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Problems related to the transverse vibration of a rotating tapered cantilever beam with hollow circular cross-section are addressed,
in which the inner radius of cross-section is constant and the outer radius changes linearly along the beam axis. First, considering
the geometry parameters of the varying cross-sectional beam, rotary inertia, and the secondary coupling deformation term, the
di
erential equation of motion for the transverse vibration of rotating tapered beam with solid and hollow circular cross-section is
derived byHamilton variational principle, which includes some complex variable coe�cient terms. Next, dimensionless parameters
and variables are introduced for the di
erential equation and boundary conditions, and the di
erential quadrature method (DQM)
is employed to solve this di
erential equation with variable coe�cients. Combining with discretization equations for the di
erential
equation and boundary conditions, an eigen-equation of the system including some dimensionless parameters is formulated in
implicit algebraic form, so it is easy to simulate the dynamical behaviors of rotating tapered beams. Finally, for rotating solid tapered
beams, comparisons with previously reported results demonstrate that the results obtained by the present method are in close
agreement; for rotating tapered hollow beams, the e
ects of the hub dimensionless angular speed, ratios of hub radius to beam
length, the slenderness ratio, the ratio of inner radius to the root radius, and taper ratio of cross-section on the �rst three-order
dimensionless natural frequencies are more further depicted.

1. Introduction

	e dynamical problem of rotating uniform and nonuniform
solid beam is widely used inmany practical engineering, such
as helicopter rotor blades and wind turbine blades. Also, the
dynamics of rotating tapered hollow beams is of practical sig-
ni�cant, for example, rotating tank gun barrel (hollow circu-
lar cross-section). As pointed out in [1], in dynamical analysis,
a rotating beam di
ers from a nonrotating beam because it
also possesses centrifugal sti
ness and Coriolis e
ects that
in
uence its dynamical characteristics. Besides the above
e
ects, there are some complicated factors, including the
secondary coupling deformation term, coupling e
ect, and
the variable coe�cient di
erential equation. 	erefore, the
methodologies and solutions for rotating nonuniform beam
turn out to be cumbersome.

	e dynamic analysis of rotating uniform beams has been
the subject of many articles and received much attention.
Yoo and Shin [2] investigated the e
ect of centrifugal force

for rotating uniform cantilever beams and used a modal
formulation to obtain the natural frequencies and mode
shape. Tsai et al. [3] proposed the corotational �nite element
method combined with 
oating frame method to derive
di
erential equation of motion for the rotating inclined Euler
uniform beams at constant angular speed and investigated
the steady-state deformation and the natural frequencies of
in�nitesimal free vibration. Vinod Kumar and Ganguli [4]
used the static part of the homogeneous di
erential equation
of violin strings to obtain new shape functions for the �nite
element analysis of rotating Timoshenko beams. Aksencer
and Aydogdu [5] studied 
apwise vibration of rotating
composite beams, which are used in di
erent beam theories,
including Euler-Bernoulli, Timoshenko, and Reddy beam
theories, and obtained some results for di
erent orthotropy
ratios, rotation speed, hub ratio, length to thickness ratio
of the rotating composite beam, and di
erent boundary
conditions. Li et al. [6] developed a new dynamic model of
a planar rotating hub-beam system, where the beam is of
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an Euler-Bernoulli type and the deformation of the beam is
described by the slope angle and stretch strain of the centroid
line of the beam. 	ey obtained four corresponding spatially
discretized models, that is, ESA, FOSA, SOSA, and SSOSA
model, and calculated natural frequencies and mode shapes
of the system with the chordwise bending and stretching
coupling e
ect. J. W. Lee and J. Y. Lee [7] investigated the
e
ects of cracks on the natural frequencies of a rotating
Bernoulli-Euler beam using a new numerical method in
which these e
ects can be computed simply using the transfer
matrix method.

In recent years, more studies related to transverse vibra-
tion of rotating nonuniform beams can be found in the
following papers. Gunda and Ganguli [8] developed new
interpolating functions which satisfy the static part of the
homogenous governing di
erential equation for rotating
uniform and tapered beams and imposed as a constraint
equation in the derivation of the shape functions. Cheng
et al. [9] investigated vibration characteristics of cracked
rotating tapered beam by p-version �nite element method
and analyzed the e
ects of crack location, crack size, rotating
speed, and hub radius on vibration characteristics of the
beam. Bulut [10] considered out-of-rotation plane bending
vibrations of rotating composite beamwith periodically vary-
ing speed and further examined the e
ect of taper ratio on
dynamic stability of this parametrically system. Banerjee and
Jackson [11] addressed the free vibration problemof a rotating
tapered Rayleigh beam by developing its dynamic sti
ness
matrix. In their analysis, the e
ects of centrifugal sti
ening,
an outboard force, an arbitrary hub radius, and importantly,
the rotary inertia (Rayleigh beam) are included. Sarkar and
Ganguli [12] proposed an inverse problem approach for
dynamics of the rotating nonuniform Euler-Bernoulli beam
and showed that there exists a certain class of rotating Euler-
Bernoulli beam, having cantilever and pinned-free boundary
conditions, which has a closed-form polynomial solution
to its governing di
erential equation. At the same year,
they also studied the free vibration of a nonhomogeneous
rotating Timoshenko beam, having uniform cross-section,
using an inverse problem approach, for both cantilever
and pinned-free boundary conditions [13]. Tang et al. [14]
studied free vibration of rotating tapered cantilever beams
with rotary inertia using the integral equation method and
analyzed the e
ects of the rotary inertia, angular speed, taper
ratio, and hub radius. Li and Zhang [15] developed a new
rigid-
exible coupled dynamic model to study dynamics of
rotating axially functionally graded (FG) tapered beams by
using the B-spline method (BSM) and observed some new
interesting phenomena of frequency veering and mode shi�
in a rotating axially FG tapered beam when the B-S coupling
e
ect is included. Huo and Wang [16] derived the nonlinear
dynamic equations of a rotating, double-tapered, cantilever
Timoshenko beam and analyzed the e
ect of angular speed,
hub radius, slenderness ratio, and the height and width taper
ratios on the natural frequencies of the rotating Timoshenko
beamwhen the rotation beam is in a steady state, in which the
extensional deformation of the beam is considered. Panchore
et al. [17, 18] investigated free vibration problem of a rotating
Euler-Bernoulli beam and a rotating Timoshenko beamusing

