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c Transverse wave propagation in
SWCNTs under axial magnetic field
is examined.

c Nonlocal Rayleigh, Timoshenko, and
higher-order beams are employed.

c The characteristic relations for the
proposed models are derived.

c The explicit expressions of frequen-
cies, phase, and group velocities are
obtained.

c The role of crucial factors on the
characteristics of propagated waves
is explored.
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The influence of longitudinal magnetic field on the characteristics of both flexural and shear waves in
SWCNTs embedded in an elastic matrix is of concern. The problem is studied by using nonlocal
Rayleigh, Timoshenko, and higher-order beam theories.
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Lateral wave propagation in an elastically confined single-walled carbon nanotube (SWCNT) experi-

ences a longitudinal magnetic field is examined using nonlocal Rayleigh, Timoshenko, and higher-order

beam theories. The SWCNT is modeled via an equivalent continuum structure (ECS) and its interaction

with the surrounding elastic medium is simulated via lateral and rotational continuous springs along its

length. For the proposed models, the dimensionless governing equations describing transverse

vibration of the SWCNT are constructed. Assuming harmonic solutions for the propagated sound

waves, the dispersion equation associated with each model is obtained. Subsequently, the explicit

expressions of the frequencies as well as the corresponding phase and group velocities, called

characteristics of the waves, are derived for the proposed models. The influences of the slenderness

ratio, the mean radius of the ECS, the small-scale parameter, the longitudinal magnetic field, the lateral

and rotational stiffness of the surrounding matrix on the characteristics of flexural and shear waves are

explored and discussed.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

From quantum physics point of view, the dynamical behavior
of single-walled carbon nanotubes (SWCNTs) in magnetic fields
has been of concern of scientific communities during the recent
decade [1–5]. In the case of a magnetic field parallel to the
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nanostructure axis, it is predicted that the band of the nano-
structure alters drastically due to the Aharonov–Bohm phase [6]
generated around the circumference of the nanostructure [7]. The
band-gap is expected to vibrate between zero and a predictable
value [8]. Further, a transverse magnetic field leads to a distinctly
different behavior: the zero-field band structure with one-
dimensional van Hove singularities gradually changes into a
Landau-level spectrum as the magnetic field increases [8]. The
large diamagnetic susceptibility for transverse magnetic fields
applied to graphene sheets would result in highly anisotropic
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magnetic susceptibilities of SWCNTs and originates magnetic
alignment of them, which has been supported by experimentally
observed data as well [9,10].

From applied mechanics point of view, when a SWCNT is
deformed in a magnetic field, the Lorentz force is exerted on each
considered element of its body. It implies that the vibration of the
SWCNT would be surely influenced by the applied magnetic field.
The directions of the applied forces on the deformed SWCNT are
determined based on the Maxwell’s equations as well as Lorentz’s
body forces formula. Therefore, altering vibrational characteristics
of a SWCNT in a desired direction would be possible by applying
appropriately directional magnetic fields. Recent experiments
also show that SWCNTs could be aligned suitably under an
electro-magnetic field [11–14]. Such evidences are proposing
SWCNTs as suitable nanostructures for nano-electro-mechanical
systems (NEMS), nanosensors, and nanodetectors in which the
control of their frequencies is of great importance. As a result,
development of appropriate models for predicting the vibration
behaviors of SWCNTs under applied magnetic fields would be
beneficial to the designers of the above-mentioned nanodevices.

To date, the theoretical aspects of free longitudinal and transverse
vibrations of CNTs [15–22], sound wave propagation within CNTs
[23–29], fluid flow-induced vibration in CNTs [30–37], and generated
vibrations within CNTs due to a moving nanoparticle [38–42] have
been fairly well studied using continuum models. However, there are
a few works on the effect of longitudinal and lateral magnetic fields
on the vibration characteristics of CNTs. Using a shell model in the
framework of classical continuum mechanics, Wang et al. [43]
studied the influence of axial magnetic field on wave propagation
in MWCNTs embedded in an elastic medium. It was shown that for
the so-called critical frequencies, the velocity of wave propagation
jumps down considerably. Moreover, the velocity of wave propaga-
tion in CNTs increases with axial magnetic field in some frequency
regions. Li et al. [44] investigated the effect of transverse magnetic
field on vibration behavior of MWCNTs. Through consideration of
van der Waals (vdW) interaction forces between each two layer and
the applied Lorentz force on each layer, the coupled equations of
motion of MWCNTs were obtained. The results showed that the
lowest frequency of the MWCNTs decreases nonlinearly with applied
transverse magnetic field while the highest frequency remains
unchanged. For a transverse magnetic field larger than a certain
value, the two walls of MWCNTs exhibit the radial and longitudinal
vibration modes with a coaxial pattern. Wang et al. [45] proposed an
analytical method to study the effect of vdW interaction forces on the
dynamic characteristics of MWCNTs embedded in an elastic matrix
under a lateral magnetic field. Each layer of the MWCNT is assumed
to behave like an elastic shell which is interacted with its two
adjacent layers through the vdW forces. It was reported that the
existing vdW forces would result in a decrease of the lowest
frequency and an increase of the highest frequency of the MWCNTs
under a transverse magnetic field. It was also stated that the effect of
rigorous vdW on magneto-elastic vibrations of MWCNTs relies on the
level of the transverse magnetic field as well as the stiffness of the
surrounding matrix.

