
 1 Copyright © 2005 by ASME 

Proceedings of  
2005 ASME International Mechanical Engineering Congress and Exposition 

November 11-15, 2005 Orlando, Florida 

DRAFT IMECE 2005 - 80377 

TRANSVERSE VIBRATION OF TWO AXIALLY MOVING BEAMS CONNECTED BY AN ELASTIC 
FOUNDATION 

 
  

Mohamed Gaith and Sinan Müftü 
Northeastern University 

Department of Mechanical and Industrial Engineering 
 Boston, MA 02115 

 
 

 
 
ABSTRACT 

 
Transverse vibration of two axially moving beams connected 
by a Winkler elastic foundation is analyzed analytically. The 
system is a model of paper and paper-cloth (wire-screen) used 
in paper making. The two beams are tensioned, translating 
axially with a common constant velocity, simply supported at 
their ends, and of different materials and geometry. Due to the 
effect of translation, the dynamics of the system displays 
gyroscopic motion. The Euler-Bernoulli beam theory is used to 
model the deflections, and the governing equations are 
expressed in the canonical state form. The natural frequencies 
and associated mode shapes are obtained. It is found that the 
natural frequencies of the system are composed of two infinite 
sets describing in-phase and out-of-phase vibrations.  In case 
the beams are identical, these modes become synchronous and 
asynchronous, respectively. Divergence instability occurs at the 
critical velocity; and, the frequency-velocity relationship is 
similar to that of a single traveling beam. The effects of the 
mass, flexural rigidity, and axial tension ratios of the two 
beams, as well as the effects of the elastic foundation stiffness 
are investigated.   

 
1. INTRODUCTION 
      Axially moving materials have many engineering 
applications like magnetic tape systems, fiber winders, power 
transmission belts, textile and paper web handling machinery 
[1]. Axially moving materials typically are modeled as a string 
or as an Euler-Bernoulli beam [2, 3].  
       Web is a generic name used for thin, flexible continuous 
materials such as magnetic tapes and papers. Paper making is 
one of the oldest of the industries involved with web handling, 
with more than a century of history. In the papermaking 
process, paper fibers are mixed with water, and this pulp slurry 
is sprayed onto a large, flat, fast-moving wire-screen, 
sometimes called the paper-cloth. As the wire-screen translates 

along the paper machine, the water drains out, and the fibers 
bond together. The paper web is pressed between rolls in order 
to squeeze out more water and it is further dried by heated 
rollers. The stiffness of paper increases as it is dried along the 
path of the machine. The paper is eventually rolled and 
removed from the machine. Vibration problems can arise 
during transport of the paper-wire system, where excessive 
vibration could cause the paper to separate from the wire-screen 
prematurely. In this work the translating wire/paper system is 
modeled as two translating beams, connected by an elastic 
foundation. The elastic foundation is used, without much 
justification, to represent the bonding between the wire and the 
paper.  

To the best of the authors’ knowledge the vibration of such 
a system has not been considered in the literature. On the other 
hand, vibration of translating single beams/strings and vibration 
of non-translating, double beam/string systems have been 
studied extensively.  
      The vibration of a translating string supported by an elastic 
foundation was studied by Perkins [5], Wickert [4] and Parker 
[6]. Perkins studied the axially moving, string supported by a 
distributed elastic foundation and obtained the natural 
frequencies and corresponding mode shapes and examined the 
subcritical frequencies [5]. Parker found that the elastic 
foundation does not alter the lowest critical speed, but the 
supercritical stability is changed by the elastic foundation [6]. 
Oz et al. investigated the transition from string to beam for an 
axially moving material and obtained the natural frequencies 
expressions [7].  