meshless local Petrov-Galerkin method and introduced a
locking-free shape function formulation with an improved
radial basis function interpolation. Ghafarian and Ariaei
[19] presented a new procedure for determining natural
frequencies and mode shapes of a system of elastically con-
nectedmultiple rotating tapered beams through a di
erential
transformmethod,which obey theTimoshenko beam theory,
and discussed the e
ects of the rotational speed, hub radius,
taper ratios, rotary inertia, shear deformation, slenderness
ratio, and elastic layer sti
ness coe�cients on the natural
frequencies. Ghafari and Rezaeepazhand [20] presented free
vibration analysis of rotating composite beams with arbitrary
cross-section using dimensional reduction method. Adair
and Jaeger [1] used the computational approach of AMDM
to analyze the free vibration of nonuniform Euler-Bernoulli
beams under various boundary conditions, rotation speeds,
and hub radii and simultaneously obtained the natural
frequencies and corresponding closed-form series solution
of the mode shape. Panchore and Ganguli [21] studied the
free vibration problem of a rotating Rayleigh beam using the
quadratic B-spline �nite element method. Other researchers
also investigated the relevant second-order coupling term
that represents longitudinal shrinking of the rotating beam
caused by the transverse displacement. Li et al. [22] intro-
duced a dynamicmodel of a rotating hub-functionally graded
material beam system with the dynamic sti
ening e
ect. In
their work, the dynamic sti
ening e
ect of the rotating hub-
FGM beam system is captured by a second-order coupling
term. Zhao and Wu [23] established the coupling equations
of motion of a rotating three-dimensional cantilever beam
to study the e
ects of Coriolis term and steady-state axial
deformation on coupling vibration, which considered the
longitudinal shrinkage caused by 
apwise and chordwise
bending displacement. At present, a large amount of articles
relating to free vibration of rotating functionally graded plates
or disk can be found (see, for instance, [24–26]).

In the above referenced articles, the model of rotating
uniform beam and nonuniform beam have been considered,
especially for rotating tapered beam, which has rectangular
cross-sectionwith linearly varyingwidth and constant height,
with linearly varying height and constant width, and with
linearly varying width and height. However, to the best of the
authors’ knowledge, no researchwork related to the dynamics
of a rotating beam with varying hollow circular cross-section
(or rotating tapered hollow beam) has been yet presented.
	e dynamical of the system is of practical signi�cant because
rotating tapered hollow beams are widely used as structural
components in the engineering �eld.

In this paper, the investigation proceeds as follows. First
the geometry parameters of a rotating tapered cantilever
beam with hollow circular cross-section are described, and
the governing di
erential equation of motion for transverse
free vibration of a rotating tapered Rayleigh beam is derived
using Hamilton variational principle. Next, for harmonic
oscillation, the di
erential equation with variable coe�cients
is solved using the di
erential quadrature method, and an
eigen-equation of the system for dimensionless parameters
is formulated in explicit algebraic form. Finally, for rotating
solid tapered beams, comparisons with previously reported
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Figure 1: Schematic diagram of a rotating tapered cantilever beam
with hollow circular cross-section.

results demonstrate that the results obtained by the present
method are in close agreement; for rotating tapered hollow
beams, the e
ects of the hub dimensionless angular speed,
ratios of hub radius to beam length, the slenderness ratio,
the ratio of inner radius to the root radius, and taper ratio of
cross-section on the �rst three-order dimensionless natural
frequencies are more further depicted.

2. Parameters of Rotating Tapered Cantilever
Beam with Hollow Circular Cross-Section

Figure 1 shows the schematic diagram of a rotating tapered
cantilever beamwith hollow circular cross-section, which has
length L, elastic modulus �, and density � and is �xed at
point � of a rigid hub with radius �. 	e hub is rotating in
the horizontal plane around point � with a rotating angular
speed �̃. A �xed (inertial) planar coordinate system OXY
through the �xed point � and a 
oating coordinate system
oxy that is tangent to the attachment point of the beam to
the hub are prescribed, respectively. 	e latter (�	
) relative
to the former (���) rotates with a rotation angle 
 of large
range motion.

	e rotating beam with varying hollow circular cross-
section is considered, whose outer diameter varies linearly
and the inner diameter keeps unchanged along its longitu-
dinal 	-axis, as shown in Figure 2. 	e beam has the root
radius �1 (at x = 0) and the end radius �2 (at x = L), the
wall thickness �(	) versus the coordinate 	, and the radius��(	) at the middle line of the wall thickness for any cross-
section. A local coordinate system with a normal direction �
and tangential direction � at the central line of hollow circular
cross-section is adopted.

	e average radius ��(	) and the wall thickness �(	) can
be expressed, respectively, as follows:

�� (	) = �12 [1 − (1 − �) 	�] + �4 ,
� (	) = �1 [1 − (1 − �) 	�] − �2 = 2�� (	) − �,

(1)

where � = �2/�1 is called the taper ratio of cross-section. It
is also stipulated that the section size of the beam decreases
and increases linearly from the root to the end, that is, � ∈

[�/2�1,∞], in which �/2�1 is denoted by � (called the ratio
of inner radius to the root radius). 	ere are two particular
cases: one is a uniform beam when �2 = �1, that is, � = 1,
and the other is a particular varying cross-section beamwhen�2 = �/2, that is, �min = �/2�1.

	e area of any cross-section and its moment of inertia
with respect to axis � can be expressed, respectively, as

�� (	) = � (�� + �2)
2 − �(�2)

2

= ��21 {[1 − (1 − �) 	�]
2 − �2} = �1�� (	) ,

# (	) = �64 [%4 (	) − �4] = �64 [[2� (	) + �]4 − �4]
= ���3 (	) � (	) [1 + �2 (	)4��2 (	)]
= �64 (2�1)4 {[1 − (1 − �) 	�]

4 − �4}
= #1#� (	) ,

(2)

where �1 = ��21 and #1 = (�/4)�14 are the area and the
moment of inertia with respect to axis � of the root cross-
section of the beam, respectively, �2 = (�/4)�2, #�(	) and��(	) are given by

#� (	) = [1 − (1 − �) 	�]
4 − �4,

�� (	) = [1 − (1 − �) 	�]
2 − �2.

