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Abstract

The vibratory bowl feeder is the oldest and still most common ap-
proach to the automated feeding (orienting) of industrial parts. In
this paper, the authors consider a class of vibratory bowl filters that
can be described by removing polygonal sections from the track; this
class of filters is referred to as traps. For an n-sided polygonal part
and an m-sided polygonal trap, an O(n2m log n) algorithm is given
to decide whether the part in a specific orientation will safely move
across the trap or will fall through the trap and thus be filtered out.
For an n-sided convex polygonal part and m-sided convex polygo-
nal trap, this bound is improved to O((n+m) log n). Furthermore,
the authors show how to design various trap shapes, ranging from
simple traps to general polygons, which will filter out all but one of
the different stable orientations of a given part. Although the run-
times of the design algorithms are exponential in the number of trap
parameters, many industrial part feeders use few-parameter traps
(balconies, canyons, slots); in these cases, the running times of the
algorithms range from linear to low-degree polynomial.

KEY WORDS—sensorless orientation, vibratory bowl
feeder, trap design, computational geometry

1. Introduction

A part feeder takes in a stream of identical parts in arbi-
trary orientations and outputs them in a uniform orientation.
We consider the problem of sensorless orientation of parts,
in which the initial orientation of the part is assumed to be
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unknown. In sensorless manipulation, parts are positioned
and/or oriented using passive mechanical compliance. The
input is a description of the part shape, and the output is
a sequence of open-loop actions that move a part from an
unknown initial orientation into a unique final orientation.
Among the sensorless part feeders considered in literature
are the parallel-jaw gripper (Chen and Ierardi 1995; Gold-
berg 1993), the single pushing jaw (Akella and Mason 1992;
Lynch and Mason 1996; Mason 1982; Peshkin and Sander-
son 1988a), the conveyor belt with a sequence of (stationary)
fences placed along its sides (Berretty et al. 1998; Brokowski,
Peshkin, and Goldberg 1995; Peshkin and Sanderson 1988b;
Wiegley et al. 1997), the conveyor belt with a single rota-
tional fence (Akella et al., 2000), the tilting tray (Erdmann
and Mason 1988; Natarajan 1989), vibratory plates, and pro-
grammable vector fields (Böhringer et al. 2000).

The oldest and still most common approach to automated
feeding is the vibratory bowl feeder. It consists of a bowl filled
with parts surrounded by a helical metal track (Boothroyd,
Poli, and Murch 1982; Boothroyd and Dewhurst 1983). The
bowl and track undergo an asymmetric helical vibration that
causes parts to move up the track, where they encounter a se-
quence of mechanical devices such as wiper blades, grooves,
and traps. Most of these devices are filters that serve to reject
(force back to the bottom of the bowl) parts in all orientations,
except for the desired one. Thus, a stream of oriented parts
emerges at the top after successfully running the gauntlet. In
this paper, we present a framework to filter polygonal parts on
a track using traps. A trap is described by removing polygonal
sections from the track. A picture of a section of the feeder
track is given in Figure 1. The parts move from the right to
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The railing
A trap in the track

Rejected part
falls back into
the bowl

Direction of motion

Fig. 1. Vibratory bowl feeder track (Boothroyd, Poli, and Murch 1982).

the left on the feeder track. Parts in undesired orientations
fall back into the bowl; other orientations remain supported.

Vibratory bowl feeders “are the versatile, rugged, day-in,
day-out workhorses that shoulder the bulk of all automatic part
feeding operations” (Riley 1983). Chapter 5 of Riley’s hand-
book provides a detailed taxonomy of industrial part feeding
mechanisms and notes that bowl design currently relies on hu-
man trial and error and often requires substantial debugging
on the assembly line. Specific to these vibratory bowls, re-
searchers have used simulation (Berkowitz and Canny 1996;
Jakiela and Krishnasamy 1993; Maul and Thomas 1997),
heuristics (Lim et al. 1994), and genetic algorithms (Chris-
tiansen, Edwards, and Coello 1996) to design traps. Perhaps
closest in spirit to our work is Caine’s (1994) Ph.D. thesis,
which develops geometric analysis tools to help designers by
rendering the configuration space for a given combination of
part, trap, and obstacle. Caine also gives some heuristics
to design feeder track features. In this paper, we do not pro-
pose heuristics or user-guided design to define traps but rather
give algorithms that are guaranteed to always find a trap of a
preferred shape, if such a trap exists. Very recent results fur-
thering our geometric approach of trap design were reported
in a paper by Agarwal, Collins, and Harer (2001), who ob-
served that the running time of our algorithm in Section 3 can
be improved. Moreover, they show how to find a family of
part–geometry derived shapes, if such trap shapes exist.

