbitrary complex constants. Since it follows from Eqs. (74)
and (75) that the ratio of the imaginary and real part of Ψ is con-
stant, we can take Ψ(s) to be real without the loss of generality.
Substituting Eq. (76) in Eq. (64) we obtain after some algebra

ξr = Ψ(s)[A− cos(ωt − θ + α−) + A+ cos(ωt + θ + α+)],

ξθ = Ψ(s)[A− sin(ωt − θ + α−) − A+ sin(ωt + θ + α+)],
(77)

where A± and α± are arbitrary real constants.
Let us now calculate the components of ξ inside the tube

in Cartesian coordinates. Using Eqs. (25) and (26) we obtain
that, in the leading-order approximation with respect to ε, the
Cartesian components of the unit vectors in the r- and θ-direction
are given by

er =
∂X
∂σ

∣∣∣∣∣∂X
∂σ

∣∣∣∣∣
−1

=

⎛⎜⎜⎜⎜⎜⎝ R cos θ√
R2 + q2

, sin θ cosϕ +
q cos θ sin ϕ√

R2 + q2
,

sin θ sinϕ − q cos θ cosϕ√
R2 + q2

⎞⎟⎟⎟⎟⎟⎠ , (78)

eθ =
∂X
∂θ

∣∣∣∣∣∂X
∂θ

∣∣∣∣∣
−1

=

⎛⎜⎜⎜⎜⎜⎝− R sin θ√
R2 + q2

, cos θ cosϕ − q sin θ sin ϕ√
R2 + q2

,

cos θ sin ϕ +
q sin θ cosϕ√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠ · (79)

Now, using the relation ξ = ξrer + ξθeθ and Eqs. (56)
and (77)–(79), we obtain

ξx = Ψ(s)
RAc cos(ωt + αc)√

R2 + q2
, (80)

ξy = Ψ(s)

⎧⎪⎪⎨⎪⎪⎩As sin(ωt + αs) cos

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠

+
qAc cos(ωt + αc)√

R2 + q2
sin

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , (81)

ξz = Ψ(s)

⎧⎪⎪⎨⎪⎪⎩As sin(ωt + αs) sin

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠

− qAc cos(ωt + αc)√
R2 + q2

cos

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , (82)

where Ac, As , αc and αs are expressed in terms of A± and α±.
Since A± and α± are arbitrary real constants, Ac, As , αc and αs
are also arbitrary real constants.

Let us introduce the Frenet basis for the axis of the loop. It
consists of the unit tangent vector τ̂, the unit vector of principal
normal n̂, and the unit binormal vector b̂. If X = Xa(s) is the
equation of the tube axis, then

τ̂ =
dXa

ds
, n̂ =

dτ̂
ds

∣∣∣∣∣dτ̂ds

∣∣∣∣∣
−1

, b̂ = τ̂ × n̂. (83)

Using Eqs. (6) and (56) we obtain that the Cartesian coordinates
of the Frenet basis vectors are

τ̂ =
1√

R2 + q2

⎛⎜⎜⎜⎜⎜⎝q, −R sin

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠ ,

R cos

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ , (84)

n̂ = −
⎛⎜⎜⎜⎜⎜⎝0, cos

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠ , sin

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ , (85)

b̂ =
1√

R2 + q2

⎛⎜⎜⎜⎜⎜⎝R, q sin

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠ ,

−q cos

⎛⎜⎜⎜⎜⎜⎝ϕ0 +
s√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠ · (86)

Using Eqs. (80)–(82) and (84)–(86) we obtain that the projection
of ξ on the Frenet basis vectors are given by

ξτ = τ̂ · ξ = 0, ξn = n̂ · ξ = AsΨ(s) sin(ωt + αs),

ξb = b̂ · ξ = AcΨ(s) cos(ωt + αc).
(87)

Eliminating t from these equations we obtain

(ξn cos β − ξb sin β)2

(H1Ψ(s))2
+

(ξn sin β + ξb cos β)2

(H2Ψ(s))2
= 1, (88)

where β is defined by

tan 2β =
2AsAc sinα

A2
s − A2

c
, α = αc − αs, (89)
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Fig. 4. Illustration of polarization of a fundamental kink mode.

