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ABSTRACT 

The theory of transverse beam break-up is summarized and 
briefly discussed in this paper. It is then applied to 
the SLAC linear accelerator to give the various design 
tolerances for beam injection and alignment of accelerator 
components for the linear collider operation. 

INTRODUCTION 

The problem of beam break-up of an intense bunch of particles in a 

linear accelerator has been studied before in the literatures.',') When 

a point charge travels off axis down a linac structure it interacts with 

the walls of the structure and leaves behind a transverse wake field which 

will deflect particles traveling behind the point charge. If an intense 

bunch of particles travels through a sturcture, the transverse wake field 

generated by the head of the bunch will deflect the tail particles further 

away from the axis of the sturcture, thus leading to the beam break-up 

phenomenon. 

Existing analysis of this problem assumes no or weak focusing forces 

provided by the quadrupole magnets. This assumption sometimes does not 

apply to the case of interest. For example the recently proposed SLAC linear 

collider3) requires a strong focusing force to retain the beam emittance in 

order to optimize the luminosity. In this work, we analyzed the beam break- 

up problem with betatron focusing taken into account. 

The physical picture of beam break-up in the presence of a strong 

betatron focusing is different from that otherwise. In the absence of wake 

fields, the transverse motion of a particle is a simple harmonic motion with 

a certain betatron frequency ~8. This simple harmonic oscillator of natural 

frequency WB is driven by the wake field force. Since the wake field force, 

being proportional to the transverse offset from the structure axis of the 

preceding particles, has a time dependence of frequency wB, a condition for 

resonant driving of the harmonic oscillator is satisfied and the beam break- 

up results. 

For the single pass collider, the particle bunch must be controlled in 

such a way that the transverse deviation of the bunch trajectory from the 

axis of the linac structure does not exceed a certain tolerance value. 

Exceeding this tolerance would lead to a growth in the projected area in 

transverse phase space occupied by all particles in the bunch and thus a 
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reduction in the achievable luminosity. Two tolerances have been considered: 

the tolerance on the error at injection and the misalignment tolerance of 

the linac structure relative to the beam trajectory. The results of this 

study are summarized and discussed in this paper. 4) 
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INJECTION TOLERANCES 

In what follows, we ignore the transverse dimensions of the bunch. We 

calculate the displacement of a particle in the bunch, x(z,s), as a function 

of z, the longitudinal position relative to the center of the bunch, and s, 

the distance from the beginning of the linac. The approximation of zero 

transverse dimension for the bunch is valid if the transverse dimension of 

the bunch is much smaller than the diameter of the linac irises. Under this 

approximation x(z,s) is taken to be the displacement of the center of a slice 

through the bunch at the position z. 

The transverse force at z depends on the displacement of all preceding 

charges with z’ > z and is given by 
m 

F,(z,s) = e2 
s 

dz’ p(z’) W(z’- z) x(z’,s) (1) 

Z 

where p is the line density of particles in the bunch (/o dz is normalized 

to the total number of particles in the bunch), e-Wax is the transverse 

field produced by a point charge displaced from the axis by x at a distance 

z’-z behind the point charge. All properties of the linac structure are 

contained in the wake function W. We have assumed that the displacement of 

a particle changes sufficiently slowly with s so that the average W of the 

structure can be used. 5) We also assume that the bunch length is much 

shorter than the betatron wavelength so that the retardation in the trans- 

verse field from the head to the tail of the bunch can be ignored. 

The equation of motion for x(z,s) can be written as 

& Y(S) 
-t 

& x(z ,s) 
> ‘C&J 

Y(S) x(s,z) 

=r o dz’ p(z’) W(z’- z) x(z’,s) 

where y(s) is the energy of beam at position s in units of mc2, m being the 

rest mass of the particle, h(s) is the instantaneous wavelength of betatron 

focusing at position s, and r. = e2/mc2 is the classical radius of the 

particle. We have assumed that the betatron focusing is provided by a 

smooth function rather than coming from a series of discrete quadrupoles. 