All the above-mentioned works were dealing on the effects of
magnetic fields on vibration characteristics of CNTs in the context of
Hx

Kr

Kt

Fig. 1. An elastically confined SWCNT subje
classical continuum theory. In study vibration characteristics of
nanostructures, the interatomic bond plays a vital role and such an
effect should be appropriately incorporated into the constitutive
equations. The traditional (or classical) continuum mechanics does
not consider the inter-atomic bond lengths in the constructed
governing equations. One way to overcome such a deficiency of the
classical continuum theory is to employ an atomistic-based approach
for analyzing of the problem. The major advantageous of such a
model is that the effects of all inter-atomic bonds could be taken into
account through appropriate potential functions; however, the user of
such a model should pay the expenditures of the huge amount of
computational efforts and the human resources as well. Therefore,
some sophisticated continuum theories have been developed during
the last century to take into account the effect of small-scale
parameter. Among all developed continuum models, a fairly simple
form of the nonlocal continuum mechanics of Eringen [46–48] has
been gained much popularity in the scientific communities. Maybe
the main reason of this fact is that such a model could incorporate the
inter-atomic bond in its formulations via a so-called factor, small-
scale parameter. Due to such a simplification, some researchers have
shown that such a considered small-scale parameter by this model is
geometry dependent [49]. In this work, the sensitivity of the
characteristics of the propagated transverse waves in SWCNTs to
the small-scale parameter under different levels of axially applied
magnetic field is also of concern.

As it is seen in the literature, the effect of longitudinal magnetic
field on the characteristics of the laterally propagated waves in
elastically confined SWCNTs to date has not been made known
methodically. Herein, since only lateral vibration of SWCNTs is of
particular concern, among various types of structural models, beams
are employed in the context of nonlocal continuum theory of Eringen.
Some characteristics of the propagated waves within a SWCNT
including shear and flexural frequencies as well as the corresponding
phase and group velocities are derived when the SWCNT is sur-
rounded by an elastic matrix and experiences an axial magnetic field
as well. The outline of this paper is as follows. The description of the
problem and the made assumptions are given in Section 2. Evaluation
of the induced forces within the SWCNT due to a longitudinal
magnetic field is presented in Section 3. In Sections 4–6, the equations
of motion describing transverse vibration of SWCNTs under an axial
magnetic field based on the nonlocal Rayleigh beam theory (NRBT),
nonlocal Timoshenko beam theory (NTBT), and nonlocal higher-order
beam theory (NHOBT) are obtained, respectively. Further, the analy-
tical expressions of frequencies, phase velocities, and group velocities
of the shear and flexural waves are presented for the proposed
models. Section 8 gives a fairly comprehensive parametric study to
assess the influence of the crucial parameters on the frequencies,
phase velocities, and group velocities of both shear and flexural
waves. In the conclusion, the major obtained results are provided.
2. Assumptions and definition of the problem

Consider an equivalent continuum structure (ECS) for the
SWCNT as shown in Fig. 1. The ECS is a hollow circular cylindrical
solid structure whose mean radius, rm, and length, lb, are similar
cted to an axial steady magnetic field.
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to those of the SWCNT and most of its frequencies are close to
those of the SWCNT which are calculated via an appropriate
atomistic-based approach. Therefore, it would be a suitable
alternative for vibration analyses of SWCNTs since atomic tech-
niques are commonly time-consuming and labor intensive. The
interaction of the SWCNT with its surrounding elastic medium is
modeled by laterally and rotationally continuous springs, which
are attached to the ECS along its length (see Fig. 1). The constants
of the transverse and rotational springs are denoted by Kt and Kr,
respectively. The elastically confined SWCNT undergoes a long-
itudinal magnetic field, Hx.

This paper aids to investigate transverse wave propagation within
the SWCNT under above-mentioned conditions. For this purpose, it is
assumed that the SWCNT behaves like a perfectly conducting beam
structure. In order to take into account the effect of the small-size of
the SWCNT, the nonlocal continuum theory of Eringen [47,48] is
employed. To explore the problem under study, the most famous
beam models (e.g., Rayleigh, Timoshenko, and higher-order beam
theories) are implemented. Using NRBT, NTBT, and NHOBT, the
equations of motion describing the lateral vibration of SWCNTs
should be constructed. To this end, the effect of the applied long-
itudinal magnetic field on the ECS should be appropriately modeled.
In the next section, we proceed in determining the exerted body
forces of the magnetic fields on the ECS modeled by various nonlocal
beam theories.
3. Generated forces within the ECS due to a longitudinal
magnetic field

Assume that the magnetic permeability of the ECS, R, would be
equal to the magnetic permeability of the surrounding medium.
By neglecting displacement current density, the governing elec-
trodynamic Maxwell’s equations for a perfectly conducting ECS
are stated as [50]

