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Abstract. The transverse spin asymmetry of a quark 
in a baryon and the linear polarization of a gluon in 
a vector meson are studied from the t-channel point 
of view. Using the Altarelli-Parisi approach, they are 
shown to obey independent evolution equations and 
to decrease with increasing Q2• We investigate the 
possibility to measure them at leading twist, to leading 
order in et. and et.8 and without analyzing the final 
polarizations. This requires simultaneous polarization 
of the beam and the target; the observable effect is in 
the azimuthal distribution of the high PT particle or 
jet. Assuming a simple (quark+ scalar diquark) model 
for the baryon, a large asymmetry is expected in pp 
Drell-Yan collisions, a smaller one in high Pr pp 
collisions, from the interference term in the scattering 
of two identical quarks. 

1 Introduction

In the parton model [1-3], the relevant quark and 
gluon densities for polarized beam or target experi­
ments are the following ones: 

(i) a(x) = unpolarized density of parton a. a= quark(q) 
or gluon(G). x is the Bjorken variable; the dependence 
in Q2 is understood. 
(ii) L1a(x) = a+(x)- a_(x), where a+ (x) and a_(x) are 
respectively the densities of parton a of positive and 
negative helicity, when the hadron has positive helicity. 
(iii) L11 q(x) = qix) - q _�(x), where q + ix) is the density 
of quarks polarized in the transverse direction ± n, 
when the hadron spin points in the direction + n. 
(iv) L12G(x)=GAx) - Gp(y), where G�(x) (n= x or y) 
is the density of gluon linearly polarized along n, 
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the hadron being a vector meson linearly polarized 
along x. 

We have obviously 

q(x) = q+(x) + q_(x) = q�(x) + q_�(x) 
G(x) = G + (x) + G _(x) = Gx(x) + G9(x). (1. 1)

Whereas a lot of theoretical and experimental work 
has been devoted to a(x) and L1a(x), the transverse 
polarization asymmetries L11q(x) and L12G(x) have not 
been, up to now, popular topics. A good reason for 
this is that they are not easy to measure; we shall 
discuss this question is Sect. 4. But, in the case of 
,11 q(x), there is also the prejudice that it vanishes in 
the limit of zero mass and zero transverse momentum 
of the quark. This is totally unjustified; in the case of 
electrons, for instance, the smallness of the electron 
mass does not preclude large transverse polarizations 
of ultrarelativistic electrons; the effect of such polariz­
ation is well known in e+ e- collisions [4]. To show
that L11 q(x) is not necessarily vanishing, we present, 
in Appendix C, a naive covariant parton model where 
the baryon is composed of a quark and a scalar 
diquark. It predicts 
L11q(x)=q+ (x). ( 1.2) 

Concerning the evolution of L11 q(x), previous 
theoretical works have yielded different results [5]. As 
for L12 G(x), we have not found any explicit mention
of this quantity in the literature. It is involved, however, 
implicitly in the polarized photon structure function 
[6]. 

For the above reasons, we think it worthwhile to 
derive independently the evolution equations of the 
transverse asymmetries, using the Altarelli-Parisi ap­
proach, and to discuss their observable effects at 
leading twist and to lowest order in et. and et.8• These 
problems will be more easily treated in the t-channel 
formalism which we have already introduced to handle 
spin in multiparton reactions [7]. 
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This work will be developed as follows. In the next 
subsection, we present the t-channel formalism for the 
single parton distributions. In Sect. 3, we derive the 
evolution equations of the transversely polarized par­
ton distributions. We discuss the observability of these 
distributions in Sect. 4. Conclusions are presented in
Sect. 5. 