Tabarrok et al. derived the governing equation of motion 
of an axially moving beam including the effect of flexural 
rigidity of the beam [8]. Barakat investigated the transverse 
vibrations of moving thin rod, and obtained the natural 
frequencies and corresponding mode shapes for fixed and 
simply supports at ends [9]. Wickert and Mote presented a 
closed form solution for axially moving continua, subjected to 
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arbitrary excitations and initial conditions, using complex 
modal analysis and Green’s function method [4,10]. Wickert 
investigated the nonlinear vibration of an axially moving, 
tensioned, Euler-Bernoulli beam [11]. Ulsoy investigated the 
transverse vibration with coupling between spans of axially 
moving beam and the effect of tension variation [12]. 
Chakraborty et al. analyzed the free and forced vibration of a 
traveling beam having an intermediate guide, including non-
linear effects, using the complex normal mode method [13]. 
They modeled the guide as a purely elastic constraint with no 
inertia, and found that the choice of a suitable guide location 
plays an important role in controlling the vibrations. Riedel and 
Tan investigated the free response of an elastically constrained, 
axially moving string and beam using transform function 
method, and studied the effects of speed and tension on the 
natural frequencies [14]. 
     The use of two (or more) non-translating beams, connected 
by elastic foundation(s) is common in engineering, and a 
variety of problems adopt it as a model. The basic model uses a 
Winkler foundation, in which the beams are connected through 
closely spaced, but non-interconnected linear springs, which is 
defined by the foundation modulus k. 
     A considerable number of theoretical and experimental work 
on the transverse vibrations of such systems has been 
performed. Seelig et al. solved the system of double beams 
connected by elastic foundation [15]. They obtained the natural 
frequencies and associated mode shapes for various supports at 
ends limited to equal masses and flexural rigidities. Kessl 
determined the resonances of a simply supported, elastically 
connected double beam system that is subjected to a cyclic load 
[16]. 
      Although most of the studies on transverse vibrations of 
double beam systems consider numerical approximations, many 
researchers tried to analyze the vibrations using analytical 
solution, He et al. presented an analytical solution for the 
coupled transverse and longitudinal vibration of multi-span 
beam systems with arbitrary boundary conditions [17]. They 
used the energy method and Hamilton’s principal to derive the 
governing equations of motion and the corresponding essential 
and natural boundary conditions for each beam. Using Green 
function method, Kukla obtained analytical solution for 
systems of axially loaded beams with several boundary 
conditions [18]. He considered system of double beams 
connected by translational springs. Chen et al. presented the 
exact solutions for the natural frequencies and mode shapes of 
non-uniform beams with multiple spring-mass systems using 
Numerical Assembly Method (NAM) [19]. 
     Vu et al. developed a closed form solution for the vibration 
of a double beam system subject to harmonic motion by 
decoupling the governing equations [20]. Their method is valid 
only for identical beams and identical boundary conditions for 
each side. Oniszczuk presented exact analytical solutions and 
performed full theoretical vibration analysis of a discrete two 
degree of freedom system with arbitrary damping [21]. His 
analysis is valid only for identical masses, viscous damping, 
and spring constants as his method is based on decoupling the 
differential equations of motion through a specific transform of 
spatial displacement. Cha proposed an alternative formulation 
for determining the eigenvalues of a linear elastic structure 
carrying any number of concentrated masses, springs, and 
viscous dampers [22]. Oniszczuk applied the theory proposed 

in reference [21] on a damped vibration analysis of an 
elastically connected complex double string system and 
obtained analytical solutions for a special case of identical 
masses, springs, and dampers [23]. 
      Oniszczuk also analyzed undamped free transverse 
vibrations of an elastically connected complex double beam 
system [24]. He applied the classical modal expansion method 
for the case of simply supported beams. He obtained an 
analytical solution using pre-assumed mode shape function and 
determined the natural frequencies and the complete dynamic 
response.  
 
2. PROBLEM STATEMENT 

The system shown in Fig. 1 consists of two parallel, 
slender, prismatic and homogeneous beams, joined by a 
Winkler foundation of stiffness k. Both beams have the same 
length between the two supports, simply supported at ends, 
axially translating, and axially tensioned, to 1p  and 2p  as 
shown. 