(3)

Any hollow circular cross-section of the beam is shown
as Figure 3. 	e vertical coordinate of any point M can be
expressed, respectively, as


 = 
 (�) + � sin3 = 
 (�) − �d� (�)
d� . (4)

3. Differential Equation of Motion

3.1. �e Description of the Deformation Field. Figure 4 shows
that r� is a radius vector of the original point o of 
oating
coordinate system oxy with respect to the point O of the
inertial coordinate system OXY, x� is a radius vector of any
point50, which is on the axis of the beam before deformation,
the point P is the positions of the point 50 a�er deformation,
and u� is a displacement vector of the point 50.

	e vector of point 50 relative to original point O of
inertial coordinate system OXY can be expressed as

r� = r� + A� (x� + u�) , (5)

where

r� = [� cos 
 � sin 
]T ,
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Figure 2: Geometry of rotating tapered cantilever beam with hollow circular cross-section and coordinate system.
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Figure 3: Any hollow circular cross-section of the beam and in�nitesimal arc length.

x� = [	 0]T ,
A� = [cos 
 − sin 


sin 
 cos 
 ] is a direction-cosine matrix of the 
oating base relative to the inertial base,

u� = [?��?��] = [? + ?� + ?	 @ ]T = [
[
? − 12 ∫

�

0
(@
)2 d	 − 
@

@ ]

]
(6)

in which ? and @ are the axial displacement and the
transverse bending de
ection, respectively; ?	 = −
@
 =−@
[
(�) − �(d�(�)/d�)] is axial displacement of any point
caused by transverse bending, in which the prime denotes

spatial derivatives with respect to 	; ?� = −(1/2) ∫�0 (@
)2d	
is a second-order coupling term that represents longitudinal
shrinking of the rotating tapered beam with hollow circular

cross-section beam caused by the transverse displacement@. It includes the coupling e
ect between the axial displace-
ment and transverse displacement of rotating tapered hollow
beam.

Taking the derivative with respect to time for (4), the
velocity vector of the point50 at the inertial coordinate system
can be obtained

ṙ� = ṙ� + �̇A� (x� + u�) + A�u̇� = [−
̇ (� + 	 + ?� + ?	) sin 
 − 
̇@ cos 
 + (?̇� + ?̇	) cos 
 − @̇ sin 


̇ (� + 	 + ?� + ?	) cos 
 − 
̇@ sin 
 + (?̇� + ?̇	) sin 
 + @̇ cos 
 ] , (7)

where �̇ = [ 0 −�̇
�̇ 0

] is a antisymmetric matrix relating to

angular speed 
̇, in which the over dot denotes derivative with
respect to time J.

3.2. Di
erential Equation of Motion

3.2.1. Kinetic Energy of System. Kinetic energy of system
consists of two parts: one is the kinetic energy of the hub
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Figure 4: Schematic diagram of the deformation �eld.

and the other is the kinetic energy of the beam with hollow
circular cross-section; namely,

K = K� + K
. (8)

	e kinetic energy of the hub is given by

K� = 12L�
̇2, (9)

where L� is rotary inertia of the hub with respect to central
axis.

Neglecting the axis displacement of the beamwith hollow
circular cross-section, the kinetic energy of the per unit
length of the beam can be expressed as

K̃� = ∫2���
0

∫�/2
−�/2

12� (ṙ�)T ṙ�d� d� = 12M� {@̇2 + ?̇�2
+ 
̇2 [@2 + (� + 	 + ?�)2]
+ 2
̇ [−?̇�@ + @̇ (� + 	 + ?�)]}
+ 12 [�#1#� (	) 
̇2@2,� + �#1#� (	) @̇2,�] ,

(10)

where M� is the e
ective mass of the per unit length of the
beam; it can be expressed as

M� = ∫2���(�)
0

�� (	) d� = ∫2���(�)
0

�� (	) d�
= � ⋅ 2��� (	) � (	) = ��� (	) = ��1�� (	) .

(11)

	e kinetic energy of the beamwith hollow circular cross-
section can be rewritten as

K
 = ∫�
0
K̃�d	 = 12 ∫

�

0
M� {(?̇� − 
̇@)2

+ [@̇ + 
̇ (� + 	 + ?�)]2} d	 = 12
⋅ ∫�
0
��1�� (	) {@̇2 + ?̇�2

+ 
̇2 [@2 + (� + 	 + ?�)2]
+ 2
̇ [−?̇�@ + @̇ (� + 	 + ?�)]2} d	 + 12
⋅ ∫�
0
�#1#� (	) [
̇2@2,� + @̇2,�] d	.

(12)

	us, substituting (9) and (12) into (8), the total kinetic
energy of the system can be expressed as

K = 12L�
̇2 + 12 ∫
�

0
��1�� (	) {@̇2 + ?̇�2

+ 
̇2 [@2 + (� + 	 + ?�)2]
+ 2
̇ [−?̇�@ + @̇ (� + 	 + ?�)]2} d	 + 12
⋅ ∫�
0
�#1#� (	) [
̇2@2,� + @̇2,�] d	.

(13)

3.2.2. Strain Energy of System. Neglecting the deformation
energy caused by shear deformation, the strain energy of
rotating beam with hollow circular cross-section is written as

Q� = ∫
�

12R�S�dQ = ∫
�

12�S2�dQ, (14)

where � is the elastic modulus of material; R� and S�
represent the normal stress and normal strain in 	 direction,
respectively.

In (6), ignoring the axial displacement and nonlinear
term, the normal strain can be got by the relationship between
strain and displacement: namely,

S� = T?��T	 = − [
 (�) − �d� (�)
d� ]@

. (15)

According to Figure 3, a geometrical relationship is given
by

d� (�)
d� = − sin3 = − sin( ���) . (16)

	us, the strain energy of the beam with hollow circular
cross-section can be rewritten as

Q� = 12 ∫
�

0
∫�/2
−�/2

∫2�
0
S2� (�� (	) + �) d3 d� d� = 12

⋅ ∫�
0
∫�/2
−�/2

∫2���
0

�[− [
 (�) − �d� (�)
d� ]@

]2

⋅ (�� (	) + ��� (	) ) d� d� d	 = 12 ∫
�

0
�# (	)

⋅ (@

)2 d	 = 12�#1 ∫
�

0
#� (	) (@

)2 d	.