Consider a part feeding system that accepts as input a set
of part orientations �. Based on a definition by Akella et al.
(2000), we might say that a system has the feeding property
if there exists some orientation σ , usually in �, such that the
system outputs parts only in orientation σ . This paper reports

on algorithms that design traps with the feeding property. To
the extent of our knowledge, these are the first results in the
systematic design of feeder traps.

This paper is organized as follows. In Section 2, we give
a geometric model of the bowl feeder; this model is the basis
for our algorithms. In Section 3, we analyze whether a part
in a given orientation will safely move across the trap or will
be filtered out and fall back into the bowl. For a polygonal
part with n vertices and a polygonal trap with m vertices, the
resulting algorithm runs in O(n2m log n) time. This can be
improved to O((n + m) log n) time if the part and the trap
are convex. In Section 4, we give algorithms for designing
traps in the feeder track. We construct, for example, a gap
that is a rectilinear interruption of the track. Given the geom-
etry of the part, we compute inO(n2 log n) time how long the
gap should be to establish a feeder. This bound is reduced to
O(n2) for convex parts. We also consider other trap shapes—
the balcony, the canyon, and the slot—and conclude with a
general approach for designing general polygonal traps. Sev-
eral algorithms of our paper have been implemented, and the
resulting traps have been successfully tested in an experimen-
tal setup. The experiments, accompanied by a discussion of
the assumptions implied by our geometric model, are reported
in Section 5. We conclude this paper in Section 6.

2. Preliminaries

In this section, we discuss the geometric properties of the bowl
feeder. The geometric model we will present is designed to
reflect important characteristics of the bowl feeder. In Sec-
tion 5, we describe experiments with a real feeder that uses
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traps generated with our model and the discrepancies between
our model and part feeding in practice.

In this paper, we address the problem in the plane.
Throughout this paper, P denotes a two-dimensional polyg-
onal part. The two-dimensional polygonal trap in the track is
denoted by T . The number of vertices of P is denoted by n.
The number of vertices of T is denoted by m.

A subsetS of the plane is called convex if and only if for any
pair of points p, q ∈ S, the line segment (p, q) is completely
contained in S. The convex hull, CH(S), of a set S is the
smallest convex set that contains S. We denote the interior of
a set S by int(S).

The part has a center of mass c, which lies inside the convex
hull of the part. At c, a fixed coordinate frame is attached,
which identifies the zero orientation of the part. The track is
slightly tilted toward the railing so the part remains in contact
with the railing as it moves along the railing. The radius
function for the part characterizes the stable orientations of
the part against the railing (Goldberg 1993).

DEFINITION 1. The radius of a part at an angle θ is the dis-
tance from the center of mass to the line tangent to the part
and orthogonally intersecting the ray from the center of mass
in the direction of θ .

Each stable orientation of P corresponds to a local mini-
mum in the radius function. The stable orientations of a part
can easily be computed in linear time from the description of
the part (Mason 1982). The orientation of a part is identified
by the angle between the reference frame and the y-axis. In
our model, the possible orientation of the part is restricted to
O(n) different, stable orientations.

In reality, the part is mobile and slides across a stationary
trap in the positive x-direction. It is, however, easier to de-
scribe the solutions by viewing the part as stationary and to
slide the trap underneath the part (which is obviously equiv-
alent). We assume that the railing of the track is aligned with
the x-axis. Throughout the motion of the trap, c is on the
y-axis at a fixed distance cy from the railing, and the part’s
orientation does not change.