and H1 and H2 are expressed in terms of As, Ac, α and β. We
do not give these expressions because they are not used in what
follows. Equation (88) is the equation of an ellipse in the ξnξb-
plane with the half-axes equal to H1Ψ(s) and H2Ψ(s). The angle
between one of the axes and vector n̂ is β. Note that this angle is
independent of s. The ratio of axes is equal to H2/H1, so that it
is also independent of s. We see that, in general, the oscillation is
elliptically polarized in the plane spanned by the vectors n̂ and
b̂. This plane is orthogonal to the loop axis. The length of the
axes of the polarization ellipse are proportional to Ψ(s). When
the plane normal to the loop axis is moving along the loop the
axes of the polarization ellipse rotate together with the vectors n̂
and b̂. As it is well known from differential geometry the angle
of rotation per unit length is equal to the loop axis torsion. Using
Eq. (6) we easily find that this torsion is equal to q(R2 + q2)−1.

The oscillation is linearly polarized when one of the two axes
of the polarization ellipse is zero. However, since we do not give
the expressions for H1 and H2, we will use another condition.
Obviously the oscillation is linear polarized if ξn/ξb is indepen-
dent of t. This condition reduces to cos(αc − αs) = 0, so that
αc = αs + π/2+ nπ, where n is any integer number. Without loss
of generality we can take αc = αs + π/2. Then we obtain

(ξn, ξb) = A(cosβ, sin β)Ψ(s) sin(ωt + αs), (90)

where

A =
√

A2
s + A2

c , tan β =
Ac

As
· (91)

Figure 4 illustrates the polarization of a fundamental kink
eigenmode. The small arrows show the loop axis displacement.
If the eigenmode is linearly polarized then the direction of the
displacement vector at each point on the loop axis remains the
same at any moment of time. Hence, the end of the displacement
vector is moving along a straight line. In an elliptically polarized
eigenmode the direction of polarization vector rotates with con-
stant angular speed about the tangent to the loop axis. The end of
the displacement vector is moving along the polarization ellipse.

For a linearly polarized eigenmode we can fix arbitrarily the
polarization direction at one point. After that the polarization
direction at all other points on the loop axis will be defined.
Similarly for an elliptically polarized mode we can fix the direc-
tion of the larger half-axis of the polarization ellipse. After that
the directions of axes of the polarization ellipse at all other points
on the loop axis will be defined. The fact that we can choose
the polarization direction at one point arbitrarily implies that
kink oscillations of the loop are degenerate. There are infinitely
many eigenmodes with different polarization corresponding to
the same eigenfrequency. The situation is similar to that in the
case of a straight tube: due to the symmetry the tube can oscillate
with the same frequency in any direction.

Van Doorsselaere et al. (2004) studied kink oscillations of a
loop having a half-circle shape. They found that the account of
the loop curvature removes the degeneration of kink oscillations
that takes place in the case of a straight tube. Now there are two
fundamental eigenmodes, one polarized in the vertical and one in
the horizontal direction. These modes have different frequencies.
The same is true for all overtones. These results were confirmed
by the numerical study by Terradas et al. (2006).

However, Van Doorsselaere et al. (2004) found that the dif-
ference in frequencies of the vertically and horizontally polar-
ized eigenmodes is of the order of ε2, so that it is extremely small
for any realistic coronal loop. If the loop is initially displaced in
the direction that is neither vertical not horizontal then both the
vertically and horizontally polarized eigenmodes will be excited.
Since they have different frequencies, the beating phenomenon
will take place. However, this phenomenon will be manifested
only after the time of the order of the oscillation period times
ε−2, which is much larger than the characteristic damping time
of kink oscillations. This implies that the splitting of oscillation
frequency caused by the curvature is unimportant from the ob-
servational point of view.

We anticipate that the situation with non-planar loops is sim-
ilar to that with curved planar loops. Namely, we anticipate that,
extending our analysis to the higher order approximation with
respect to ε, we obtain that there are two fundamental modes
with mutually orthogonal polarization directions and different
frequencies. Further, we anticipate that the same is true for all
overtones. However the frequency differences will be of the or-
der of ε2 (or, at least, of the order of ε), so these differences are
unimportant for applications.