2 The t-channel spin formalism for parton 
distributions 

In a recent work [7], we have set up a quite general 
and straightforward formalism to handle spin in 
single- and multiparton scattering, based on the t­
channel analysis of the helicity amplitude. Consider
the hard collision whose unitarity diagram is drawn 
in Fig. 1. The cross section for producing a particular 
hard final state f is 
a= L J dx(A.alP0(x)IA.�) J dy(A.bll(Y)IA.b)all ).'s 

. < A�, Ab I Ha+ b-+ f I Aa, A.b),
where x = Pa/PA, Y = Pb/PB,

<A.�, A.b I w+ b-+ I I A.a, A.b)
�(a, A.�; b, A.bl r+ If) <fl Tla, A.a;b, A.b),

(2. 1 )

(2.2) 
is a partial discontinuity of the forward parton-parton 
amplitude, pa(x) is a density matrix in spin space, 
related to the hadronic density matrix pA by 
( Aal pa(x)I A�)

(2.3) 

and similarly for pb(y). r a/A(X) is the hadron-parton 
cut amplitude ; unlike pa(x) it does not depend on the 
actual hadron polarization. 

For each particle-antiparticle pair in the t-channel
of Fig. 1, we define the t-channel helicity state to be 
simply 
IA.)® IJ:'), (2.4a) 
where
J:' = - A'. (2.4b) 
Then we build a basis of particle-antiparticle helicity
states IA) which have definite total helicity 
J = A.+ J:' = A. - A', (2.5)
and definite symmetry t: = ±. For particles of spin s 
which can only take two possible helicities, + s or - s, 
the IA) states are: 

1 10+)= J2(1s)®l-s) + l-s)®ls)) 
(J = 0, e = +) 

1 10_)= J2(1s)®l-s)-l-s)®ls)) 
(() = O,t: = - )

Fig. 1. Unitarity diagram for a hard hadron-hadron collision with 
the subprocess a + b-+ f 

12s) = ls)®ls); l-2s) = 1-s)®l-s) 
(J = ± 2s,t: = + ). (2.6) 

Let us first consider the "t-channel amplitude" f'a!A(x)
obtained by crossing ra/A(x) and sandwiching it
between I A) states. Due to rotational and parity
invariance, f'a!A(x) conserves J and e, i.e. 
(ja = Aa - A�= (j A= AA - A�,

(2.7) 

so we can write

(2.8)
It turns out that the f'".{A(x) are just equal to the parton
distributions defined in Sect. 1: 

a(x) = T0+ (x), 
L1a(x) = T0_ (x), 

L11 q(x) = f'1(x)= f'_1 (x), 
L12G(x) = f'2(x) = f' _2(x). (2.9) 

As expected, transverse polarization asymmetries
are associated with non-zero total helicity J in the 
t-channel, i.e., helicity flip in the s-channel. Due to the 
conservation of J and e, we can already predict that 
L11 q and L12 G satisfy simple (unmixed) evolution
equations, contraryly to what happens for Liq and 
L1G [2]. 

As we have done for r, we can similarly decompose
the matrix densities p and the parton-parton dis­
continuity Hin the t-channel basis. For this purpose,
we prefer to reformulate the t-channel analysis in a 
more physical way: 

To each t-channel state 
(2.lOa) 

defined in (2.6), we associate the s-channel operator 
@(A)= L C;.µIA.>< -µJ. (2.lOb) 

).,µ 
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Thus 

l!!( ± 2s) = I ± s) < + s I = cr ± = !( cr x ± icr y ). 
The orthogonality of the I A) states yields 

tr [l!!(A)l'D +(A')] = c5 AA'.

(2.11) 

(2.12) 

Then we decompose pA, p8, p"(x), pb(y), rafA(x), rbfB(y)
and H on the s-channel operators l'D(A) [8]: 

p = L p AlD(A), (2.13a) 
A 

rafA(x) = L f'".{A(x)l!! + (A)A ® lD(A)a, (2.13b) 
A 

H =LL H AaAb(D+(Aa)@@+(Ab). (2.l 3c) 
Aa Ab 

The inverse formulas are obtained by use of (2.12); for 
instance 

p A= tr [pl!!+ (A)]. (2.14) 

The coefficients f'".{A(x), HA. A• are just the t-channel
amplitudes taken between the I A) states. In fact we 
could have introduced the lD(A)'s directly by (2.11), 
without any reference tot-channel states. This provides 
an alternative presentation of the formalism. We are 
now able to rewrite (2.1) and (2.3) as 

cr = L J dxp''.dx)f dyp�.(y)HA��:I, (2.15) 
AaAb 

PA(x) = P1f'".{A(x) (idem for p�(y)). 
The "unpolarized" quantities are 

Ha+b-+ f _ 2 Aa+b-+ f 0 + 0 + - CT unpolarized• 

(2.16) 

(2.1 8)
We give below the values of p A/Po+ corresponding to 
different polarization cases. 