 
 
      Figure 1 Double beams connected by elastic foundation 
 
 
The coupled governing equations of the free transverse 
vibrations for the system are derived using Bernoulli-Euler 
beam theory and can be written as: 
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where )t,x(ww ii =  are the transverse deflections of the two 

beams (i=1, 2),  x is the spatial coordinate, t is the time, im  the 

mass per unit length, iE is the Young’s modulus, iI is the 
second moment of area of the beam cross section, k is the 
stiffness of the Winkler foundation, V is the axial translation 
speed of the beams. Both beams are assumed to be simply 
supported at their ends x=0 and x=L. The simply support 
boundary conditions are: 
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The two governing equations can be written in the following 
non-dimensional form: 
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where T is the non-dimensional time, 2µ is the non-dimensional 
tension parameter, K is the non-dimensional elastic foundation 
stiffness, Rm is the mass ratio of the beams, Rs is the flexural 

stiffness ratio of the beams, Rp is the axial load ratio,λ is the 
non-dimensional complex natural frequency, andν is the non-
dimensional axial translation speed. The non-dimensional 
forms of the boundary conditions become:  
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3. SOLUTION METHOD 
 The response of the lower beam can be written in terms of 
the response of the upper beam, by using Eq. (5) as follows: 
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Equations (5) and (6) can then be combined into a single 
eighth-order partial differential equation:  
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where the coefficients are given as, 
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The system of equations given by (5) and (6) can be written in 
the form of a system of second order differential equations as: 
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Where a subscripted comma ,T indicates partial 
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M ,G , *K are the mass, gyroscopic and stiffness operators, 
respectively, and f is the vector external forces. In general, 

1f and 2f are functions of X and T. As the system response 
depends on the applied load and initial conditions, the system 
can be described using state variables to fully describe any 
arbitrary initial conditions. On the other hand, the orthogonality 
of eigenfunctions with respect to each operator is of 
fundamental importance in vibrations. It plays an indispensable 
role in the solution of the differential equations of motion 
associated with the vibration of linear systems [10] and it is 
well confirmed [25-28]. Thus, the equations of motion can be 
expressed in the form of state space representation in the first-
order form [27]: 

qBUAU =+T,  (16) 
where the state and excitation vectors are: 
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Equation (16) is the canonical form of the equation of motion 
(13), where A is a symmetric and B is a skew symmetric 
matrix.  
The inner product of two vectors 1U and 2U is defined as 
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where the over bar denotes complex conjugation. 
 
4. NATURAL FREQUENCIES ANALYSIS 
The general solution Eq. (16) can be written in the form: 

{ }T
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where the eigenvaluesλ and the eigenfunctions iφ̂ are 
complex, and i =1, 2. By assuming the eigenfunction for beam-
1 in the general form as follows: 
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and substituting Eqs. (20) and (21) in Eq. (10), the 
eigenfunction for beam-2 is found to be: 
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In order to obtain the eigenvalues for the double-beam system, 
boundary conditions, in Eqs. (8-9) are evaluated using Eqs. (21-
22). This results in eight homogeneous algebraic equations, 
which is represented in matrix form as: 

0=cA  (24) 

where Tcccc }...{ 8321=c is the coefficient vector, and A is 
the matrix of coefficients. In order to have a nontrivial solution, 
the determinant of matrix A must be zero. This gives the 
characteristic equation of the system. The natural frequencies 
are determined from the solution of the characteristic equation. 
A computer program, using the symbolic mathematics language 
MathematicaTM, is developed to determine these complex 
natural frequencies. 
 
5. RESULTS AND DISCUSSION 

In this section the free transverse vibrations of two axially 
translating simply supported, tensioned beams connected by an 
elastic foundation are investigated. First the mode shapes and 
the natural frequencies are analyzed. Then, the effects of 
foundation stiffness and axial tension are investigated for 
different system parameters.  