J¼r � h,

R _hþr � e¼ 0,

e¼�R _u �H,

r � h¼ 0, ð1Þ

where J is the current density, e is the perturbation of electric
field vector, u is the displacement field vector of the ECS, H is the
magnetic field vector, r is the Laplacian operator, and the over
dot sign denotes the differentiation with respect to the time. The
exerted body force vector on the ECS due to the applied magnetic
field, fb, is evaluated from [50]:

fb ¼ RJ�H, ð2Þ

where fb is also called Lorentz’s force vector. As it is seen in
Eqs. (1) and (2), the interaction between the generated displace-
ments within the ECS and the applied magnetic field would result
in Lorentz body force vector. The longitudinal and transverse
displacements within the ECS based on the Rayleigh, Timoshenko,
and high-order beam theories are given by

uR
x ðx,z,tÞ ¼ uRðx,tÞ�zwR

,xðx,tÞ; uR
z ðx,z,tÞ ¼wRðx,tÞ,

uT
x ðx,z,tÞ ¼ uT ðx,tÞ�zyT

ðx,tÞ; uT
z ðx,z,tÞ ¼wT ðx,tÞ,

uH
x ðx,z,tÞ ¼ uHðx,tÞ�zcH

ðx,tÞ; uH
z ðx,z,tÞ ¼wHðx,tÞ, ð3Þ

where uR
x=uR

z , uT
x=uT

z , and uH
x =uH

z denote the longitudinal/transverse
displacement fields of the Rayleigh, the Timoshenko, and the
higher-order beams, respectively. Furthermore, uR, uT, and uH, in
order are the longitudinal displacements of the neutral axis of the
Rayleigh, Timoshenko, and higher-order beams. In the case of a
longitudinally applied magnetic field, we have H¼Hxi where i
represents the unit vector associated with the x axis. Using
Eqs. (1)–(3), the exerted forces per unit length of the ECS modeled
based on the Rayleigh, Timoshenko, and higher-order beams, fz

R, fz
T,

and fz
H, respectively, are calculated as follows:

f R
z ðx,tÞ ¼ RAbH2

x wR
,xxðx,tÞ,

f T
z ðx,tÞ ¼ RAbH2

x wT
,xxðx,tÞ,

f H
z ðx,tÞ ¼ RAbH2

x wH
,xxðx,tÞ, ð4Þ

where Ab is the cross-section area of the ECS.
4. Wave propagation within a SWCNT under an axial steady
magnetic field using NRBT

For an elastically confined SWCNT under a longitudinal mag-
netic field according to the NRBT, the governing equation in terms
of the nonlocal bending moment, ðMnl

b Þ
R, and the deflection of the

ECS, wR, is stated as

rbðAb €w
R
�Ib €w

R
,xxÞ�ðM

nl
b Þ

R
,xxþKtw

R�Krw
R
,xx ¼ f R

z , ð5Þ

where rb and Ib are the density and the second moment inertia of
the ECS pertinent to the SWCNT, respectively. According to the
nonlocal continuum theory of Eringen [46,47], the nonlocal
bending moment of the NRBT is expressed by

ðMnl
b Þ

R
�ðe0aÞ2ðMnl

b Þ
R
,xx ¼�EbIbwR

,xx, ð6Þ

in which a is an internal characteristic length, and e0 is deter-
mined by adjusting the dispersion curves of the model with the
reliably obtained results by experiments or other atomistic-based
models. Substitution of the equivalent expression of ðMnl

b Þ
R
,xx from

Eq. (5) into Eq. (6) leads to

ðMnl
b Þ

R
¼�EbIbwR

,xxþðe0aÞ2ðrbðAb €w
R
�Ib €w

R
,xxÞ�RAbH2

x wR
,xx

þKtw
R�Krw

R
,xxÞ, ð7Þ

substitution of Eq. (7) into Eq. (5) through using Eq. (4) yields the
governing equation for the free transverse vibration of the NRB as
follows:

rbðAb €w
R
�Ib €w

R
,xxÞ�ðe0aÞ2rbðAb €w

R
,xx�Ib €w

R
,xxxxÞ

þEbIbwR
,xxxx�RAbH2

x ðw
R
,xx�ðe0aÞ2wR

,xxxxÞ

þKtðw
R�ðe0aÞ2wR

,xxÞ�Krðw
R
,xx�ðe0aÞ2wR

,xxxxÞ ¼ 0, ð8Þ

Eq. (8) furnishes us with a mathematical model for free vibrating
nanotube embedded in an elastic matrix under longitudinally
induced magnetic field based on the NRBT. For more general-
ization of the problem analysis, the following dimensionless
quantities are introduced:

x¼
x

lb
, wR

¼
wR

lb
, t¼ 1

l2b

ffiffiffiffiffiffiffiffiffiffiffi
EbIb

rbAb

s
t, m¼ e0a

lb
, l¼

lb
rb

,

K
R

t ¼
Ktl

4
b

EbIb
, K

R

r ¼
Krl2b
EbIb

, H
R

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
RAbl2b
EbIb

s
Hx, ð9Þ

in which rb denotes the gyration radius of the cross-section of the
nanotube. Therefore, the dimensionless equation of motion of the
nanotube structure modeled based on the NRBT are derived as

wR
,tt�m

2wR
,ttxx�l

�2
ðwR

,ttxx�m
2wR

,ttxxxxÞþwR
,xxxx

�ðH
R

x Þ
2
ðwR

,xx�m
2wR

,xxxxÞþK
R

t ðw
R
�m2wR

,xxÞ

�K
R

r ðw
R
,xx�m

2wR
,xxxxÞ ¼ 0: ð10Þ

Let the transverse harmonic wave within the SWCNT could
produce deflection wR

ðx,tÞ ¼wR
0 eið$Rt�kxÞ where i¼

ffiffiffiffiffiffiffi
�1
p

, t is the
dimensionless time parameter, k is the dimensionless wavenum-
ber, wR

0 is the dimensionless amplitude deflection of the SWCNT,
and $R denotes the dimensionless frequency of the transverse
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propagated wave within the SWCNT modeled by the NRBT. By
substituting this form of transverse displacement into Eq. (10),
the dispersion relation could be expressed by