-partial helicity polarization 
p0_/Po+ = sign(p2)(s2)/s; P±l• = 0, (2.19) 

-partial transverse polarization: p0_ = 0, 

(forward going particle) 
P±2s/Po+ 1� �,'"-

=-e+2•i(1t-l/t) (backward going particle [10]), 
j2 

(2.20) 
where P � 1 is the degree of polarization and t/I the 
azimuthal angle of the polarization direction (spinorial 
for s = t, linear for s = 1). 

3 Evolution of Li1q(x) and Li2G(x)

In the physical gauge, the evolution of p"(x, Q2) or,
equivalently, of rafA(x, Q2) is given by the ladder of
Fig. 2 [3]. The kernel, represented in Fig. 3, is 
proportional to the Altarelli-Parisi splitting matrix 

< A'µl IP(z)I A., µ'> 

z(l - z) 
= 2k2 L (b,{J,µ;c,y,vlVla,1JC,A.)z#I T {J.y,v 

·(b, {J, µ'; c, y, vi Via, IJC, A')*, (3.1) 
where IJC, {J, y are color indices, µ, v, A. are helicities, 
b = za + kT and c = (1 - z)a - kT. For L11 q(x) and 
L12 G(x), we have A.=µ= -A.'= - µ'. The correspond­
ing element L11or2P(z) = < - A., A.I IP(z)IA., - A.) appears 
then as an interference term between two V's (at least 
in the helicity basis). Alternatively, we have: 

L11 P(z) = Pq+nq+/z)- Pq_nq+/z),

L11 P(z) = P GxGJz)- P GxG/z). (3.2) 
The detailed calculation of the transverse splitting 
functions is given in Appendix B and C. We give here 
just the result [11]: 

L11 P(z) = C2(R{ (1 _: z)+ 
- 2 + �.)(z - 1) J (3.3a) 

L12P(z) 

=C2(G{(l :z)+ 

(11 2 T(R) ) J2 + 6-3 C 2 ( G) c5(z - l) ;

� 
td 
a�a· 

(3.3b) 

Fig. 2. Ladder diagram describing the evolution of the parton 
density, in the planar gauge 

(a) 

la.a.I) ja.a) .. ') 

(b) f + +sym. 
la.a.i.) la.a.A') 

Fig. 3. Kernel of the evolution equation for the parton density 
matrix: a radiation of a spectator parton, b renormalization of the 
parton propagators 
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where C2(R) = (N2 - 1)/2N = 4/3, C2(G) = N = 3 and
T(R) = !Nnavor· The distribution 1/(1 - z)+ is defined 
by 

J dz f(z)
= J dzf(z) -f(l)

o (1 - z)+ o 1 - z ' 

f (z) being any test function which is sufficiently regular 
at the end points. 

For the quark transverse asymmetry, the master 
equation reads 

d 2 oc.(Q2)
J
1dy (x) 2 

din Qz L11 q(x, Q ) = ----z;-x y L11 p y L11 q(y, Q ),

(3.4) 
where oc.(Q2) = g2 /4n is the running coupling constant.
In terms of the moments 

1 
L11qn(Q2)= J dxxn-1L11q(x,Q2);

0 
1 

L11Pn = J dzzn-l L11P(z),
0 

the solution of (3.4) is given by 

(3.5) 

L11qn(Q2) = L11q n(Q� ) exp[ L11Pn 1; ���,:) dQ'2 l 
(3.6) 

In the leading logarithm approximation, we have 

oc(Q2)= �t' t=ln(Q2/A2), b=
33 �

2
!N1, 

and we can write the exponential factor of (3.5) as ( t ) (L11P" ) 
- exp -- .t0 2nb 