(17)
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3.2.3. Derivation of Di
erential Equation of Motion. In this
paper, Hamilton variational principle for elastic system is
used to derive the di
erential equation of motion. 	e basis
form of Hamilton variational principle can be showed as

Y∫�2
�1
(K − Q�) dJ = 0. (18)

Substituting (13) and (17) into (18) and implementing a lot
of variational operation and integration by parts, a variational
expression is given by

∫�
0
{−�#1#� (	)@



 − 2�#1#
� (	)@


 − �#1#

� (	)@


+ ��1� (	) [−@̈ + 
̇2@ − 
̈ (� + 	 + ?�) − 2
̇?̇�]
+ �#
 (	) 
̇2@,� + �# (	) 
̇2@,�� − �#
 (	) @̈,�
− �# (	) @̈,��} d	 + TT	 [@
 ∫

�

�
\ (	, J) d	]

= 0,

(19)

where \(	, J) = ��1��(	)[−?̈� + 
̇2(� + 	 + ?�) + 2@̇
̇ + 
̈@].
Because second-order coupling deformation term ?� is a

second-order small quantity, we can neglect some nonlinear
terms and time-varying coupling terms in (19) to simplify
the equation appropriately. 	us, the di
erential equation
of motion of the rotating beam with hollow circular cross-
section can be derived

− �#1#� (	) @



 − 2�#1#
� (	) @


 − �#1#

� (	) @


+ ��1�� (	) [−@̈ + 
̇2@ − 
̈ (� + 	) − 
̇2@
 (�
+ 	) − 2@̇
̇@
 − 
̈@@
] + 2
̇@
@̇
��1 [� − 	
+ (1 − �)23�2 (�3 − 	3) −(1 − �)� (�2 − 	2)]
− 2
̇@
@̇
��2 (� − 	) + 
̈@
2��1 [� − 	
+ (1 − �)23�2 (�3 − 	3) −(1 − �)� (�2 − 	2)]
− 
̈@
2��2 (� − 	) + ��1@

 {(2@̇
̇ + 
̈@ + 
̇�)
⋅ [� − 	 + (1 − �)23�2 (�3 − 	3)
− (1 − �)� (�2 − 	2)] + 
̇2 [�2 − 	22

+ (1 − �)24�2 (�4 − 	4) − 2 (1 − �)3� (�3 − 	3)]}

− ��2@,�� [
̇
2

2 (�2 − 	2) + (2@̇
̇ + 
̈@ + 
̇2�) (�
− 	)] + �#
 (	) 
̇2@
 + �# (	) 
̇2@

 − �#
 (	) @̈

− �# (	) @̈

 = 0.

(20)

Taking uniform rotation into consideration, that is, 
̈ = 0,
̇ = �0, a di
erential equation of motion of the beam can be
expressed as

�#1#� (	)@



 + 2�#1#
� (	)@


 + �#1#

� (	)@


+ ��1�� (	) @̈ − �#1#� (	) @̈

 − �#1#
� (	) @̈

+ �#1#
� (	) �02@
 − ��1�02 (�c1 + c2) @


+ �#1#� (	) �02@


+ ��1�2�02 [� (� − 	) + �2 − 	22 ]@


+ ��1�� (	) �02 (� + 	)@
 = 0

(21)

in which �1 = � − 	 + (1 − �)2(�3 − 	3)/3�2 − (1 − �)(�2 −	2)/�, �2 = (�2 − 	2)/2 + (1 − �)2(�4 − 	4)/4�2 − (2(1 −�)/3�)(�3 − 	3).
	e boundary conditions of the cantilever beam are as

follows:

	 = 0: @ = 0,
@
 = 0,

	 = �: @

 = 0,
� d

d	 [# (	)@,��] − �# (	) @̈,� + �# (	) �20@,�
= 0.

(22)

3.3. DimensionlessMethod of the Equation. For simplicity, the
following dimensionless quantities are introduced: d = 	/�,@ = @/�, e = (J/�2)√�#1/��1, � = �0�2√��1/�#1 (called
dimensionless angular speed of the hub), g0 = �/� (called

ratio of hub radius to beam length), and g = √#1/�1�2 (called
slenderness ratio).

Dimensionless expression of (21) can be expressed as

T4@Td4 +
2#
� (d)#� (d)

T3@Td3 +
#

� (d)#� (d)

T2@Td2 + �� (d)#� (d)
T2@Te2

− #
� (d)#� (d) g2
T3@Te2Td − g2 T4@Td2Te2 + �2g2 T

2@Td2
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+ #
� (d)#� (d)�2g2
T@Td + �� (d)#� (d) �2 (g0 + d)

T@Td
− �2#� (d) (g0c11 + c22)

T2@Td2
+ �2�2#� (d) [g0 (1 − d) +

1 − d22 ] T2@Td2 = 0,
(23)

where c11 = (1 − d) − (1 − �)(1 − d2) + ((1 − �)2/3)(1 − d3),c12 = (1 − d2)/2 − (2(1 − �)/3)(1 − d3) + ((1 − �)2/4)(1 − d4).
Let the solution of (23) be @(d, e) = i(d) exp(Ωe); a

di
erential equation of mode shape can be written as

d4i
dd4 +

2#
� (d)#� (d)
d3i
dd3 +

#

� (d)#� (d)
d2i
dd2 + Ω2�� (d)#� (d) i

− #
� (d)#� (d) g2Ω2
di
dd − g2Ω2 d2i

dd2 + �2g2 d
2i
dd2

+ #
� (d) �2g2#� (d)
di
dd + �� (d) �2#� (d) (g0 + d) didd

− �2#� (d) (g0c11 + c22)
d2i
dd2

+ �2�2#� (d) [g0 (1 − d) +
1 − d22 ] d2i

dd2 = 0,

(24)

whereΩ is dimensionless natural frequency.
	e dimensionless forms of the boundary conditions (22)

are rewritten as

i(0) = 0,
di(0)
dd = 0,

d2i(1)
dd2 = 0,

d3i(1)
dd3 − g2 (Ω2 − �2) di(1)

dd = 0.