$R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2
ððH

R

x Þ
2
þK

R

r ÞþK
R

t

1þl�2k
2

þ
k

4

ð1þm2k
2
Þð1þl�2k

2
Þ

vuut : ð11Þ

The phase velocity of the wave is defined by vR
p ¼oR=k where oR

and k represent the frequency and wavenumber of the propa-
gated wave, respectively. Therefore,

vR
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eb

rb

ðH
R

x Þ
2
þK

R

r þk
�2

K
R

t

l2
þk

2
þ

k
2

ð1þm2k
2
Þðl2
þk

2
Þ

 !vuut , ð12Þ

and the group velocity of the wave is defined as vR
g ¼ @oR=@k.

Hence,

vR
g ¼

k

l$R

ffiffiffiffiffiffi
Eb

rb

s
ðH

R

x Þ
2
þK

R

r�l
�2K

R

t

ð1þl�2k
2
Þ
2
þ

k
2
ð2þðm2þl�2

Þk
2
Þ

ð1þm2k
2
Þ
2
ð1þl�2k

2
Þ
2

 !
:

ð13Þ

The dimensionless cut-off frequency, $R
0, could be obtained from

Eq. (11) by letting k ¼ 0. So,

$R
0 ¼

ffiffiffiffiffiffi
K

R

t

q
ð14Þ

as k-1, the dimensionless asymptotic of the SWCNT subjected
to the longitudinal magnetic field based on the NRBT, $R

a , is
obtained as follows:

$R
a ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH

R

x Þ
2
þK

R

r þm�2

q
: ð15Þ
5. Wave propagation within a SWCNT under an axial steady
magnetic field using NTBT

According to the NTBT, the governing equations in terms of
nonlocal forces within the SWCNT as well as deformation fields of
the ECS, embedded in an elastic matrix and subjected to a
longitudinal magnetic field, are obtained as

rbIb
€y

T
�ðQnl

b Þ
T
þðMnl

b Þ
T
,xþKry

T
¼ 0,

rbAb €w
T
�ðQnl

b Þ
T
,xþKtw

T ¼ f T
z , ð16Þ

where yT and ðQnl
b Þ

T are the angle of deformation and resultant
shear force of the NTB, respectively. Based on the nonlocal
continuum theory of Eringen [46,47], the nonlocal forces within
the NTB are defined as in the following form:

ðQnl
b Þ

T
�ðe0aÞ2ðQnl

b Þ
T
,xx ¼ ksGbAbðw

T
,x�y

T
Þ,

ðMnl
b Þ

T
�ðe0aÞ2ðMnl

b Þ
T
,xx ¼�EbIby

T
,x, ð17Þ

in which Gb is the shear modulus of elasticity defined by
Gb ¼ Eb=ð2ð1þnÞÞ where n is the Poisson’s ratio of the material of
the nanotube structure. The parameter ks represents the shear
correction factor of the cross-section of the single walled nano-
tube. By combining Eq. (16) with Eq. (17) through using Eq. (4),
the nonlocal resultant shear force and bending moment within
the NTB are obtained as

ðQnl
b Þ

T
¼ ksGbAbðw

T
,x�y

T
Þþðe0aÞ2ðrbAb €w

T
�RAbH2

x wT
,xxþKtw

T Þ,x,

ðMnl
b Þ

T
¼�EbIby

T
,xþðe0aÞ2ðrbAb €w

T
�rbIb

€y
T

,x�RAbH2
x wT

,xx

þKtw
T�Kry

T
,xÞ, ð18Þ

substitution of Eq. (18) into Eq. (16) leads to

rbIbð
€y

T
�ðe0aÞ2 €y

T

,xxÞ�ksGbAbðw
T
,x�y

T
Þ�EbIby

T
,xxþKrðy

T
�ðe0aÞ2yT

,xxÞ ¼ 0,
rbAbð €w
T
�ðe0aÞ2 €wT

,xxÞ�ksGbAbðw
T
,xx�y

T
,xÞ�RAbH2

x ðw
T
,xx�ðe0aÞ2wT

,xxxxÞ

þKtðw
T�ðe0aÞ2wT

,xxÞ ¼ 0, ð19Þ

Eq. (19) represents the explicit expression of the governing
equations in terms of deformation fields of the NTB. By introdu-
cing the following dimensionless parameters:

wT
¼

wT

lb
, y

T
¼ yT , t¼ 1

lb

ffiffiffiffiffiffiffiffiffiffi
ksGb

rb

s
t, Z¼ EbIb

ksGbAbl2b
,

K
T

r ¼
Kr

ksGbAb
, K

T

t ¼
Ktl

2
b

ksGbAb
, H

T

x ¼

ffiffiffiffiffiffiffiffiffiffi
R

ksGb

r
Hx, ð20Þ

Eq. (19) is rewritten in the nondimensional form as follows:

l�2
ðy

T

,tt�m
2y

T

,ttxxÞ�wT
,xþy

T
�Zy

T

,xxþK
T

r ðy
T
�m2y

T

,xxÞ ¼ 0,

wT
,tt�m

2wT
,ttxx�wT

,xxþy
T

,x�ðH
T

x Þ
2
ðwT

,xx�m
2wT

,xxxxÞ

þK
T

t ðw
T
�m2wT

,xxÞ ¼ 0: ð21Þ

The harmonic solution of the propagated waves within the
SWCNT experiences longitudinal magnetic field and is modeled
based on the NTBT, could be considered as y