The moments of L11P(z) are 

L11Pn = C2(R)
(

!- 2 i �). 
j= 1 J 

(3.7) 

(3.8a) 

For the gluon transverse asymmetry, we have just to 
replace L11 by L12 and q by G in (3.4-3.7). We have now(11 n 1) 
L12Pn = C2(G) -

6 -2 L � -iT(R).n i=l J (3.8b) 

We note that, for any n,L11Pn and L12Pn are negative. 
This means that the transverse asymmetries decrease 
with increasing Q2, whereas the longitudinal spin
asymmetry [12] is constant for the quark and growing 
for the gluon. 

4 Observability of the transverse asymmetries

While there is no reason to assume that the transverse 
polarization of, say, a proton is not transmitted to its 
quarks (for instance, recall (1.2)), it sometimes happens 
that the hard process is insensitive to such a quark 
transverse polarization, at least to zeroth order in 

(mq/Q), (Pr(q)/Q) and to lowest order in oc and oc •. This 
is the case in deep inelastic lepton scattering, where 
helicity conservation at the quark photon vertex 
selects only the fJ =A -A'= 0 components of the 
quark density matrix, whereas transverse polarization 
lies in the fJ = ± 1 components. To observe transverse 
polarization at leading twist and to lowest order in oc 
and oc., we have therefore to look at other hard 
processes. 

Restricting ourself to 2--+ 2 collisions, we have the 
following subprocesses at our disposal 

a) lepton + q-+ lepton + q
b) qq-+qq
c) qij-+tl,qij,GG,Gyoryy (4.1) 
d) Gq or yq-+Gq or yq
e) GG-+GG 
f) GG or yG--+ qij.

In this work, we shall assume that the polarizations 
of the final particles are not measured. Since the 
final angular distribution may depend on the initial 
polarizations, we specify the polar angle 8 and 
azimuthal angle <p of the relative momentum inf and 
write 

Ha+b-+ J = H(8, <p), (4.2) 

the s dependence being understood. Conservation of 
angular momentum about Oz gives 

<A:, A� I H(8, <p)IAa, Ab)= ei"'<"" -ob) (A:, A� I H(8, 0)1 Aa, Ab)
(4.3) 

with fJ =A - A'; equivalently, 

H Aa Ab ( 8, <p) = eicp(Oa -ob) H Aa Ab ( 8, 0). (4.4) 
We write down other symmetry properties of H AaAb 
which are relevant in polarization effects (in what 
follows, IA) is the state obtained from IA) by reversing 
fJ but not e). 

- hermiticity 

H Aa Ab(8, <p) =Ht/lb (8, <p), 
- parity invariance (not necessarily true) 

H AaAb(8, <p) = ( - )0"-"•eaebH/10/[.(8, - <p), 

(4.5) 

(4.6) 
- T invariance + Born approximation ( + hermiticity) 

HAaAb(8,<p)=H":iaAb(8, -<p), 
-chirality invariance 

(4.7) 

f>a + fJb = 0 (qij, qq, ijij) (4.8a) 
fJa = 0 (a= quark; b = gluon or photon) (4.8b) 

fJa = fJb = 0 (a= quark; b = lepton) (4.8c) 

Finally, it has been shown [13] that the Born ampli­
tudes for the 2--+ 2 processes ( 4.1 c-f ) also conserve 
the total helicity, in the massless limit, although no 
simple proof has been given for it. Then, Aa +Ab and 
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A,� + A,� are both equal to the total helicity of the 
intermediate state f in (2.2), hence 
<>a+ Jb = 0 (to leading order in IX, IX, and m/Q) (4.9)

From (4.3-4.9) we can draw the following conclusions: 

--if we integrate over <p, the only observable asym­
metries (i.e., O'p01arized =I O'unpolarized) are characterized by 

(4.10) 

This is the case for helicity asymmetries (Ja = Jb = 0). 
By constrast, in qq or qij scattering we have no net 
transverse polarization effect after <p integration (the 
null theorem of [ 4b] ). The same situation holds in GG 
or Gy scattering to leading order in IX and IX,. 