(25)

4. Differential Quadrature Method

In order to solve the di
erential equation with variable
coe�cients (24) and deal with the boundary conditions (25),
the di
erential quadraturemethod (DQM) and the Ymethod
are used, respectively. Selecting nonuniform nodes, the node
coordinates are as follows [27, 28]:

�1 = 0,
�2 = Y,

��−1 = 1 − Y,

�� = 1,
�� = 12 (1 − cos

k − 2l − 3�) (k = 3, 4, . . . , l − 2) ,
(26)

wherel is the numbers of nodes and Y is small parameter.
According to the DQM procedures, (24) can be dis-

cretized as follows:

�∑
�=1
�(4)�� i� + 2#
� (d�)#� (d�)

�∑
�=1
�(3)�� i� + #

� (d�)#� (d�)

�∑
�=1
�(2)�� i�

+ Ω2�� (d�)#� (d�) i� −
#
� (d�)#� (d�)g

2Ω2 �∑
�=1
�(1)�� i�

− g2Ω2 �∑
�=1
�(2)�� i� + g2�2 �∑

�=1
�(2)�� i� + #
� (d�)#� (d�)

⋅ g2�2 �∑
�=1
�(1)�� i� + �2�� (d�)#� (d�) (g0 + d�)

�∑
�=1
�(1)�� i�

− �2#� (d�) [(g0c11 + c22) − �
2g0 (1 − d�)

− �2 1 − d2�2 ] �∑
�=1
�(2)�� i� = 0 (k = 3, 4, . . . , l − 2) ,

(27)

where��(d�) = [1−(1−�)d�]2−�2, #�(d�) = [1−(1−�)d�]4−�4,
d#�(d�)/�d = −4[1 − (1 − �)d�]3(1 − �), d2#�(d�)/dd2 = 12[1 −(1 − �)d�]2(1 − �)2.

	e boundary conditions (25) can also be discretized as
follows:

i1 = 0, (28a)

�∑
�=1
�(1)2�i� = 0, (28b)

�∑
�=1
�(2)�−1�i� = 0, (28c)

�∑
�=1
�(3)��i� − g2 (Ω2 − �2) �∑

�=1
�(1)��i� = 0. (28d)

Equations (27), (28a), (28b), (28c), and (28d) can be
rewritten as a simpler matrix form

(Ω2M + ΩC + K)W = 0, (29)

where M, C, and K are all (l − 2) × (l − 2) square matrix;

W = [i3 i4 ⋅ ⋅ ⋅ i�−2]T is column matrix.
Equation (29) denotes a generalized eigenvalue problem.

Based on the linear algebra theory, the su�cient and neces-
sary conditions of homogeneous linear algebraic equations
which create the nonzero solution are that the determinant of
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Table 1: Comparison of the �rst three dimensionless natural frequencies of rotating solid tapered Euler-Bernoulli beams at g0 = 0, � = 0,g = 0, 0 ≤ � ≤ 1.
� Ω � = 1 � = 0.75 � = 0.5 � = 0.25 � = 0

Present Ref. [14] Present Ref. [14] Present Ref. [14] Present Ref. [14] Present

0

Ω1 3.5164 3.5160 3.9570 3.9567 4.6257 4.6252 5.8293 5.8231 8.7445Ω2 22.0366 22.0345 20.8091 20.807 19.5514 19.5476 18.5183 18.480 20.1042Ω3 61.6960 61.6972 55.3500 55.3304 48.5953 48.5789 41.4611 41.321 36.5279

5

Ω1 6.4499 6.4495 6.7732 6.7729 7.2905 7.2901 8.2653 8.2620 10.6634Ω2 25.4483 25.4461 24.0673 24.0660 22.6379 22.6360 21.4209 21.384 22.8601Ω3 65.2118 65.2050 58.6518 58.6364 51.7012 51.6918 44.4176 44.269 41.0619

10

Ω1 11.2029 11.2023 11.4859 11.4856 11.9419 11.9415 12.7928 12.791 14.7477Ω2 33.6417 33.6404 31.8863 31.8895 30.0289 30.0299 28.3381 28.301 29.4213Ω3 74.6671 74.6493 67.5293 67.5316 60.0369 60.0399 52.2738 52.100 51.2478

15

Ω1 16.1445 - 16.4165 - 16.8587 - 17.6745 - 19.4476Ω2 43.9323 - 41.7005 - 39.2756 - 36.9308 - 37.5106Ω3 87.9543 - 80.0153 - 71.7371 - 63.1548 - 59.9363

coe�cients equals zero; thus, one can arrive to the following
generalized eigen-equation:

qqqqqΩ2M + ΩC + K
qqqqq = 0, (30)

where the square matrices M, C, and K involve some
parameters, such as ratios of hub radius to beam length, the
slenderness ratio, the ratio of inner radius to the root radius,
and taper ratio of cross-section, each dimensionless natural
frequencies, and dimensionless angular speed of the hub.

5. Numerical Results and Analyses

5.1. Rotating Tapered Cantilever Beam with Solid Circular
Cross-Section. In this paragraph, setting � = 0 in (24), we
can obtain the di
erential equation of motion for rotating
tapered beam with solid circular cross-section, where taper
ratio � ∈ [0,∞) is de�ned. It becomes evident that if the
taper ratio � = 0 and � = 1, they are varying solid circular
cross-section beam with zero radius at free end and entirely
uniform solid circular cross-section, respectively. Prior to the
presentation of our numerical results, let us �rst consider
three particular cases to con�rm the e
ectiveness of the
present approach: a simple uniform nonrotating cantilever
beam, a rotating tapered Euler-Bernoulli cantilever beam,
and a rotating tapered Rayleigh cantilever beam, which is
given by setting parameters � = 0, g0 = 0, g = 0, and � = 1,
parameters g0 = 0, g = 0, and parameters g0 = 0, 1/g =30, respectively. In three cases, we calculate the �rst three-
order dimensionless natural frequencies by selectingl = 12
for di
erent taper ratio of cross-section and dimensionless
angular speed, and some numerical results are tabulated in
Tables 1 and 2 (0 ≤ � ≤ 1). From the two tables, we can
see that the numerical results in the present coincide well
with the existing ones [14]. 	ese verify that the method
presented in this paper is e�cient and accurate.	e �rst three
dimensionless mode shapes are shown as Figure 5 for� = 10,� = 1, g0 = 0, � = 0, and g = 0.
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Figure 5: 	e �rst three dimensionless mode shapes for � = 10,� = 1, g0 = 0, � = 0, and g = 0.