T
ðx,tÞ ¼ y

T

0eið$Tt�kxÞ

and wT
ðx,tÞ ¼wT

0eið$Tt�kxÞ where y
T

0 and wT
0 denote the amplitude

of harmonic waves pertinent to the deflection angle and deflec-
tion of the SWCNT, respectively. Substituting such expressions
into the dimensionless form of the governing equations, Eq. (21),
the following set of algebraic equations is obtained:

CT
1 CT

2

CT
3 CT

4

" #
y

T

0

wT
0

8<
:

9=
;¼ 0

0

� �
, ð22Þ

where the elements of the coefficient matrix are as follows:

CT
1 ¼�ð$

T Þ
2l�2
ð1þm2k

2
Þþ1þZk

2
þK

T

r ð1þm
2k

2
Þ,

CT
2 ¼ ik,CT

3 ¼�ik,

CT
4 ¼�ð$

T Þ
2
ð1þm2k

2
Þþk

2
þððH

T

x Þ
2k

2
þK

T

t Þð1þm
2k

2
Þ, ð23Þ

there exists a nontrivial solution to the set of equations in Eq.
(22) if and only if the determinant of the coefficient matrix is set
equal to zero. Therefore, the following characteristic equation
(i.e., dispersion relation) is obtained:

ð$T Þ
4l�2
ð1þm2k

2
Þ
2
�ð$T Þ

2
ð1þm2k

2
Þð1þZk

2
þK

T

r ð1þm
2k

2
Þ

þl�2
ðk

2
þððH

T

x Þ
2k

2
þK

T

t Þ þð1þZk
2
þK

T

r ð1þm
2k

2
ÞÞ

ðk
2
þððH

T

x Þ
2k

2
þK

T

t Þ ð1þm
2k

2
ÞÞ�k

2
¼ 0: ð24Þ

Eq. (24) is a second-order algebraic equation for ð$T Þ
2. There-

fore, there would be two wave modes for the transverse vibra-
tion of SWCNT under a longitudinal magnetic field based on the
NTBT. The dimensionless frequencies of the wave modes are
readily calculated as

$T
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

2þl
�2a2

3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

2�l
�2a2

3Þ
2
þ4l�2k

2
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where a2
i ; i¼ 1,2,3 are as
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and the phase velocities of the propagated sound waves,
vT

pi ¼o
T
i =k, are determined as
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where oT
i denotes the frequency of the sound wave propagated

within the SWCNT subjected to an axial magnetic field and modeled
based on the NTBT. It should be noted that the wave modes with
lower levels of frequencies and phase velocities are pertinent to
flexural waves, while the wave modes with higher levels of frequen-
cies and phase velocities are pertinent to shear waves [51].

The group velocities of the propagated sound waves within the
SWCNT under uniaxial magnetic field based on the NTBT are
evaluated by vT

gi ¼ @o
T
i =@k. Hence, the group velocities associated

with the flexural and shear waves, respectively, denoted by vT
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g2, are determined as
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where a
1,k

a
2,k

, and a
3,k

represent the first derivative of a1, a2,

and a3 with respect to k, respectively. By letting k¼0 in Eq. (27),
the dimensionless cut-off frequencies of flexural and shear waves,

represented by $T
10 and $T

20, respectively, are obtained as
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and in limit when k goes to infinity, the dimensionless asymptotic
frequencies of the flexural and shear waves, denoted by $T

1a and
$T

2a, respectively, could be determined from
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6. Wave propagation within a SWCNT under an axial steady
magnetic field using NHOBT

According to the NHOBT, the governing equations in terms of
nonlocal forces and deformation fields for a nanotube embedded
in an elastic medium are expressed as
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H ¼ f H
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where cH denotes the deflection angle of the NHOB. According to
the nonlocal continuum theory of Eringen, the nonlocal forces
within the NHOB are stated as
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where a¼ 4=ð3D2
oÞ and Do denotes the outer diameter of the ECS.

By substitution of the equivalent values of ðMnl
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H from Eq. (33) into Eq. (34), one arrives at

ðMnl
b Þ

H
¼ J2c

H
,x�aJ4ðc

H
,xþwH

,xxÞþðe0aÞ2ððI2�aI4Þ
€c

H

,xþ I0 €w
H

�aI4 €w
H
,xx�RAbH2

x wH
,xxþKtw

HþKrc
H
,xÞ,

ðQnl
b þaPnl

b,xÞ
H
¼ kðcH

þwH
,xÞþaJ4c

H
,xx�a

2J6ðc
H
,xxþwH

,xxxÞ

þðe0aÞ2ðI0 €w
H
,x�RAbH2

x wH
,xxxþKtw

H
,x�ða

2I6�aI4Þ
€c

H

,xx

�a2I6 €w
H
,xxxxÞ, ð36Þ

substitution of Eq. (36) into Eq. (33) through using Eq. (4) leads to
the nonlocal equations of motion in terms of displacements as in
the following form:
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Eq. (37) shows the incorporation of the small scale parameter into the
governing equations of an elastically supported NHOB embedded
in an elastic matrix. By introducing the following dimensionless
quantities:
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the dimensionless equations of motion of the SWCNT subjected to a
longitudinal magnetic field on the basis of the NHOBT are obtained as
follows:
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A harmonic solution to the coupled equations in Eq. (39) could be
considered as c