We assume that the energy of the beam increases linearly with s as a result 

of acceleration in such a way that y(s) = y,(l+Gs) with yomc2 the beam energy 

at injection and G the acceleration gradient. We let the strength of the 

focusing force in the linac scale with beam energy so that the instantaneous 

betatron wavelength remains constant X(s) = A,. 
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Equation (2) can be solved by an interaction procedure. The solution 

x(z,s) is expanded in a series of powers in terms of the wake field 

x(z,s) = fi .(n) (z ,s) (3) 
n=O 

For the case of an injection error, the zeroth order solution x (O) is obtained 

by setting the wake field W to 0 in Eq. (2) and demanding the initial condi- 

tions x(z,s) = x0 and dx(z,s)/ds = 0 at s = 0. The n-th order term x (nl is 

then obtained from the (n-l)th order term x(n-l) by the recurrence relation 

r S 

x+z,s) = + 
/ 

ds’ 
sin k,(s-s’) m 

t 
0 0 (l+Gs) *(l+Gs’) 4 J 

dz’ p(z’)W(zl-~)x(~-‘) (z’,s’) (4) 

0 Z 

where we have defined k. = ~T/X~. We have made the adiabatic approximation 

that the betatron wave number k, is much larger than the energy gradient G. 

The zeroth order term is given by 

x(d 
X 

0 
(z,s) = ___ 

Lmz 
cos kos 

where the factor m is the usual adiabatic damping term. 

If the beam energy at the end of acceleration, y 
f 
mc2, is much higher 

than the beam energy at injection, the solution for x n) of all order n is 

found to be 

where 
co 

R,(z) = 
/ 

dz 

2 

co m 

1 P (+J(z,-z) 
/ 

dz2 P (z2)W2-z1) . . . J dz, P (zn)W(zn-zn-l), 

z1 ‘n- 1 

(7) 

.(n) I,(s) R,(z) , (6) 

and 

I,(s) = $ e 
ik,s 

& Ln(l+Gs) 1 
n 

(8) 

To apply to the linac collider, we will approximate p by a rectangular 

distribution and W by a linear function, i.e., 

1 
N/k for IzI < $ 

P = (9) 

0 for (zl r t 

w = w. ; 

From Eq. (7)) we find 

R,(z) = & NW0 7 [ (1 - ;)‘I” . (11) 

Knowing R,(z) and I,(s), we can substitute Eq. (6) into Eq. (3) to obtain 
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X 

x(z,L) = 
0 -e 

ik,L 

J1+Gs 
(121 

where we have evaluated x at the end of linac s =L and have defined a dimen- 

sionless strength parameter 

LroNWo 2 
rl = 

ko(yf - Y,) 
(13) 

There is no closed form for Eq. (12)) but one can find an asymptotic expres- 

sion in the strong wake field limit InI >> 1: 

X 

x(z,L) = 
0 

4671 (i+Gs) 

lrll -lj6 lnl l/3 ,3 . 

(14) 

In Fig. 1, we have plotted x(z,L) across the bunch for values of koL= 0, 

v/2, TI and 3~/2 (Modulus 2 ). The wake field strength is such that the 

value of n at the very tail of the bunch is equal to 150. The vertical 

scale is in units of (Pi&)x,. It is clear from Fig. 1 that the distortion 

of the bunch can be very large. For the parameter used in Fig. 1, 15% at the 

head of the bunch is dominated by x(O) ; 40% in the middle of the bunch is 

dominated by x(l) and the tail 45% is dominated by x(~). The third order 

term x(~) is not negligible only at the very tail of the bunch. 
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Fig. 1. The transverse bunch shape 
at the end of acceleration for four 
different values of total betatron 
phase: 0, n/2, n, and 3n/2. The 
wake-field strength parameter n =150 
at the tail of the bunch. 



MISALIGNMENT TOLERANCE 

In the previous analysis, we have assumed that the accelerator sturcture 

is perfectly aligned and the wake field is produced as a consequence of beam 

injection with a displacement error. In this section, we will study the 

effect caused by misalignment of the accelerator pipe. We assume the beam 

is injected into the linac with perfect precision. 

The equation of motion can be written as 

& Y(S) 
{ 

& x(z,s) } + (&g2Y(S) x(z,s) 

m 

=r o 
J 

dz' p(z')W(z'-z)[x(z',s) - d(s)] (15) 

Z 

where d(s) is the transverse position error of the linac structure at posi- 

tion s. Compared with Eq. (2), Eq. (15) contains an additional force term 

on the right hand side that comes from the pipe misalignment. 