Furthermore, in the case of � > 1, for example,1.25 ≤ � ≤ 3.00, that is, the radius of beam cross-
section at free end is more than one at the cantilevered end,
the �rst three-order dimensionless natural frequencies of a
rotating tapered Rayleigh cantilever solid beam for three
dimensionless angular speeds are tabulated in Table 3. It
can be seen in Table 3 that as a whole, the �rst three-order
dimensionless natural frequencies increase with the increase
of dimensionless angular speeds.

Figure 6 shows the variation of the �rst three-order
dimensionless natural frequencies of rotating tapered solid
beams with dimensionless angular speed of the hub for
three di
erent ratios of hub radius to beam length g0 =0, 0.5, 1 at � = 0.5, g = 1/30. It can be found from
Figure 6 that, with the increase of the ratios of hub radius
to beam length, the �rst three-order dimensionless natural
frequencies increase. Figure 7 shows the variation of the �rst
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Table 2: Comparison of the �rst three dimensionless natural frequencies of rotating solid tapered Rayleigh beams for di
erent � (0 ≤ � ≤ 1)
at g0 = 0, � = 0, 1/g = 30.
� Ω � = 1 � = 0.75 � = 0.5 � = 0.25 � = 0

Present Ref. [14] Present Ref. [14] Present Ref. [14] Present Ref. [14] Present

0

Ω1 3.5073 3.5070 3.9486 3.9483 4.6174 4.6168 5.8198 5.8136 8.7267Ω2 21.6497 21.6477 20.5498 20.5475 19.3883 19.3846 18.4214 18.3834 20.0372Ω3 59.2069 59.2073 53.7093 53.6911 47.6173 47.6021 40.9588 40.825 36.5169

5

Ω1 6.4254 6.4251 6.7524 6.7521 7.2720 7.2717 8.2469 8.2436 10.6360Ω2 24.9759 24.9737 23.7510 23.7497 22.4394 22.4375 21.3029 21.266 22.7786Ω3 62.5464 663.5392 56.8916 56.8774 50.6483 50.6397 43.8720 43.730 41.0472

10

Ω1 11.1604 11.1598 11.4494 11.4490 11.9087 11.9083 12.7584 12.767 14.6997Ω2 32.9667 32.9654 31.4395 31.4425 29.7515 29.7521 28.1722 28.136 29.3002Ω3 71.5142 71.4977 65.4444 65.4472 58.7850 58.7878 51.6155 51.450 50.5772

15

Ω1 16.0851 - 16.3650 - 16.8105 - 17.6223 - 19.3744Ω2 43.0010 - 41.0951 - 38.9051 - 36.7064 - 37.3335Ω3 84.0806 - 77.4631 - 70.2081 - 62.3423 - 59.2553

Table 3: 	e �rst three dimensionless natural frequencies of rotating solid tapered Rayleigh beams for di
erent � (1.25 ≤ � ≤ 3) at g0 = 0,� = 0, 1/g = 30.
� Ω � = 1.25 � = 1.50 � = 1.75 � = 2.00 � = 2.25 � = 2.5 � = 2.75 � = 3.00
0

Ω1 3.1877 2.9421 2.7461 2.5882 2.4704 2.4129 2.4613 2.6858Ω2 22.6579 23.5718 24.3952 25.1281 25.7580 26.2480 26.5270 26.4787Ω3 64.2417 68.9100 73.2615 77.3249 81.1317 84.7333 88.2071 91.6568

5

Ω1 6.1987 6.0331 5.9156 5.8549 5.8827 6.0577 6.4683 7.2429Ω2 26.0836 27.0745 27.9483 28.6698 29.2062 29.4743 29.3543 28.6666Ω3 67.7177 72.5014 76.9672 81.1744 85.1868 89.0823 92.9551 96.9133

10

Ω1 10.9632 10.8352 10.7906 10.8785 11.1850 11.8383 13.0323 15.1307Ω2 34.3001 35.4363 36.3539 36.9976 37.2721 37.0347 36.0682 33.9720Ω3 77.0509 82.1465 86.9066 91.4446 95.8797 100.3326 104.9216 109.7575

15

Ω1 15.9065 15.8297 15.9030 16.2187 16.9153 18.1923 20.3830 24.3670Ω2 44.5894 45.8474 46.7372 47.1832 47.0645 46.1947 44.2444 40.3254Ω3 90.1006 95.6133 100.7463 105.6461 110.4616 115.3326 120.3820 125.7134

three-order dimensionless natural frequencies of rotating
tapered solid beams with dimensionless angular speed of the
hub for three di
erent slenderness ratios g = 1/30, 1/10 at� = 0.5, g0 = 0. It can be seen from Figure 7 that, for two
di
erent g = 1/30, 1/10, the increase of slenderness ratio
has scarce in
uence on the �rst-order dimensionless natural
frequencies; however, it has signi�cant in
uence on the
second- and the third-order dimensionless natural frequency.
	is shows that the increase of rotary inertia makes the
system natural frequency decrease, and this conclusion is
consistent with those given by Timoshenko beam. Figure 8
shows the variation of the �rst three-order dimensionless
natural frequencies of rotating tapered solid beams with
dimensionless angular speed of the hub for three di
erent
taper ratios of cross-section � = 0.25, 0.5, 0.75 at g0 = 0,g = 1/30. It can be seen from Figure 8 that, with the
increase of taper ratio, the �rst three-order dimensionless
natural frequencies of the system decrease. It is noted that
the increase of taper ratio has scarce in
uence on the �rst-
order dimensionless natural frequency, it has slight in
uence
on the second-order dimensionless natural frequency, and

it has obviously an e
ect on the third-order dimensionless
natural frequency. It should be pointed out that, as shown in
Figures 6–8, in the case of the given ratios of hub radius to
beam length, the slenderness ratio, and taper ratio of cross-
section, the �rst three dimensionless natural frequencies of
rotating tapered solid beam monotonically increase with
dimensionless angular speed of the hub.