H
ðx,tÞ ¼c

H

0 eið$Ht�kxÞ and wH
ðx,tÞ ¼wH

0 eið$Ht�kxÞ

where c
H

0 and wH
0 are the amplitude of harmonic waves pertinent

to the deflection angle and deflection of the SWCNT modeled based
on the NHOBT, respectively. By substituting such a solution into the
governing equations, Eq. (39), the following set of algebraic equations
is obtained:
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where the elements of the coefficient matrix are as follows:
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In Eq. (40), by setting the determinant of the coefficient matrix equal
to zero, the dispersion relation of the propagated sound waves within
the SWCNT modeled in accordance with the hypotheses of the
NHOBT, is derived as follows:
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Eq. (42) is a second-order algebraic equation for ð$HÞ
2. Therefore, the

dimensionless frequencies pertinent to the flexural and shear waves
are easily calculated as
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and the phase velocities of the propagated sound waves, vH
pi ¼o
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i =k;

i¼ 1,2, are obtained as
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where oH
i denotes the frequency of the sound wave propagated

within the SWCNT subjected to an axial magnetic field and modeled
based on the NHOBT. The group velocities are also evaluated by
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represent the first derivative of functions
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Moreover, the dimensionless asymptotic frequencies of the flexural

and shear waves could be determined from Eq. (44) as k-1.
Therefore,
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7. Results and discussions

In this section, the effect of slenderness ratio, mean radius of
the ECS, axial magnetic field, small-scale parameter, and the
elastic stiffness of the surrounding medium of the SWCNT on
the frequencies, phase velocities, and group velocities of the
transverse waves is investigated using the proposed models. For
this purpose, consider an ECS pertinent to a SWCNT with the
following data: Eb ¼ 1 TPa, n¼ 0:2, rb ¼ 2500 kg=m3, lb ¼ 30 nm,
rm ¼ 2:5 nm, and tb ¼ 0:34 nm. In all plotted results, the predicted
results by the NRBT, NTBT, and NHOBT are shown by the dotted,
dashed, and solid lines, respectively. Further, the results asso-
ciated with the flexural waves are identified by empty markers
whereas those results pertinent to the shear waves are denoted
by the filled markers.

In Fig. 2, the predicted results by the proposed nonlocal beam
models as a function of the slenderness ratio are provided for
different levels of the longitudinally applied magnetic field. The
results are provided in the case of a SWCNT with e0a¼ 2 nm
which has been released from the surrounding elastic medium
(i.e., Kr ¼ Kt ¼ 0). As it is seen in Fig. 2, the predicted flexural
frequencies and the corresponding phase velocities of various
beam models generally increase with the longitudinal magnetic
field. This matter is more obvious for SWCNTs with low levels of
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Fig. 2. Variation of frequencies, phase velocities, and group velocities corresponding to k ¼p in terms of slenderness ratio for different levels of axial magnetic field

((J) H
R

x¼0, (&) H
R

x ¼ 50, (n) H
R

x ¼ 100; (. . .) NRBT, (� � �) NTBT, (—) NHOBT; e0a¼ 2 nm; Kr ¼ Kt ¼ 0).

K. Kiani / Physica E 45 (2012) 86–9692
the slenderness ratio. In such stocky nanostructures, the discre-
pancies between the results of the NRBT and the nonlocal shear
deformable beam models are apparent, particularly for high levels
of the longitudinal magnetic field. For most values of the slender-
ness ratio, the flexural frequencies and the corresponding phase
velocities of the NHOBT are between the results of the NRBT and
those of the NTBT. For low levels of the slenderness ratio, the
shear frequencies and the related phase velocities of the NTBT and
the NHOBT are fairly in line and close to each other for different
levels of the longitudinal magnetic field. For a slenderness ratio
greater than a certain value, variation of the slenderness ratio has
a trivial effect on the variation of the shear frequencies of both the
NTBT and the NHOBT. In the case of Hx ¼ 0, there is a linear
relationship between the phase velocities of the nonlocal shear
deformable beams and the slenderness ratio. For Hx40, for a
slenderness ratio greater than a certain value, the phase velocity
would linearly vary in terms of the slenderness ratio of the
SWCNT. In the case of k ¼ p, the group velocities pertinent to
the shear waves decrease with the slenderness ratio, irrespective
of the assumed level of the longitudinal magnetic field. However,
it is not the case for those associated with the flexural waves.
Regardless of Hx ¼ 0, the group velocities of flexural waves of
various beam models generally magnify as the slenderness ratio
of the SWCNT increases.

