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Abstract

We establish a connection between the general equations of nonlin-
ear elastodynamics and the nonlinear ordinary differential equation of
Pinney [Proc. Amer. Math. Soc. 1 (1950) 681]. As a starting point,
we use the exact travelling wave solutions of nonlinear elasticity dis-
covered by Carroll [Acta Mechanica 3 (1967) 167]. The connection
provides a method for finding new exact and approximate dynamic
solutions for neo-Hookean and Mooney-Rivlin solids, and for the gen-
eral third- and fourth-order elasticity models of incompressible solids.
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1 Introduction

The equations of elastodynamics belong, under the usual constitutive as-
sumptions, to the class of hyperbolic systems. It is known that if a hyperbolic
system is nonlinear, then smooth solutions of initial-value or initial boundary-
value problems do not usually exist globally in time, and that singularities
will develop, typically after a finite time, even when the initial or bound-
ary data are smooth [1]. Existence of smooth solutions to the initial-value
problem of nonlinear elastodynamics is possible only in special situations and
only for body waves.

To the best of our knowledge, the only explicit examples of smooth so-
lutions to the equations of nonlinear elastodynamics are the Carroll waves
[2, 3, 4, 5]. These solutions were first investigated in [2] in the form of finite-
amplitude, circularly-polarized, shear plane waves traveling in any equi-
biaxially deformed solid, as

x = µSX +A cos(kZ − ωt), y = µSY +A sin(kZ − ωt), z = λSZ, (1.1)

where A, k, ω, µS and λS are arbitrary constants (in incompressible materials,
µ2
SλS = 1).

Recently these solutions have been generalized by Destrade and Sacco-
mandi [6, 7] to dissipative and dispersive materials and in the case of a time
dependent homogeneous underlying motion by Rajagopal [8] and Pucci and
Saccomandi [9].

The aim of this note is to show that there exists a nice connection between
some of the remarkable solutions of Carroll and the Milne-Pinney equation
ordinary differential equation (also known as the Ermakov equation [10]).
This is the nonlinear ordinary differential equation

y′′ + p(x)y + cy−3 = 0, (1.2)

for c constant and p(x) given. In such a way it is possible to uncover some sim-
ple new exact solutions to the equations of nonlinear elastodynamics. These
new solutions show once again the relevance of the Carroll waves solutions
to our understanding of elastodynamics.

2 Basic Equations

We call x(X, t) the current position of a particle which was located at X in
the reference configuration. We follow Pucci and Saccomandi [9] and consider
the motion

x = µ(t)X + f(Z, t), y = µ(t)Y + g(Z, t), z = λ(t)Z, (2.1)
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which consists of two shearing motions f and g in the Z-direction, combined
with a time-dependent homogeneous biaxial stretch λ(t) (here, µ ≡ λ−1/2).
This class of motions has been considered by Rajagopal [8]; it is a general-
ization of the Carroll waves (1.1).

Two kinematic quantities associated with this motion are the deformation
gradient and the left Cauchy-Green strain tensor,

F = ∂x/∂X, B = FF T , (2.2)

respectively. We focus on incompressible solids, which can undergo only
isochoric motions, so that detF = 1 at all times (this is indeed the case for
this motion).

We also require that the material be hyperelastic and isotropic, and so
we introduce the strain energy density W = W (I1, I2), where I1 and I2 are
the first and second principal invariants of B, respectively. For isochoric
motions, they are given by

I1 = tr B, I2 = tr(B−1). (2.3)

The general representation formula for the Cauchy stress tensor T is

T = −pI + 2W1B − 2W2B
−1, (2.4)

where p is the yet indeterminate Lagrange multiplier introduced by the con-
straint of incompressibility, and W1 ≡ ∂W/∂I1, W2 ≡ ∂W/∂I2.

Now, the balance equation of linear momentum, in the absence of body
forces, is

div T = ρ ∂2x/∂t2, (2.5)

where ρ is the (constant) mass density.
Standard computations [9] lead to the following specialization of the bal-

ance equations to the motion (2.1),

ρ (ftt + µttX) = −px + [2(λW1 +W2)fZ ]z ,

ρ (gtt + µttY ) = −py + λ [2(λW1 +W2)gZ ]z ,

ρλttZ = −pz +
[
2λ2W1 − 2λ−1

(
µ2f 2

Z + g2Z
)
W2

]
z
, (2.6)

where letter subscripts denote partial differentiation. Then we write these
equations in the reference configuration, and we introduce the shear strains
F ≡ fZ and G ≡ gZ , and the generalized shear modulus Q ≡ 2(W1 +λ−1W2).
We point out that here

I1 = 2µ2 + λ2 + F 2 +G2, I2 = 2λ2 + λ−1(µ2 + F 2 +G2). (2.7)
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Finally we eliminate the Lagrange multiplier p, and we obtain the deter-
mining equations for the strains F and G,

ρ

(
Ftt −

µtt
µ
F

)
= (QF )ZZ , ρ

(
Gtt −

µtt
µ
G

)
= (QG)ZZ , (2.8)

where Q = Q(F 2 + G2, t). We assume that the Baker-Ericksen inequalities
hold, so that Q > 0 at all times [11].