 
5.1 Mode Shapes and Natural Frequencies 
      This work showed that the natural frequencies of the 
translating double beam system are divided into two 
fundamental odd and even sets n1ω and n2ω , where the 
subscript n = 1, 2, … The distinction becomes clear in Fig. 2 
where the first four mode shapes, corresponding to the first four 
natural frequencies are plotted, for the parameters K = 100, ν = 
5, µ = 10, Rm = Rp = Rs = 1. As expected the mode shapes have 
real and imaginary parts. However, the mode shapes for ω1 and 
ω3 show that the two beams experience synchronous deflection. 
On the other hand, the mode shapes for ω2 and ω4 show 
asynchronous deflections. It is also seen that the mode shapes 

are not symmetrical with respect to the mid-span of the beams, 
due to the effects of translation, as was also observed by 
Wickert and Mote [10]. The separation of mode shapes into 
asynchronous and synchronous behaviors is the result of the 
coupling of the two beams by the Winkler foundation, and it is 
observed for non-translating beam systems (e.g., [24]).  
 In case the beams are not identical, the vibration of the two 
beams still show in-phase and out-of-phase characteristics, for 
odd- and even-modes, respectively, as shown in Figure 3, for a 
case where the mass ratio Rm = 0.6. Close inspection of the 
figure shows that the modes are not parallel to each other. This 
effect is observed for other Rm values as well as Rp and Rs 
values, and parallelism of the modes deteriorate further with 
decreasing values of  Rm, Rp, and Rs. To the best of our 
knowledge this is the first observation of this behavior for a 
translating beam system.   
 The natural frequencies of this system as a function of the 
non-dimensional transport speed is shown in Figure 4. Figure 
4a shows that similar to a single, simply supported, axially 
moving beam analyzed in reference [10], the first natural 
frequency vanishes at the critical speed ( )1 / 22 2

c
ν µ π= + . This 

result is expected, as the odd numbered natural frequencies are 
not affected by the presence of the Winkler foundation. Hence, 
the onset of divergence instability for the double beam system 
analyzed here is identical to the case of the single beam, and the 
elastic stiffness does not alter the divergence instability. The 
even numbered frequencies behave in a similar way to the odd 
frequencies, except their divergence occurs at larger translation 
speeds.  
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Figure 2 The first four complex mode shapes. The real (solid) 
and imaginary parts (dashed) for K = 100, ν = 5, µ = 10, Rm = 
Rp = Rs = 1. 
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Figure 3 The first four complex mode shapes. The real (solid) 
and imaginary parts (dashed) for K = 100, ν = 5, µ = 10,  Rp = 
Rs = 1, Rm =0.60. 
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Figure 4 The imaginary and real parts of the frequency 
spectrum for translating double beams system; the solid curves 
indicate the synchronous frequencies and dashed curves 

indicate the asynchronous frequencies. (K = 100, µ = 10, Rm = 
Rs = Rp =1).  
 
 The real part of the natural frequencies plotted in Figure 
4b, shows that flutter instabilities occur along with divergence 
for translation speeds greater than νc. This behavior is not 
altered as compared to the single beam case. Moreover, the 
asynchronous frequency spectrum behaves qualitatively the 
same way as the synchronous part.  
 