5.2. Rotating Tapered Cantilever Beam with Hollow Circular
Cross-Section. For a rotating tapered cantilever beam with
hollow circular cross-section, its inner diameter � ̸= 0, that is,� ̸= 0, and the taper ratio � ∈ [�,∞) is de�ned. When � = �,
the outer radius of beam at free end is the same as its inner
radius. When � = 1, the beam is entirely uniform hollow
circular cross-section. 	is section will mainly discuss the
e
ect of ratios of hub radius to beam length, the slenderness
ratio, the ratio of inner radius to the root radius, and taper
ratio of cross-section on the �rst three dimensionless natural
frequencies of rotating tapered hollow beams.

As a particular case of hollow circular cross-section,
Table 4 gives the variation of the �rst three dimensionless
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Figure 6: Variation of the �rst three dimensionless natural fre-
quencies of rotating solid tapered beamswith dimensionless angular
speed of the hub for various g0 = 0, 0.5, 1 at � = 0.5, g = 1/30.
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Figure 7: Variation of the �rst three dimensionless natural fre-
quencies of rotating solid tapered beamswith dimensionless angular
speed of the hub for various g = 1/30, 1/10 at � = 0.5, g0 = 0.

natural frequencies of rotating uniform thin-wall cross-
section beams with dimensionless angular speed of the hub
for three di
erent slenderness ratios g = 0, 1/30, 1/10 atg0 = 0, � = 0.92, and � = 1. It should be pointed out that the
�rst three dimensionless natural frequencies of nonrotating
beam in Table 4 equal the �rst three dimensionless natural
frequencies 3.5156, 22.0336, and 61.7010 [29] of cantilever

beam multiplied by √1 + �2. We can see that the numerical

results in the present coincide well with the existing ones
[29]. 	e �rst three dimensionless natural frequencies of the
rotating uniform thin-wall cross-section beam decreased as
the slenderness ratio was raised.

5.2.1. E
ect of the HubDimensionless Angular Speed and Taper
Ratio of Cross-Section. Table 5 gives the variation of the �rst
three dimensionless natural frequencies of rotating tapered
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Figure 8: Variation of the �rst three dimensionless natural fre-
quencies of rotating solid tapered beamswith dimensionless angular
speed of the hub for various � = 0.25, 0.5, 0.75 at g = 1/30, g0 = 0.

hollow beams with dimensionless angular speed of the hub
for two di
erent slenderness ratios g = 1/30, 1/10 and three
ratios of inner radius to the root radius � = 0.2, 0.4, 0.6 at� = 0.75. With this table, it is obvious that the �rst three
dimensionless natural frequencies increase with the ratio
of inner radius to the root radius, except the second-order
dimensionless natural frequencies at g = 1/10, � = 15.

Figure 9 plots the curves between the �rst three-order
dimensionless natural frequencies of rotating tapered hollow
beam and dimensionless angular speed of the hub for � =0.5, 0.75 and g = 1/30, 1/10 at � = 0.5, g0 = 0, � = 0.2.
With this �gure, it is also understood that the �rst three-order
dimensionless natural frequencies of rotating tapered hollow
beam monotonically increase with dimensionless angular
speed of the hub.Meanwhile, it is further noted in Figure 9(a)
that, with the increase of the taper ratio of cross-section, the
�rst-order dimensionless natural frequency of the system is
reduced slightly. However, in Figures 9(b) and 9(c), with the
increase of the taper ratio of cross-section, the values of the
second- and third-order dimensionless natural frequencies of
the system are increased.

In addition, it is also observed in Figure 9 that the increase
of slenderness ratio makes three dimensionless natural fre-
quencies of the system decrease, contrasting Figures 9(a),
9(b), and 9(c), obviously, and the e
ect of the slenderness
ratio on the second- and third-order dimensionless natural
frequencies is relatively greater than the �rst-order dimen-
sionless natural frequency.

5.2.2. E
ect of Ratios of Hub Radius to Beam Length and
Slenderness Ratio. As it was expected in Table 6, the change
of ratios of hub radius to beam length has no e
ect on the
natural frequencies of nonrotating tapered beam (� = 0). It
is also observed in Table 6 that, for rotating tapered beam, the
dimensionless natural frequencies of the system increase with
ratios of hub radius to beam length.

Figure 10 plots the curves between the �rst three-
order dimensionless natural frequencies of rotating tapered
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Table 4: 	e �rst three order dimensionless natural frequencies of rotating circular thin-wall cross-section beams at g0 = 0, � = 0.92, � = 1.
� Ω g = 0 g = 1/30 g = 1/10

Present Ref. [29]

0

Ω1 4.7781 4.7771 4.7555 4.5844Ω2 29.9438 29.9393 28.9935 23.6666Ω3 83.8339 83.8393 77.8914 54.3817

5

Ω1 7.2326 - 7.1843 6.8112Ω2 32.5368 - 31.4682 25.4442Ω3 86.4579 - 80.2848 55.9058

10

Ω1 11.7433 - 11.6598 10.9967Ω2 39.2955 - 37.9215 30.0678Ω3 93.8425 - 87.0105 60.1779

15

Ω1 16.6095 - 16.4939 15.5592Ω2 48.4647 - 46.6776 36.2668Ω3 104.8728 - 97.0268 66.4979

Table 5:	e �rst three order dimensionless natural frequencies of rotating tapered hollow beams for various ratio of inner radius to the root
radius � (g0 = 0, � = 0.75).
� Ω g = 1/30 g = 1/10� = 0.2 � = 0.4 � = 0.6 � = 0.2 � = 0.4 � = 0.6
0

Ω1 4.0743 4.4869 5.4689 4.0021 4.3928 5.3165Ω2 21.1137 22.8085 25.9958 19.1933 20.4539 22.8066Ω3 55.0759 59.0308 65.6330 45.1361 47.2503 50.6619