It is convenient to recast (2.8) as a single differential equation by intro-
ducing the complex quantity Λ = F + iG, to obtain

ρ

(
Λtt −

µtt
µ

Λ

)
= [QΛ]ZZ , (2.9)

where now Q = Q(Λ2, t).
We seek solutions of (2.9) in the form

Λ = Ω(t) exp [i (kZ + φ(t))] , (2.10)

where the wave-number k is a real constant, and Ω (the amplitude) and φ
(the phase) are unknown real functions of time. Notice that this type of
solutions gives

f(Z, t) = −Ω(t)

k
sin (kZ + φ(t)) , g(Z, t) =

Ω(t)

k
cos (kZ + φ(t)) ,

(2.11)
for the shear motions, making the connection with the Carroll waves (1.1):
here we have the same spatial variations, and potentially richer temporal
variations.

Now the full set of partial equations (2.9) reduces to the following system
of ordinary differential equations,

Ω′′ =

[
φ′2 +

µ′′

µ
− k2Q

ρ

]
Ω, φ′′Ω + 2Ω′φ′ = 0, (2.12)

in the unknowns Ω(t) and φ(t) (now Q = Q(Ω2, t)). Carroll [3] derived this
system in the unstretched case, when µ = λ ≡ 1.

Direct integration of the second equation in (2.12) gives φ′ = k1/Ω
2,

where k1 is an arbitrary constant, which we take to be positive without
loss of generality. The amplitude Ω(t) is now the solution of the following
nonlinear and non-autonomous ordinary differential equation,

Ω′′ =

[
µ′′

µ
− k2Q

ρ

]
Ω +

k21
Ω3
. (2.13)

The case k1 = 0 (giving φ(t) ≡ constant) has been discussed in detail by
Pucci and Saccomandi [9], who establish a clear relationship with Melde’s
problem of parametric resonance.
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3 The Milne-Pinney Equation

We first specialize the equations to the Mooney-Rivlin solid, with strain-
energy density

W (I1, I2) = 1
2
µ0

(
1
2

+ β
)

(I1 − 3) + 1
2
µ0

(
1
2
− β

)
(I2 − 3), (3.1)

where µ0 > 0 is the infinitesimal shear modulus and β is a constant such
that −1/2 ≤ β ≤ 1/2 (when β = 1/2 we recover the special case of the
neo-Hookean material). In that case, the generalized shear modulus is

Q(t) = µ0

[
1
2

+ β +
(
1
2
− β

)
λ−1(t)

]
, (3.2)

which is independent of Ω, and the governing equation (2.13) becomes

Ω′′ −
{
µ′′

µ
− µ0k

2

ρ

[
1
2

+ β +
(
1
2
− β

)
λ−1
]}

Ω− k21
Ω3

= 0. (3.3)

This is indeed the Milne-Pinney or Ermakov equation. A detailed commen-
tary about this equation is given in a recent paper by Leach and Andriopolous
[10].

Note that this is not the first time that this differential equation arises
in the framework of nonlinear elastodynamics. In fact, it has arisen pre-
viously in the study of large amplitude oscillations of thin-walled tubes of
Mooney-Rivlin materials. This problem was first treated by Knowles [12] for
a general hyperelastic incompressible material, and the connection between
this problem and the Milne-Pinney equation was made by Shahinpoor and
Nowinski [13], see also the book by Rogers and Ames [14]. Notice however
that there is a noteworthy difference between the results in [13] and the
results here: the oscillations of a Mooney-Rivlin tube are governed by the
Milne-Pinney equation in the approximation of a thin-walled tube, whereas
here no approximation at all was necessary to derive the equation. This fact
was alluded to by Carroll in [3] who noticed the reduction (2.11), but did
not use it to deduce some exact solution.