The effect of the mean radius of the ECS on the frequencies as
well as the corresponding phase and group velocities of the shear
and flexural waves is studied for different levels of the long-
itudinal magnetic field. The length of the SWCNT is considered to
be constant and only its mean radius varies. The predicted results
by various nonlocal beam models for the wavenumber of the first
vibration mode (i.e., k ¼ p) as a function of normalized mean
radius are presented in Fig. 3. As it is obvious in Fig. 3, the
differences between the flexural frequencies of the NRBT and
those of the nonlocal shear deformable beam models commonly
increase as the radius of the SWCNT increases. This matter is also
valid for the phase velocities of the flexural waves. Such dis-
crepancies are more obvious for higher levels of the longitudinally
applied magnetic field. In the case of Hx ¼ 0, the predicted flexural
frequencies by various nonlocal beams increase with the radius of
the SWCNT. However, in the cases of Hx ¼ 50 as well as Hx ¼ 100,
the flexural frequencies of the proposed nonlocal beams decrease
with the radius of the SWCNT. Regarding shear wave modes, the
predicted shear frequencies of the NTBT and the NHOBT generally
decrease with the radius of the SWCNT. The rate of variation of
shear frequency as a function of radius of the SWCNT is more
apparent in the case of Hx ¼ 0 with respect to other cases. For
both flexural and shear waves, the discrepancies between the
frequencies (or even the corresponding phase and group velo-
cities) of the NTBT and those of the NHOBT generally decrease
with the mean radius of the ECS.

Another interesting study is carried out to determine the effect
of longitudinal magnetic field on the dispersion curves, phase and
group velocities of the propagated transverse waves within the
SWCNT. In Fig. 4, the predicted results by the proposed models
are presented for three levels of the axially applied magnetic field
(i.e., Hx ¼ 0, 5, and 10) for a SWCNT with l¼ 15 and e0a¼ 2 nm.
As it is seen in Fig. 4, for most of the wavenumbers, the predicted
flexural frequencies as well as the corresponding phase velocities
by the NHOBT are between the predicted results by the NRBT and
those of the NTBT. Generally, the discrepancies between the
results of the NRBT and those of the nonlocal shear deformable
beam models increase with the wavenumber, irrespective of the
applied longitudinal magnetic field. Further, the differences
between the dispersion curves of the NHOBT which are pertinent
to the shear wave modes and those of the NTBT increase with the
wavenumber. This matter is more apparent for higher levels of the
longitudinally applied magnetic field. The predicted flexural group
velocities by the NTBT and those of the NHOBT are generally in
line. However, the shear group velocities by the NTBT and those of
the NHOBT are in line for low levels of the wavenumbers. As the
applied longitudinal magnetic field increases, the discrepancies
between the shear group velocities of the NTBT and those of the
NHOBT commonly amplify, particularly for higher levels of the
wavenumber.

In another detailed scrutiny, the influence of the applied
longitudinal magnetic field on the frequencies, phase and group
velocities of the propagated waves within the SWCNT are of
particular interest for different levels of the wavenumber. In
doing so, the plotted results of the NRBT, NTBT, and NHOBT are
provided in Fig. 5 for three values of the dimensionless
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wavenumber (i.e., k ¼ p,5p,and 10p). As it is obvious in Fig. 5,
both flexural and shear frequencies as well as their corresponding
phase velocities generally increase with the longitudinal magnetic
field. In the cases of k ¼ 5p and 10p, the flexural frequencies and
their corresponding phase velocities of the nonlocal shear
deformable beams do not alter for a longitudinal magnetic field
greater than a certain value. As it is also seen in Fig. 5, the
predicted flexural frequencies and phase velocities are overesti-
mated by the NRBT, particularly for high levels of the longitudinal
magnetic field and the wavenumber. For the considered wave-
numbers, the predicted shear frequencies as well as the corre-
sponding phase and group velocities of the NTBT and the NHOBT
are generally in line. The predicted shear group velocities by the
nonlocal shear deformable beams increase with the applied axial
magnetic field. The predicted flexural group velocities by the
NRBT commonly increase with the longitudinal magnetic field as
well. However, the flexural group velocity plot of each nonlocal
shear deformable beam has its own peak point, and its maximum
value magnifies with the wavenumber.

Another important inspection should be undertaken to realize
the effect of the small-scale parameter on the characteristics of
the propagated transverse waves within SWCNTs under an axial
magnetic field. To this end, the plotted results of the frequencies,
phase velocities, and group velocities of the propagated waves
within the SWCNT are demonstrated in Fig. 6 for different levels
of the axially applied magnetic field. As it is seen in Fig. 6, the
predicted flexural and shear frequencies generally decrease with
the small-scale parameter, irrespective of the assumed level of the
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longitudinal magnetic field. Additionally, phase velocities as well
as group velocities of the proposed models would reduce as the
influence of the small-scale parameter becomes highlighted. For
an assumed level of the applied longitudinal magnetic field, the
effect of the small-scale parameter on the characteristics asso-
ciated with the shear waves is more obvious with respect to those
pertinent to the flexural waves.