7. Implication on coronal seismology

The analysis in this section has been inspired by the observation
of a kink oscillation of a non-planar loop reported by Schrijver
et al. (2002) and interpreted by De Moortel & Brady (2007).
De Moortel & Brady (2007) found that the observed oscillation
contained two harmonics, one with the period 577–672 s, and
the other with the period 250–346 s. The amplitude of the har-
monic with the larger period was much larger than the ampli-
tude of the harmonic with the smaller period. The most impor-
tant result obtained by De Moortel & Brady (2007) was that the
dominant harmonic has a node at some point on the loop. This
result inspired De Moortel & Brady (2007) to interpret this har-
monic as the first overtone of the loop kink oscillation. They
then discussed the possible reasons why the solar flare near the
loop excited mainly the first overtone, and not the fundamental
harmonic as in the absolute majority of observations of coronal
loop kink oscillations. Note that De Moortel & Brady (2007) did
not exclude the possibility that the dominant harmonic is still the
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Fig. 5. Introducing the angles χ and ς is illustrated. The thick line shows
the loop axis.

fundamental mode, while the presence of the node is an obser-
vational effect related to the loop non-planarity.

In what follows we are not going to apply the results of
our theoretical study to the particular kink oscillation of a coro-
nal loop reported by Schrijver et al. (2002) and interpreted by
De Moortel & Brady (2007). Instead we aim to develop a theo-
retical tool that can be used to answer the question: is the ob-
served kink oscillation of a non-planar loop that has a node the
first overtone or, is it the fundamental mode and the presence of
the node is an observational effect?

Consider a linearly polarized kink oscillation of a non-planar
loop studied in the previous section. Assume that we observe this
oscillation and the line-of-sight is determined by the unit vector
S. Let τ̂0, n̂0 and b̂0 be the vectors of the Frenet basis at the loop
apex, i.e. at s = L/2. We define vector S as (see Fig. 5)

S = n̂0 cosχ + b̂0 sin χ cos ς + τ̂0 sin χ sin ς, (92)

where χ ∈ [0, π] and ς ∈ [0, 2π]. Since s = L/2, it follows from
Eq. (63) that ϕ0+s/

√
R2 + q2 = π/2. Substituting this expression

in Eqs. (84)–(86) we obtain

τ̂0 =
(q,−R, 0)√

R2 + q2
, n̂0 = (0, 0,−1), b̂0 =

(R, q, 0)√
R2 + q2

· (93)

Then we easily obtain

n̂ = sin ϕn̂0 +
cosϕ√
R2 + q2

(
Rτ̂0 − qb̂0

)
,

b̂ =
qR(1 − sin ϕ)τ̂0 + (R2 + q2 sin ϕ)b̂0

R2 + q2
+

q cosϕ√
R2 + q2

n̂0,

(94)

where ϕ is expressed in terms of s by Eq. (56). We can visually
observe only the component of vector ξ perpendicular to S. It is
given by ξ⊥ = ξ − S(ξ · S). The condition that ξ⊥ = 0 is written
as ξ ‖ S. Using Eqs. (90) and (94) we obtain from the condition
ξ ‖ S two equations,

(R2 + q2 sinϕ) tan β
R2 + q2

− q cosϕ√
R2 + q2

=

tanχ cos ς

⎛⎜⎜⎜⎜⎜⎝sin ϕ +
q cosϕ tan β√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠ , (95)

qR(1 − sin ϕ) tan β
R2 + q2

+
R cosϕ√
R2 + q2

=

tanχ sin ς

⎛⎜⎜⎜⎜⎜⎝sinϕ +
q cosϕ tan β√

R2 + q2

⎞⎟⎟⎟⎟⎟⎠ · (96)

Eliminating tan β from Eqs. (95) and (96) we obtain the equation
for ϕ,

R sinϕ tan χ(q cos ς − R sin ς) + R
√

R2 + q2 cosϕ

− q tanχ(R cos ς + q sin ς) = 0. (97)

If this equation does not have a solution satisfying ϕ ∈ [ϕ0, π −
ϕ0], then this means that, for any polarization angle β, we cannot
have a node in the observation of the loop oscillation in its fun-
damental mode. This would be strong evidence supporting the
conclusion that the observed oscillation is the first overtone.