To fix ideas, take the following initial conditions

Ω(0) = Ω0 > 0, Ω′(0) = 0. (3.4)

Then the general solution of (3.3) can be obtained by using two linearly
independent solutions u and v, say, of the linear equation

Ω′′ −
{
µ′′

µ
− µ0k

2

ρ

[
1
2

+ β +
(
1
2
− β

)
λ−1
]}

Ω = 0, (3.5)
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such that

u(0) = Ω0, u′(0) = 0, and v(0) = 0, v′(0) = 1/Ω0. (3.6)

As shown by Pinney [15], the general solution of (3.3) is then

Ω =
√
u2 + k21v

2. (3.7)

An example can be worked out when λ(t) is a constant, static equi-biaxial
pre-stretch, λ = λS, say. Then (3.3) reduces to

Ω′′ + ω2
0Ω +

k1
Ω3

= 0, where ω2
0 =

µ0k
2

ρ

[
1
2

+ β +
(
1
2
− β

)
λ−1S
]
> 0. (3.8)

In this case, u = cos(ω0t), v = [sin(ω0t)] /(ω0Ω0), and the Pinney solution
(3.7) is

Ω(t) =

√
Ω2

0 cos2(ω0t) +
k21
ω2
0Ω2

0

sin2(ω0t). (3.9)

From the equation φ′ = k1/Ω
2 we deduce the phase to be

φ(t) = tan−1
[
k1
ω0Ω2

0

tan(ω0t)

]
+ φ0, (3.10)

where φ0 is the initial phase.
More complex solutions may be obtained by applying the approach of

Shahinpoor and Nowinski [13] to equation (3.3). For simplicity of exposi-
tion, we consider the neo-Hookean case, β = 1/2. Then, the Milne-Pinney
equation (3.3) reduces to

Ω′′ −
[
µ′′

µ
− µ0k

2

ρ

]
Ω− k21

Ω3
= 0. (3.11)

Now consider the case where the neo-Hookean solid is stretched linearly with
time, λ(t) = 1 + at, say, where a > 0 is a constant. Then µ′′/µ = 3a2/[4(1 +
at)2]. The following changes of function and of variable,

ω =
Ω

Ω0

and ζ = α(1 + at), where α ≡
√
µ0

ρ

k

a
, (3.12)

give a non-dimensional version of (3.11),

ωζζ +

(
1− 3

4ζ2

)
ω − c

ω3
= 0, where c ≡ ρk21

µ0k2Ω4
0

, (3.13)
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with initial conditions changed from (3.4) to

ω(α) = 1, ω′(α) = 0. (3.14)

The linear Pinney equation corresponding to (3.13) is a Bessel equation, and
we express the set of fundamental solutions in terms of Bessel functions of
the first and second kind as

u, v = (π/4)
√
ζ/α [AjJ1 (ζ) +BjY1 (ζ)] , j = 1, 2, (3.15)

where

A1 = −Y1(α) + 2αY0(α), A2 = −2αY1(α),

B1 = J1(α)− 2αJ0(α), B2 = 2αJ1(α). (3.16)

These constants have been computed in order to accommodate the initial
conditions for u and v, which are now:

u(α) = 1, u′(α) = 0, and v(α) = 0, v′(α) = 1. (3.17)

The resulting non-dimensional solution is ω = [u2 + cv2]
1/2

. Its behavior
depends on two constants: c > 0 defined in (3.13), which is arbitrary because
k1 is arbitrary; and α > 0 defined in (3.12), which is equal to the ratio of the
speed of infinitesimal shear waves to the speed of stretching. This connection
leads us to define a ‘supersonic’ range, 0 < α < 1 and a ‘subsonic’ range,
α > 1.

At the origin ζ = α, we have (3.14) and also ωζζ(α) = c − 1 + 3/(4α2).

Hence, when α is in the supersonic range 0 < α <
√

3/4 ' 0.866, the
amplitude ω always grows at first because ωζ(α) = 0, ωζζ(α) > 0. Otherwise,

when α is in the supersonic range
√

3/4 < α < 1 or in the subsonic range
α > 1, the amplitude can either grow or decay, depending on the value of
c with respect to 1 − 3/(4α2). In Figure 1 we show the early variations of
ω when c = 1.0, α = 0.8 (thick plot), c = 1.0, α = 2.0 (medium thickness
curve), and c = 0.5, α = 2.0 (thin curve). In all cases, the amplitude
oscillates and remains bounded over time.

4 The Full Non-Linear Equation

We established that the Milne-Pinney equation emerges from the specializa-
tion of the full non-linear equation (2.13) to the Mooney-Rivlin strain energy
density (3.1). In fact, the exact solutions obtained subsequently by the Pin-
ney method are valid for the whole class of general third-order non-linear
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c =1
 = 0.8

c =1
=2

=2
c =0.5

ζ

Figure 1: Variations with time of the amplitude of a generalized Carroll wave
in a neo-Hookean solid under a linearly growing stretch (non-dimensional
units).

incompressible solids. These are described by the following expansion of the
strain energy W ,

W = µ0 tr
(
E2
)

+
A

3
tr
(
E3
)
, (4.1)

where E = (F TF − I)/2 is the Green strain tensor and A is a third-order
elasticity constant in the notation of Hamilton et al. [16]. Indeed, it is
known since Rivlin and Saunders [17] that when the Mooney-Rivlin strain
energy (3.1) is expressed in terms of tr

(
E2
)

and tr
(
E3
)
, and neglecting

higher powers, it embraces (4.1), once the following identification is made:
A = 2µ0(2β − 3). It follows that a solution valid for Mooney-Rivlin solids is
also valid for all third-order incompressible solids (but the reverse is not true
in general).