5.2 Effect of Foundation Stiffness on Natural 
Frequencies 
      In order to demonstrate the effect the elastic foundation 
stiffness K on the vibration of the system, the first six natural 
frequencies of the system are investigated, for different values 
of the non-dimensional tension ratio Rp, mass ratio Rm, bending 
rigidity ratio Rs., in Figure 5. The imaginary part of the natural 
frequencies are given for 0 ≤ K ≤ 500, while the base values are 
chosen as Rm = Rs = Rp = 1, µ = 10, and ν = 5. 
      Figure 5a shows the effect of elastic foundation stiffness for 
the base values. This figure shows that the synchronous mode 
frequencies, 531 ,, ωωω , are not affected by the stiffness of the 
foundation, K, and remain 53, 131, 242, respectively, as 
expected. On the other hand, the asynchronous 
frequencies, 642 ,, ωωω , increase slightly with increasing K. 
This increase is due to the general stiffening of the system with 
increasing K values.  
 Figure 5b shows the effect of mass ratio parameter Rm = 
0.1. Note that if it is assumed that Rm = 0.1 corresponds to a ten 
fold increase in the mass of beam-2, all of the other non-
dimensional parameters affected by mass given in Equation (7) 
remain constant. This figure shows that decreasing the mass 
ratio to Rm = 0.1 causes the natural frequencies to increase 
slightly with respect to Figure 5a. But, otherwise the natural 
frequencies remain nearly constant with increasing  K.  
 The effect of bending rigidity ratio Rs = 0.1 is given in 
Figure 5c. This Rs value should be considered to correspond to 
a 10 fold increase of the bending rigidity of beam-2. Using Rs = 
0.1 causes the even mode frequencies to move higher, but the 
odd mode frequencies remain nearly at their previous (Rs = 1) 
values, except for 5ω . It is clear that increasing the elastic 
foundation stiffness K does not significantly affect the natural 
frequencies. 
 Figure 5d shows the effect of axial tension ratio for Rp = 
0.3. It is seen that the even mode frequencies increase, while 
the odd mode frequencies remain nearly constant. As in the 
other cases the elastic foundation stiffness has a small effect on 
the frequencies.  
 In summary, rendering Rm, Rs, and  Rp  values less than one 
does not affect the odd frequencies but increases the even 
frequencies. This effect is expected as mass, bending-rigidity 
and tension of beam-2 increase with decreasing Rm, Rs, and  Rp 
values. The foundation stiffness has a very small effect on 
frequencies over a wide range (0 – 500).     
       
5.3 Effect of Axial Tension on Natural Frequencies 
 The effects the non-dimensional tension parameter µ on the 
natural frequencies of the system are shown in Figure 6, where 
the imaginary parts of the natural frequencies are presented for 
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different values of Rm, Rs, and Rp. As before, the base values are 
chosen as Rm = Rs = Rp = 1, K = 100 and ν = 5, unless 
otherwise noted. 
 Figure 6a shows the effect of axial tension for base 
parameters. This figure shows that frequencies are increasing 
with increasing  m, while the values of the odd-mode and even-
mode natural frequencies remain relatively close. Note that for 
these parameters, the critical value of the tension parameter is 
approximately µcr = 3.9.  
      Figure 6b shows the effect of mass ratio parameter Rm = 
0.1. The odd-mode frequencies are not significantly affected, 
while the even-mode frequencies move higher with increasing 
µ. When the mass ratio is reduced to 0.1 it is found that the 
critical value of the tension parameter is approximately µcr = 
3.2.  
 The effect of bending rigidity ratio, Rs = 0.1, is shown in 
Figure 6c. This figure shows that the first two odd-mode 
frequencies are not affected significantly by the drop of Rs, 
however the third odd-mode frequency and the even-mode 
frequencies increase with respect to Rs = 1. The critical value of 
the tension parameter is approximately µcr = 2.  
   Figure 6d shows the effect of the axial load ratio. Even-
mode frequencies increase significantly for larger values of the 
tension parameter, by the reduction of Rp to 0.3, as compared to 
Rp = 1. The critical value of the tension parameter is 
approximately µcr = 2.8. 

 In summary, with increasing tension parameter the 
stiffness of the system increases, causing the natural 
frequencies of the odd- and even-modes to increase. Increasing 
the mass, bending-rigidity and tension of beam-2, as described 
in Section 5.2, affects the even-modes; and causes their natural 
frequencies to increase, as expected.   
  
6. SUMMARY AND CONCLUSIONS 

The free transverse vibration of an elastically connected 
axially loaded, simply supported, axially translating double 
beam system is considered. The two beams have the same 
length, translation speed, and boundary conditions. The system 
of governing partial differential equations is cast in the first 
order canonical form as state space form. The natural 
frequencies and mode shapes are obtained. Divergence 
instability occurs at the critical speed, and flutter and 
divergence instabilities coexist in post critical speeds. It is 
found that, in the case of identical beams the presence of the 
elastic foundation does not affect the critical speed. 

In general, the natural frequencies of the system are 
composed of two infinite sets, n1ω  and n2ω . When the two 
beams are identical, the free vibrations are described by 
synchronous and asynchronous vibrations, with n1ω  and n2ω , 
respectively. The vibrations still show in-phase and out-of-
phase characteristics, as the parameters of the beams change. 