Let us now assume that Eq. (97) has a solution satisfying
ϕ ∈ [ϕ0, π−ϕ0]. In principle, it is possible that there is more than
one solution of Eq. (97) satisfying this condition, but we do not
consider this case and assume that there is exactly one solution.
After solving Eq. (97) we use Eq. (56) to find the position of the
node on the loop, sth. Let sobs be the position of the node found
from the observation. If |sth − sobs | is small enough, i.e. if it is
in the confidence interval, then it is a strong evidence supporting
the conclusion that the observed oscillation is the fundamental
mode, while the presence of the node is an observational effect.
Contrary, if |sth− sobs| is beyond the confidence interval, then it is
an evidence in favour of concluding that the observed oscillation
is the first overtone.

Let us consider one example. Assume that we have observed
kink oscillations of a non-planar loop described by our model
with R = q, ϕ0 = 0 (so that the projection of the loop on the yz-
plane is a half-circle), and the line-of-sight vector S is defined
by χ = π/4 and ς = π/3. Then Eq. (97) reduces to(
1 − √3

)
sin ϕ + 2

√
2 cosϕ −

(
1 +
√

3
)
= 0. (98)

The solution to this equation satisfying ϕ ∈ (0, π) is

ϕ = arcsin
2
√

4 − 2
√

3 − 1

6 − √3
≈ 0.109,

so that sth = ϕ/π ≈ 0.035 L. Hence, if sobs is close to 0.035 L
then we conclude that the observed oscillation was the funda-
mental mode. If, on the other hand, sobs differs very much from
0.035 L, then we conclude that the observed oscillation was the
first overtone.

8. Summary and conclusions

In this paper we have studied the kink oscillations of non-planar
coronal magnetic loops. We suggested a simple model of a non-
planar loop with the loop axis being a part of a helical line. The
loop cross-section is everywhere a circle of radius a, where a is
much smaller than the loop curvature radius. The density inside
the loop is larger than outside the loop, and both densities inside
and outside the loop can vary along the loop. However they do
not vary in the transversal directions.

We introduced a curvilinear coordinate system where the
loop boundary is a coordinate surface and the loop axis is
a coordinate line. Then we wrote the ideal linearized MHD
equations and boundary conditions in the curvilinear coordi-
nates. We used these equations and boundary conditions to
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derive the governing equation for the loop kink oscillations.
To do this we used the asymptotic method similar to one de-
veloped by Dymova & Ruderman (2005) for the derivation of
the governing equation for kink oscillations of a straight mag-
netic tube with the density varying along the tube. It turns
out that our equation is exactly the same as one derived by
Dymova & Ruderman (2005). This implies that, similar to the
loop curvature, the loop torsion cannot affect the eigenfrequen-
cies of the non-planar loop oscillations directly. It can only affect
them indirectly through modifying the dependence of the density
on the distance along the loop.

The main effect of the loop torsion is the variation of the os-
cillation polarization along the loop. The loop displacement is
everywhere orthogonal to the loop axis. In general, at each point
on the loop axis the displacement is elliptically polarized in the
plane orthogonal to the axis. The ratio of the polarization ellipse
axes does not vary along the loop, and the ellipse axes consti-
tute the same angle with the principal normal to the loop axis at
any point of the loop axis. Hence, they rotate together with the
principal normal due to the loop torsion. We obtain a linearly
polarized oscillation in a particular case when one of the polar-
ization ellipse axes is zero. In that case the polarization direction
everywhere constitutes the same angle with the principal normal.

We discussed the application of the obtained results to
coronal seismology. For this we considered the observation of a
linearly polarized kink oscillation of a non-planar coronal loop
with the line-of-sight defined by the vector S. We assumed that
the kink oscillation is the fundamental mode, so that there are no
nodes except at the foot points. Visually we can observe only the
loop displacement orthogonal to S. Hence, we see the node at the
point where the loop displacement is parallel to S. We derived
the equation (see Eq. (97)) that defines the position where the

loop displacement is parallel to S under the assumption that the
loop oscillation is plane polarized. If this equation has a solution
corresponding to a point on the loop axis than we always can find
the corresponding polarization direction. We suggest comparing
the position of this point with the position of the node found from
the observations. If the two positions are close to each other, then
this is a strong evidence in favour of the conclusion that the loop
oscillates in its fundamental mode and the presence of the node
is an observational effect. On the other hand, if the two posi-
tions are strongly different, then it is most probable that the node
presence indicates that the loop oscillates in its first overtone.
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