We therefore consider experiments where the data 
are not integrated over <p. Furthermore we assume 
parity conservation in the hard process [14]. 

a) Transversely polarized quarks
It follows immediately from (4.8) that if a is a trans­
versely polarized quark (<>a= ± 1), b must also be a
transversely polarized quark or antiquark. This selects 
processes (4.1 b and c). Then, gathering (2.9), (2.15), 
(2.16), (2.20), (4.4), (4.5) and (4.6), 

<l = f dxdy<Tunpolarized [a(x)b(y) -PAP BA 1 a(x)Ll1 b(y)
·aNN(8) cos(2<p - t/I A - t/IB)] (a, b = q or ij),

(4.11) 

where PA and t/I A are respectively the magnitude and 
azimuthal angle of the polarization vector of hadron 
A (similarly for B) [15], 8 is the scattering angle in the 
parton-parton center-of-mass and 
aNN(8) = H 1, -1 (8, O)/Ho+ O+ (8, 0), (4.12)
is the transverse asymmetry parameter of the hard 
subprocess. In terms of s-channel helicities, 

Ho+O+ = < + +IHI + +) +< + -IHI + - )
Hl,-1 = < - +IHI + - ). (4.13) 

Due to helicity conservation, a non vanishing H 1 _ 1 
can only arise from qij fusion diagrams (Fig. 4a) 
or interference diagrams in identical qq scattering 
(Fig. 4b). Thus a first place where transversely polarized 
quark distributions can be measured is Drell-Yan pair 
production with polarized beam and target. Here [16], 

aNN(8) = - sin2 8/(1 + cos2 8). (4.14) 

If relation (1.2) has some part of truth, the effect is 
expected to be large in pp Drell-Yan collisions, 
but small in pp ones, the polarization of the sea 
being probably small. In the reaction 
pp� 2 high Pr jets + anything,
the interference diagram of uu or dd scattering (which 
is suppressed by a color factor in 1/N) can lead to a 
few percent asymmetry [17] at large Xr = Pr/Js; in
this case [19] 

(a) 

(b) 
Fig. 4. Subprocesses allowing helicity flip ba = -bb = ± 1: a quark­
antiquark annihilation, b interference term in identical quark-quark 
scattering 

aNN(8) = - sin4 8/(11 + 34 cos2 8 + 3 cos4 8). (4.15) 

Note the very fast decrease of aNN(8) when we leave 
the 8 = n/2 region.

b) Linearly polarized gluon
Here again, due to (4.9), both the beam and the target 
must be linearly polarized, which is not an easy task. 
This selects processes (4.1 e,f). Then, in complete 
analogy with (4.11) and (4.12), we have for GG col­
lisions 

<l = f dxdy<Tunpolarized[G(x)G(y) + P APBL'.12 G(x)L'.12 G(y)

·aii0(8) cos(4<p - 21/1 A - 2t/IB)], (4.16) 

where PA and t/J A are respectively the magnitude and 
azimuthal angle of the linear polarization of A (idem 
for B) [15] and 

ali0(8) = H2,-2(8, 0)/Ho+o+ (8, 0),
Ho+O+ = < + +IHI + +) +< + - IHI + - ), 
H1,-2 = < - +IHI + - ). (4.17)

(4.16) and (4.17) also apply to yG subprocess with 
the following substitutions 

G(x) and Ll2G(x)�J(x - 1). 

5 Conclusion 

The transversely polarized quark distribution Ll 1 q(x) 
and the linearly polarized gluon distribution Ll2 G(x), 
which correspond to non zero helicities in the t­
channel, obey simple, uncoupled evolution equations. 
Their moments decrease for all n as negative powers 
of In Q2, unlike the helicity asymmetries for n = 1.