Further, we may use the exact Pinney solutions for Mooney-Rivlin solids
as the starting point of a perturbation scheme in the fourth-order elasticity
theory of incompressible solids. As shown by Ogden [18], only three elastic
constants are necessary to describe these. In the notation of Hamilton et al.
[16], the expansion of the strain energy density reads

W = µ0 tr
(
E2
)

+
A

3
tr
(
E3
)

+D
(
tr(E2)

)2
, (4.2)
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where A and D are third-, and fourth-order elasticity constants, respectively.
From Destrade et al. [21] we deduce that the following strain energy

W = µ0

[(
1
2

+ β
)

(I1 − 3) +
(
1
2
− β

)
(I2 − 3) +

γ

4
(I1 − 3)2

]
, (4.3)

covers (4.2), once terms of fifth-order in E and higher are neglected, and the
following identifications apply,

β =
3

2
+

A

4µ0

, γ = 1 +
A/2 +D

µ0

. (4.4)

Using (4.3), the corresponding generalized shear modulus Q is easily com-
puted as

Q = µ0

[
1
2

+ β +
(
1
2
− β

)
λ−1 + γ(2µ2 + λ2 + Ω2 − 3)

]
. (4.5)

As an example, consider a small-amplitude vibration of period ω, super-
imposed upon a large static stretch λS, so that λ(t) = λS[1+ε cos(ωt)], where
|ε| << 1. Then we expand (2.13) up to term of order ε1. We find

Ω′′ + ω2
0Ω− k21

Ω3
=
µ0k

2

ρ
γ(2λ−1S + λ2S − 3− Ω2)Ω

+
µ0k

2

ρ
ε cos(ωt)

[(
1
2
− β

)
λ−1S + 2γ(λ−1S − λ

2
S)
]

Ω, (4.6)

where ω0 is defined in (3.8).
It is possible to consider several perturbation schemes that exploit the

solution (3.9) as the zeroth-order approximation of equation (4.6). The sim-
plest of such perturbation scheme is obtained considering that the last term
in (4.3) is a perturbation of the Mooney-Rivlin strain energy, i.e. that γ = γ̂ε,
where γ̂ = O(1). With that assumption, we find that with

Ω′′ + ω2
0Ω− k21

Ω3
=
µ0k

2

ρ
ε
[(

1
2
− β

)
λ−1S cos(ωt)− γ̂(2λ−1S + λ2S − 3− Ω2)

]
Ω.

(4.7)
We may then perform a standard multiple scale expansion [19] starting from
the exact solution (3.9) of the Milne-Pinney equation at ε = 0. In this way
it is possible to investigate parametric resonance phenomena such as those
revealed by the Melde string experiment [20]. This has been done in the
linear case by Lord Rayleigh [22], and more recently in a complete nonlinear
context by Pucci and Saccomandi [9] (the main difference is that here we
have traveling waves instead of standing waves.)
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5 Concluding Remarks

The discovery of Carroll waves has had a long-lasting influence in the field of
wave propagation in nonlinear elasticity. These solutions are elegant exam-
ples of exact reductions, and are also explicit examples of exact, closed-form
solutions of an highly non-linear theory of solid mechanics. Moreover, the
peculiarities of these solutions proved fundamental to a better understand-
ing of the physical and mathematical properties of the classical theory of
elastodynamics. Fritz John [23] was the first to recognize this fact.

To give an idea of the recent research originating from the papers by
Carroll [2, 3, 4, 5], we mention: the note by Rubin and Rosenau [24] in the
framework of the theory of a nonlinear string; the papers by Destrade and
Saccomandi [6, 7, 25] on rotating media, viscoelastic materials of differen-
tial type, and dispersive non-linear elastic materials, respectively; the paper
by Rajagopal [8]; and the paper by Pucci and Saccomandi [9] on Melde’s
phenomena.

The aim of this note was to point out a link between the Carroll waves
and the Milne-Pinney equation. It is clear that the solutions presented are
somewhat puzzling from a mathematical point of view. Indeed, we know
that global existence of body waves is guaranteed in nonlinear elasticity if
the null condition is satisfied [26], but this result holds only for small initial
data. The Carroll wave (1.1), and its various generalizations, is an explicit
example of global existence of solutions for any value of the amplitude of
initial data. It is still necessary the investigate the mathematical structure
lying hidden behind such simple solutions.
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