Figure 5 The natural frequencies versus non-dimensional elastic foundation stiffness K  for m = 10, n = 5, 
a) Rm = Rs = Rp = 1; b) Rm = 0.1 and Rs = Rp = 1; c) Rm = 1, Rs = 0.1 and Rp = 1; and d) Rm = Rs = 1 and Rp = 0.3.  
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0

75

150

225

300

375

0 100 200 300 400 500
Elastic Stiffness, K

In Phase
Out of Phase

w2 
w1 

w3 

w4 

w5 

w6 

Im
(w

n)
 

c) Rs =0.1 

0

75

150

225

300

375

0 100 200 300 400 500
Elastic Stiffness, K

In Phase
Out of Phase

w3 

w2 
w1 

w4 
w5 

w6 

Im
(w

n)
 

d) Rp =0.3 



 7 Copyright © 2005 by ASME 

7. REFERENCES 
[1] Hwang, S.-J., and Perkins, N.C., 1992, “Supercritical 

Stability of an Axially Moving Beam Part I: Model and 
Equilibrium Analysis”, Journal of Sound and Vibration, 
154, pp. 381-396. 

[2] Sack, R.A., 1954, “Transverse Oscillations in Traveling 
String”, British Journal of Applied Physics, 5, pp. 224 - 
226. 

[3] Mote, Jr., C.D., 1965, “A Study of Band Saw 
Vibrations”, Journal of Franklin Institute, 279, pp. 430-
444. 

[4]  Wickert, J.A., “Response Solutions for the Vibration of 
a Traveling String on an Elastic Foundation,” ASME 
Journal of Vibration and Acoustics, 116(1), pp 137-139, 
1994. 

[5] Perkins, N.C., 1990, “Linear Dynamics of a Translating 
String on Elastic Foundation”, Journal of Vibrations 
and Acoustics, 112, pp. 2-7. 

[6] Parker, R.G., 1999, “Supercritical Speed Stability of the 
Trivial Equilibrium of an Axially Moving String on an 
Elastic Foundation”, Journal of Sound and Vibration, 
221, pp. 205-219. 

[7] Oz, H.R., Pakdemirli, M., and Ozkaya, E., 1998, 
“Transition Behavior from String to Beam on Axially 
Accelerating Materials”, Journal of Sound and 
Vibration, 215, pp. 571-576. 

[8] Tabarrok, B., Leagh, C.M., and Kim, Y.I., 1974, “On 
the Dynamics of an Axially Moving Beam”, Journal of 
Franklin Institute, 297, pp. 201-220. 

[9] Barakat, R., 1967, “Transverse Vibrations of a Moving 
Thin Rod”, The Journal of the Acoustical Society of 
America, 43, pp. 533-539. 

[10] Wickert, J.A., and Mote, Jr., C.A., 1990, “Classical 
Vibration Analysis of Axially-Moving Continua”, 
ASME Journal of Applied Mechanics, 57(3), pp 738-
744. 

[11] Wickert, J.A., “Non-linear Vibration of a Traveling 
Tensioned Beam”, International Journal of Non-linear 
Mechanics, 27(3), pp 503-517. 

[12] Ulsoy, A.G., 1986, “Coupling Between Spans in the 
Vibration of Axially Moving Materials”, Transactions 
ASME, Journal of Vibration, Acoustics, Stress and 
Reliability in Design, 108, pp. 207-212. 

[13] Chakraborty, G. and Mallik, A.K., 1999, “Nonlinear 
Vibration of a Traveling Beam Having an Intermediate 
Guide“, Nonlinear Dynamics, 20, pp. 247-265. 

[14] Riedel, C.H. and Tan, C.A., 1998, “Dynamic 
Characteristics and Mode Localization of Elastically 
Constrained Axially Moving Strings and Beams”, 
Journal of Sound and Vibration, 215, pp. 455-473. 