The zeroth order solution to Eq. (15) is x (0) - - 0 since the beam is 

assumed to be injected without error. The trajectory of the head of the 

bunch strictly follows x(O) and is, therefore, a perfect straight line. 

The first order perturbation term comes solely from the linac structure 

misalignment di: 

xm (z,s) = - z 
rodiRi 

1 ~ - 1 
i 

("'iI 
Yoke (l+Gs)'(l+Gsi) 

1 
? 

* sin[k,(s-si)]*Rl(z) , 

(16) 

where the quantity R,(z) has been defined in Eq. (7). 

In order to apply this to the linac collider, it is necessary to carry 

out the perturbation calculation up to the second order in the wake field. 

The second order term can be obtained through the use of Eq. (4): 

x(2) (z,s) = 
Iln[(l+Gs)/(l+Gsi)] 

1 1 
(l+Gs)'(l+Gsi)' 

.cos[k,(s-si)] . R2(z) . 

(17) 

The emittance growth due to misalignment can be substantially reduced by 

empirically controlling the injection offset x0 and angle x; at the beginning 

of the linac. By choosing proper values of x0 and x;, it is possible to 

cancel either the first order misalignment contribution, Eq. (16), or the 

second order misalignment contribution Eq. (17), by a corresponding contri- 

bution from x0 and x'. 
0 

For example, if the second order alignment term 

dominates, one might choose: 

Rn[(l+GL)/(l+Gsi)] cos k s. 
01 

= 4G Editi 
Iln2(1+GL) i 

1 (18) 
(l+Gsi)' k. sinkosi 



6 

so that the second order contribution from the injection offset and angle 

cancels the second order contribution from the misalignments. With x0 and 

x: from Eq. (18), the first order term is given by the sum of misalignment 

and injection contributions. If we assume the misalignment errors di are 

uncorrelated from one linac section to the next, we can make an rms estimate 

to obtain: 

<x(1)2 
(19) 

where 23 <d > is the rms misalignment of the accelerator sections relative to 

the trajectory of a weak beam, Nc is the total number of accelerator sections 

in the linac. 

APPLICATION TO THE LINEAR COLLIDER 

The design parameters for the co1 

N = 5 x 1o1O 

Y, = 2.4 x lo3 (1.2 GeV) 

Yf = 10' (50 GeV) 

L = 3 3x10 m 

x0 = 100 

:3) lider mode of operation are 

u = 
X 

70 urn 

R = 3.5 mm 

w. = 5 5.9x10 m -3 

NC = 240 (20) 

We first study the tolerance on injection conditions. The value of n, 

according to Eq. (13), is 37 at z=O, and 94 at z = -oz= -(fi/2fi) and 150 at 

z = -a/2. The bunch shape for this case has been shown in Fig. 1. With an 

injection displacement of x0, the values of the magnitude of x(z,L) are 

1.5x0 for z=O and 6.1x0 for z= -oz. If we demand that x(z,L) at z= -uz 

be less than the transverse beam size ux at the end of acceleration, we 

obtain the tolerance on the injection displacement lx01 < 11 pm. This 

tolerance in injection error x0 is a criterion on the injection jittering 

since a static injection error can always be compensated by a set of tra- 

jectory kickers before injection. The corresponding tolerance on the 

jittering of the injection angle is to.7 urad. 

The effect of accelerator misalignment on the emittance growth can be 

minimized by injecting the beam with empirically determined offset x0 and 

angle x;. Since the second order contribution dominates, for the collider 

linac the optimum choice of x0 and x; is given by Eq. (18). The expected 
2 rms value of the required injection offset is <x0> % _ - 0.35<d2>% After 

optimizing by controlling the injection conditions, the resultant beam size 

growth, <x (1)2>' is found to be 0.25<d2>' at the bunch center and 0.62<d2>' 

at uz behind the bunch center. For the beam size growth at z = -uz to be 

less than the transverse beam size ux at the end of the linac, we demand a 

misalignment tolerance of <d2>% = 0.11 mm. 

* * * 
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