The influence of the lateral stiffness of the surrounding matrix
on the characteristics of the sound waves within SWCNTs sub-
jected to a longitudinal magnetic field is of concern. In Fig. 7, the
graphs of the frequencies, phase velocities, and group velocities
associated with k ¼ p as a function of dimensionless lateral
stiffness of the surrounding elastic medium are presented for
different levels of the longitudinal magnetic field. The results are
provided for a SWCNT with l¼ 15 and e0a¼ 2 nm when the
surrounding medium does not resist the rotation of the embedded
SWCNT. As it is seen in Fig. 7, the flexural frequencies and the
corresponding phase velocities would increase with the lateral
stiffness of the surrounding matrix. Moreover, the predicted group
velocities would generally decrease with the lateral stiffness of the
surrounding elastic medium. As the effect of the lateral stiffness of
the surrounding matrix becomes highlighted, the discrepancies
between the results of the NRBT and those of the nonlocal shear
deformable models decrease. For an assumed level of the long-
itudinally applied magnetic field, both the NTBT and the NHOBT
predict that the variation of the lateral stiffness of the elastic
matrix has fairly no effect on the variation of the characteristics
pertinent to the propagated shear waves within the SWCNT.
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Finally, the effect of the rotational interaction of the surround-
ing elastic matrix with the SWCNT on the characteristics of
the propagated waves within SWCNTs subjected to a longitudinal
magnetic field is of particular significance. In Fig. 8, the frequen-
cies, the phase velocities, and the group velocities of the trans-
versely propagated waves within SWCNTs in terms of the
rotational stiffness of the surrounding matrix have been pre-
sented. The results are given for a SWCNT with l¼ 15 and
e0a¼ 2 nm when the surrounding elastic medium does not pre-
vent the SWCNT from lateral vibration (i.e., Kt¼0). As it is obvious
in Fig. 8, the flexural frequencies as well as the corresponding
phase and group velocities of the nonlocal beams generally
magnify with the rotational stiffness of the elastic matrix. The
NRBT overestimates the flexural frequency and the corresponding
phase velocity with respect to the NTBT and the NHOBT. More-
over, the discrepancies between the results of the NRBT and those
of the nonlocal shear deformable beams generally increase with
the rotational stiffness of the surrounding matrix. A scrutiny of
the plotted results reveals that the discrepancies between the
predicted flexural frequencies by the NTBT and those of the
NHOBT would generally lessen as the rotational interaction of
the SWCNT with its surrounding matrix intensifies. Conversely,
the discrepancies between the predicted shear frequencies (and
also the shear phase velocities) by the NTBT and those of the
NHOBT would commonly amplify with the rotational stiffness of
the surrounding matrix. Further, the predicted shear group
velocities by the nonlocal shear deformable beam models
decrease with the rotational stiffness of the surrounding matrix.
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8. Concluding remarks

The transverse wave propagation within elastically confined
SWCNTs under a longitudinal magnetic field is investigated
through some nonlocal beam models. The SWCNT is modeled as
a hollow cylinder and its interactions with the surrounding
medium are taken into account by lateral and rotational contin-
uous springs. The effect of the longitudinal magnetic field on the
generated forces in the ECS is considered via appropriate Lorentz’s
forces. For each model, the dispersion relation of the transverse
waves is derived. For the NRB under an axial magnetic field, only
one frequency is detected; however, two frequencies are recog-
nized for the nonlocal shear deformable beams: one frequency is
pertinent to the flexural wave mode and the another one is
related to the shear wave mode. Using the obtained dispersion
relations, the explicit expressions of frequencies, phase velocities,
and group velocities of the shear and flexural waves are obtained
for the proposed models. Subsequently, the effects of slenderness
ratio, small-scale parameter, longitudinal magnetic field, mean
radius of the ECS, lateral and rotational stiffness of the surround-
ing matrix on the characteristics of the propagated waves are
examined in some details. The main results are as follows:
�
 In all proposed models, an increase of the longitudinally
applied magnetic field would result in the increase of the
predicted flexural and phase velocities. This fact is more
noticeable for SWCNTs with low levels of the slenderness ratio.

�
 As the mean radius of the SWCNT increases, the discrepancies

between the flexural frequencies as well as the phase velo-
cities of the NRB and those of the nonlocal shear deformable
beams increase. The overall behavior of the flexural frequen-
cies of the proposed models as a function of radius of the
SWCNT highly depends on the level of the axial magnetic field.

�
 In most of the cases, the predicted dispersion curve by the

NHOBT has been somehow placed between that of the NRBT
and that of the NTBT. The NRBT commonly overestimates the
flexural frequencies and phase velocities, irrespective of the
axial magnetic field. Additionally, the discrepancies between
the results of the NRBT and those of the nonlocal shear
deformable beams generally intensify with the wavenumber.
As the longitudinal magnetic field magnifies, the discrepancies
between the shear group velocities of the NTBT and those of
the NHOBT generally amplify.

�
 Generally, both flexural and shear frequencies as well as their

corresponding phase and group velocities decrease with the
small-scale parameter, irrespective of the level of the longitudinal
magnetic field. As the longitudinal magnetic field increases, the
sensitivity of the predicted flexural frequency and the phase
velocity to the small-scale parameter would lessen.

�
 The discrepancies between the results of the NRBT and those

of the nonlocal shear deformable beam models decrease as the
lateral stiffness of the surrounding elastic medium increases.
The predicted flexural frequencies and the pertinent phase
velocities of various nonlocal beam models increase with the
lateral stiffness; however, the predicted group velocities
reduce as the lateral stiffness becomes highlighted.

�
 The flexural frequencies and the corresponding phase and group

velocities would increase as the rotational stiffness of the sur-
rounding matrix increases. The shear frequencies and the corre-
sponding phase velocities of the nonlocal shear deformable beams
also increase with the rotational stiffness; however, the group
velocities corresponding to the shear waves decrease with the
rotational stiffness. Furthermore, the discrepancies between the
flexural frequencies of the NRBT and those of the nonlocal shear
deformable beam models generally increase as the rotational
interaction of the SWCNT with its surrounding medium intensifies.
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