Ll1 q(x) and Ll2 G(x) should a priori exist even in 
the limit of vanishing parton mass and transverse 
momentum. For instance, a naive quark + scalar di­
quark model gave us 

Ll1q(x) = q+(x); 
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this, combined with the experimental indication [23] 
that 

J q+(x)dx::::: J q_(x)dx, 
would imply 

J L11 q(x)dx::::: t J q(x)dx.
L11 q(x) and L12 G(x) can be measured at leading twist 

and to leading order in a and a,, provided both the 
beam and the target are polarized (transverse spin + 
transverse spin for L11 q, linear polarization + linear 
polarization for L12 G). There is no effect in the total 
cross section but in the azimuthal distribution. Another 
method is to analyse one final polarization, in which 
case only one incoming polarization is needed. We did 
not study this possibility in the present work. 

The principle of the measurement of L11q(x) is the 
same as for the asymmetry parameter aNN in elastic 
scattering of two spin t particle; from (4.11) we have 
an effective asymmetry parameter given by 

eff - a L11 a(x)L11 b(y) aNN - NN a(x)b(y) ' 
where x and y are the fractional momenta of colliding 
partons a and b respectively and aNN is the asymmetry 
parameter of the hard subprocess (a = q or ij, b = q 
or ij). A strong effect is expected in Drell-Yan pp 
collisions where aNN is of the order of unity. In pp 
collisions, the scattering of two identical quarks also 
has a non vanishing aNN• which comes from the 
interference term, but this effect is only of order 
l/N0010,. Nevertheless it should be interesting to detect
it, looking at high xT particles or jets, for which 
the valence + valence mechanism is dominant. The 
remarkably strong peaking of aNN(O) at 0 = n/2 pre­
dicted by (4.15) could be tested. 

The quantity L12G(x) exists only for spin?; 1 projectile
or target, in practice for a real or quasi real photon, 
in the vector dominance model. The linear polarization 
of both the beam and the target seems extremely 
difficult. 

Acknowledgements. We especially thank M. Fontannaz and D. Schiff 
for pointing out useful references to us, and C.J. Maxwell for carefully 
reading this manuscript. 

Appendix A 

Calculation of L11 P(z) 
The first q-+qG vertex which appears in (3.1) is 
given by 

(b, p,µ; c, y, vi Via, a, 2) = J;.µ Tpau+(b,2)a·c*(v)u(a,2),
(A.1) 

1:(v) being the gluon polarization vector. We use the 
spinorial representation of the Dirac matrices: 

(a 0 ) (0 1 ) ( -1 0) a= 0 - a ' p = 1 0 ' Ys = 0 1 ·
The helicity spinors are 

u(p, ±) = (�}8) I±\ (p =a orb), (A.2) 

where 12 )Pis the Pauli spinor of helicity (J·p/p = 2. We
temporarily take the gluon direction as the z-axis: 
a ::::: (aT, a); b ::::: (aT, za);c::::: (0,(1 - z)a), 
aT being related to kT of (3.1) by 

aT= (l- z)-1kT. (A.3) 
12\ is obtained from the eigenvector 12) of (Jz by 
rotation of axial-vector angle (} ';; z x p. To first order 
in PT/p, 

12 )P';;exp[�; (z x p)·a }2> 
';;, ( 1 +2� a·pT(Jz }A). (A.4) 

Thus, neglecting masses, 

u+(b,2)a·c*(v)u(a,2) = 22fa 
(2{ 1 +2

1
b 

(Jza·aT )a·c*(v)( 1 +;a a·aT(Jz }2>
(A.5) 

where we have used relation (A.3). (To obtain this 
result, it is advantageous to make use of the (J + 
matrices). Putting the results (A.1) and (A.5) into (3.11 
with 2= µ= -A'=- µ', we get finally [21] 

L11 P(z) = c2(R)(i .:_ z 
- 2

) (z < 1) (A.6) 

with 

C2(R) =LI Tpal2 = N�� l ·p,y 
For 2' = 2, we recover the well-known result 

1 + z2
Pqq(z) = C2(R)� (z < 1).