5

Ω1 6.8283 7.0878 7.7613 6.6530 6.8756 7.4647Ω2 24.2176 25.6314 28.3193 21.8856 22.8463 24.6981Ω3 58.1504 61.7981 67.8694 47.5230 49.3294 52.2535

10

Ω1 11.5023 11.6837 12.1584 11.1927 11.3104 11.6424Ω2 31.7436 32.6600 34.3608 28.4415 28.8297 29.6427Ω3 66.4593 69.3894 74.1474 53.9527 55.0169 56.7149

15

Ω1 16.4109 16.5675 16.9725 15.9740 16.0415 16.2467Ω2 41.2695 41.7660 42.5327 36.7455 36.5930 36.3560Ω3 78.2143 80.3361 83.4935 62.9728 63.1570 63.3260

hollow beam and dimensionless angular speed of the hub
for g0 = 0, 0.5, 1 at g = 1/30, � = 0.5. With
this �gure, the �rst three-order dimensionless natural fre-
quencies of the system increase with dimensionless angu-
lar speed of the hub and ratios of hub radius to beam
length.

Figure 11 plots the curves of the �rst three-order dimen-
sionless natural frequencies with ratios of hub radius to beam
length for two di
erent taper ratios of cross-section � = 0.5,0.75 at � = 5, g = 1/30, � = 0.3. Figure 12 plots the curves
of the �rst three-order dimensionless natural frequencies
with ratios of hub radius to beam length for two di
erent
slenderness ratios g = 1/30, 1/10 at � = 5, � = 0.5, � = 0.3. It
can be seen in Figures 11 and 12 that, for di
erent taper ratio
of the cross-section and slenderness ratios, with the increase
of ratios of hub radius to beam length, the �rst three-order
dimensionless natural frequencies of the system are almost
linearly increased. Meanwhile, it is noted that the in
uence
of the slenderness ratio on the third-order natural frequency
of the system is more obvious than that of the �rst order and
the second order.

6. Conclusion

In this paper, a new type of transverse vibration of a rotating
tapered cantilever beam with linearly varying solid and
hollow circular cross-section, that is, rotating tapered beam,
was presented. 	e rotating beam, which is considered a
tapered cantilever beam, is modeled by the Rayleigh beam
theory. Considering the secondary coupling deformation
term, the di
erential equation of motion for the transverse
vibration of rotating tapered beam with solid and hollow
circular cross-section is derived by Hamilton variational
principle, which includes some complex variable coe�cient
terms. A di
erential quadrature method to solve the above-
mentioned di
erential equationwith variable coe�cients was
employed to simulate the dynamical behaviors of tapered
rotating beams. Also, for two types of rotating tapered beams
with solid and hollow circular cross-section, the e
ects of
the hub dimensionless angular speed, ratios of hub radius
to beam length, the slenderness ratio, the ratio of inner
radius to the root radius, and taper ratio of cross-section on
the �rst three-order dimensionless natural frequencies are
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Figure 9: Variation of the �rst three dimensionless natural frequencies of rotating tapered hollow beam with dimensionless angular speed of
the hub for di
erent values of � = 0.5, 0.75 and g = 1/30, 1/10 at g0 = 0, � = 0.2: (a) 1st mode; (b) 2nd mode; and (c) 3rd mode.

Table 6: 	e �rst three-order dimensionless natural frequencies of rotating tapered hollow beams for various ratios of hub radius to beam
length g0 (� = 0.2).
� Ω g = 1/10 g = 1/30g0 = 0.1 g0 = 0.5 g0 = 1 g0 = 0.1 g0 = 0.5 g0 = 1
0

Ω1 4.0021 4.0021 4.0021 4.0743 4.0743 4.0743Ω2 19.1933 19.1933 19.1933 21.1137 21.1137 21.1137Ω3 45.1361 45.1361 45.1361 55.0759 55.0759 55.0759

5

Ω1 6.9391 7.9790 9.1094 7.1163 8.1648 9.3065Ω2 22.2340 23.5717 25.1345 24.6043 26.0908 27.8311Ω3 47.8600 49.1793 50.7682 58.5679 60.2042 62.1795

10

Ω1 11.8553 14.1905 16.6439 12.1676 14.5191 16.9959Ω2 29.4809 29.4809 37.4245 32.8996 37.1390 41.7938Ω3 55.0961 59.0961 64.2301 67.8847 73.2615 79.3845

15

Ω1 17.0078 20.6152 24.3667 17.4498 21.0838 24.8719Ω2 38.5013 44.7447 51.3531 43.2329 50.2622 57.7703Ω3 65.0693 72.6549 80.8113 80.8610 90.5387 101.1210
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Figure 10: 	e �rst three-order dimensionless natural frequencies
with dimensionless angular speed of the hub for di
erent g0 =0, 0.5, 1 at � = 0.3.
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Figure 11: 	e �rst three-order dimensionless natural frequencies
with ratios of hub radius to beam length for � = 0.5, 0.75 at � = 5,g = 1/30, and � = 0.3.

depicted. 	e main results of this study are summarized as
follows.

When the rotating angular speed is constant, in the case of
the given ratios of the hub radius to beam length, the slender-
ness ratio, and the taper ratio of cross-section, the �rst three-
order dimensionless natural frequencies of rotating tapered
solid and hollow beams monotonically ascend as the hub
dimensionless angular speed increases. For a rotating tapered
hollow beam at a constant angular speed, the �rst-order
dimensionless natural frequency of the system is reduced
slightly with the increase of the taper ratio of cross-section,
the values of the second- and the third-order dimensionless
natural frequencies of the system are increased; for di
erent
taper ratio of the cross-section and slenderness ratios, with
the increase of ratios of hub radius to beam length, the
�rst three-order dimensionless natural frequencies of system
almost linearly increase, and the in
uence of the slenderness
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Figure 12: 	e �rst three-order dimensionless natural frequencies
with ratios of hub radius to beam length for g = 1/30, 1/10 at � = 5,� = 0.5, and � = 0.3.

ratio on the third-order natural frequency of the system is
more obvious than that of the �rst order and the second order.
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