[15] Seelig, J.M. and Hoppmann II, W.H., 1964, “Normal 
Mode Vibrations of Systems of Elastically Connected 
Parallel Bars”, The Journal of the Acoustical Society of 
America, 36, pp. 93-99. 

Figure 6 The natural frequencies versus non-dimensional axial tension parameter, µ, for K = 100, n = 5,  
a) Rm = Rs = Rp = 1; b) Rm = 0.1 and Rs = Rp = 1; c) Rm = 1, Rs = 0.1 and Rp = 1; and d) Rm = Rs = 1 and Rp = 0.3.  

0

50

100

150

200

250

0 2 4 6 8 10
Axial Tension, µ

In Phase
Out of Phase

`

Im
(w

n)
 

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

In Phase
Out of Phase

Axial Tension, µ

w1 

w3 

w5 

w6 

w4 

w2 
Im

(w
n)

 

d) Rp =0.3 

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10

In Phase
Out of Phase

Axial Tension, µ

w1 

w3 

w5 

w2 

w4 

Im
(w

n)
 

c) Rs=0.1 

0

50

100

150

200

250

0 2 4 6 8 10
Axial Tension, µ

In Phase
Out pf Phase

w3 

w5 

w6 

w2 

w4 

b) Rm =0.1 

Im
(w

n)
 

w1 



 8 Copyright © 2005 by ASME 

[16] Kessel, P.G., 1966, “Resonance Excited in an Elastically 
Connected Double-Beam System by a Cyclic Moving 
Load”, The Journal of the Acoustical Society of 
America, 40, pp. 684-687. 

[17] He, S. and Rao, M.D., 1993,” Vibration and Damping 
Analysis of Multi-Span Sandwich Beams with 
Arbitrarily Boundary Conditions”, Journal of Sound and 
Vibration, 164, pp. 125-142. 

[18] Kukla, S., 1994, “Free Vibration of the System of Two 
Beams Connected by Many Translational Springs”, 
Journal of Sound and Vibration, 172, pp. 130-135. 

[19] Chen, D. -W. and Wu, J. -S., 2002, “The Exact 
Solutions for the Natural Frequencies and Mode Shapes 
of Non-Uniform Beams with Multiple Spring-Mass 
Systems”, Journal of Sound and Vibration, 255, pp. 
299- 322. 

[20] Vu, H.V., Ordonez, A.M. and Karnopp, B.H., 2000, 
“Vibration of a Double-Beam System”, Journal of 
Sound and Vibration, 229, pp. 807-822. 

[21] Oniszczuk, Z., 2002, “Damped Vibration Analysis of a 
Two-Degree-of-Freedom Discrete System”, Journal of 
Sound and Vibration, 257, pp. 391-403. 

[22] Cha, P. D., 2002, “Eigenvalues of a Linear Elastica 
Carrying Lumped Masses, Springs and Viscous 
Dampers”, Journal of Sound and Vibration, 257, pp. 
798-808. 

[23] Oniszczuk, Z., 2003, “Damped Vibration Analysis of an 
Elastically Connected Complex Double-String System”, 
Journal of Sound and Vibration, 264, pp. 253-271. 

[24] Oniszczuk, Z., 2000, “Free Transverse Vibrations of 
Elastically Connected Simply Supported Double-Beam 
Complex System”, Journal of Sound and Vibration, 
232, pp. 387-403. 

[25] Meirovitch, L., 1974, “A New Method of Solution of the 
Eigenvalue Problem for Gyroscopic Systems”, AIAA 
Journal, 12, pp. 1337-1342. 

[26] Meirovitch, L., 1997, Principles and Techniques of 
Vibrations, Prentice Hall, NJ, U.S.A.  

[27]  Meirovitch, L., 1975, “A Modal Analysis for the 
Response of Linear Gyroscopic Systems”, ASME 
Journal of Applied Mechanics, 42, pp. 446-450. 

[28] Hughes, P.C., and D’Eleuterio, G.M., 1986, “Modal 
Parameter Analysis of Gyroscopic Continua”, ASME 
Journal of Applied Mechanics, 53, pp. 918-924. 

 