Expression (A.6) diverges at z--+ 1. This divergence 
is compensated by the renormalizations of the quark 
propagators (Fig. 3b) which add to (3.1) a counter-term 
of the form: (infinite constant) x J(z -1) x J;.µJ;..·µ··
Due to its particular helicity dependence, the counter­
term takes the same value in Pqq(z) and L11P(z). It 
amounts to making the substitution [2] 

2 ( 2 ) 3 
----+ -- +-J(z - 1). 1-z 1-z + 2 (A.7) 
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Appendix B 

Calculation of L12P(z) 
The G---+ GG vertex is given by 
<b, [3, µ; c, y, vi Via, o:, A) 

= f,py[1:*(µ)·1:*(v)(c -b)·c(..1.) 
- 1:*( v)· c(A. )(a+ c)· 1:*(µ) + c(..1.)· 1:*{µ)(b +a)· 1:*( v)]

= fapvfi[kx + i(A. - µ - v)ky] 

-(-6µ,-v+�bv,!. + l �zb.t,,,). 
We are interested in the case ,1. = µ. Using a shorter 
notation, 

(B.l) 

which is very similar to (A.5) expect for the fact that 
now I.ill= f vi= 1. Putting this result into (3.1) with 
), = µ = - ,1.' = -µ', we get 

L12P(z) = C2(G)c � z - 2) (z < 1) (B.2) 

with 

C2(G) = 'L,(f.py)2 = N. py 
The similarity between (B.2) and (A.6) is related to the
one between (B.l) and (A.5). Here again we have to
regularize by the infinite renormalization counter­
term, which is the same as for PGdZ). We make 
therefore the substitution [2] 
_2_---+ (-2-) + (�- 2T(R) )<>(z- l)1 - z 1 -z + 6 3C2(G) 

Appendix C 

A Naive covariant par ton model for polarized 
quark distributions 

Let us suppose that the baryon B is a bound state of 
a quark and a scalar, isoscalar diquark d, the q-d-B 
vertex being 

g<µI VIA)= gu(xp + kr, µ)u(p, .il). 

Thus, using (A.2) and (A.4), 

< + IVI +) = <-1Vl-) = (mq + xm8)x-1 12 

< + IVI-) = -<-IVI+ )*=(kx-iky)x-112• (C.l) 
In the Weisszacker-Williams approximation [22], the 
density of quark polarized in the direction nq in a 
baryon polarized in the direction nB is given by 

dN q = (16n3)-1g2 I ( fiqf VJ n8) 12

(C. 2 )

where k is the four-momentum of the quark, which 
is off-mass-shell whereas the spectator diquark is 
on-shell. We have 

k2 = xm� -(k} + xm�)(l - x)-1,

l<knqlVlnB>12 

(C.3) 

=k}/x for q __ (nB= -fiq=z) 
{ =(mq + xmB)2/x for q+(fi8=fiq=z) 

=[(mq+xmB)2+k;J;x for q u(fiB=nq = x) 
=k;/x for q _ _x(nB= -nq=x). 

(C.4) 
Integrating over kr, we get 

"' 
q +(x)= C0(mq+ xm8)2 f dkj.{1-x)-1[m; -k1(x,kr)]-2 ,0 

"' 
q_(x) = C0 J k}dk}(l -x)-1[mi- k2(x,kr)]-2, (C.5)

0 
with C0 = g2 /16n2. Furthermore, owing to (k;) = 
<k;>=t<k}>, 

q_x(x) = q+(x) + tq_(x), 
q _x(x) = iq _ (x). 
Hence 

L11 q(x) = q +x(x) - q _x(x) = q + (x),

(C.6) 

(C.7) 

which is the result (1.2) quoted in the introduction. 
Actually, the integrals (C.5) diverge at large kr. To 

cure this fact, let us replace the quark propagator by 
a gaussian in kr: 

C0[m; - k2(x, kr)]-2--+ CR2 exp [R2k2(x, kr)]. (C.8)

This takes account (i) of the softness of the hadronic 
wave function, (ii) of confinement (the quark pole 
should be absent). We get 

q + (x) = f(x)(mq + xm8)2 = L11 q(x),
q_(x)=f(x)(l-x)/R2, 
f (x) = C exp [xR2(mi- (1 - x)-1m;)]. (C.9) 

It is to be noted that the relation (C.7) is independent 
of the particular choice of transverse momentum 
cut-of. It seems only from (C.4). 
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