All figures in this paper have the railing coincident with
the horizontal axis, and the trap is supposed to move in the
negative x-direction. The railing is depicted at the bottom of
the figures (see, e.g., Fig. 2).

A placement of the trap (i.e., its horizontal displacement)
is denoted by a single value, q. We denote the set of points of
the plane covered by trap T at placement q by T (q). The
supported area of the part above a trap at placement q is
S(q) = P − int(T (q)).

We define how to decide whether a part above a trap in a
given placement will fall into the bowl or remain safely on
the track. The following definition states that a part is safe
if there are three points in P surrounding the center of mass
that are supported.

DEFINITION 2. Let P be a part with center of mass c. Let
T be a trap. The part P is safe above the trap at placement q
if and only if there exists a triangle �t1,t2,t3 with c ∈ �t1,t2,t3
and t1, t2, t3 ∈ S(q). Otherwise, the part is unsafe.

The following lemmas give us easy ways to decide whether
the part is safe.

LEMMA 1. P above T (q) is safe if and only if c ∈
CH(S(q)).

Proof. (⇒) Let P be safe. There is a triangle �t1,t2,t3 , with
t1, t2, t3 ∈ S(q) and c ∈ �. Clearly, t1, t2, t3 ∈ CH(S(q)),
and consequently, we have c ∈ CH(S(q)).

(⇐) c ∈ CH(S(q)). We construct a triangle by computing
a triangulation of CH(S(q)). Clearly, there is one triangle in
the triangulation that contains c. Furthermore, the vertices of
CH(S(q)) are in S(q). �
LEMMA 2. P above T (q) is safe if and only if there is no
line � through cwith CH(S(q)) in the open half plane defined
by �.

Proof. Follows immediately from the previous lemma be-
cause c ∈ CH(S(q)). �

A critical placement of the trap is a placement where c
lies on the boundary of CH(S(q)). It follows from Lemma 2
that a critical placement can also be characterized by a line
through c that touches the boundary of CH(S(q)) that bounds
a half place containing S(q). The following lemma gives a
third way to characterize a critical placement.

LEMMA 3. Let P be a part above a trap T (q). Let c be not in
the interior of CH(S(q)). Letρl andρr be two rays emanating
from c. Let the left side of ρl be tangent to CH(S(q)), and let
the right side of ρr be tangent to CH(S(q)). The placement
of T is critical if and only if the angle between ρl and ρr is
π , or c is a vertex of CH(S(q)).

Since c lies in the interior ofP , we note that ifT is convex, c
never is a vertex of CH(S(q)). Figure 2 depicts a safe part and
a trap together with the convex hull of the supported surface.

The notion of safeness gives us a tool to formalize whether
a part in a given orientation will survive a given trap. We
assume that if the part is unsafe at some placement of the
trap, it is rejected and will fall back into the bowl. For many
simple trap shapes, this assumption is justified.

DEFINITION 3. Let P be a part with center of mass c in a
given orientation. Let T be a trap. The part P is fed if for all
placements q, P is safe above T (q). Otherwise, P is rejected.

A trap T has a critical shape for orientation σ , if T feeds
P in orientation σ and T has at least one critical placement.

The ultimate goal is to find a trap that will feed only one
of the possible orientations of P . A trap with this property is
said to have the feeding property (Akella et al. 2000).
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T(q')

Fig. 2. The part P and its center of mass c above a trap T at different placements q and q ′. Placement q corresponds to an
unsafe placement. Placement q ′ is safe. CH(S(q)) and CH(S(q ′)) are shaded. The half plane, bounded by line � through c,
which contains CH(S(q)), is depicted as well.

3. Analyzing a Trap

In this section, we analyze the safeness of a part above a given
trap. In the first subsection, we discuss the general case of a
polygonal part above a moving polygonal trap. In the second
subsection, we give an algorithm with an improved running
time that only deals with convex parts and traps.

3.1. General Polygonal Traps and Parts

In this section, we discuss how to test an orientation of a polyg-
onal part against a polygonal trap in the track. From Section
2, we know that there are at most O(n) different possible ori-
entations for the part on the track. We consider one of these
O(n) stable orientations of the part. We answer the ques-
tion whether P in this specific orientation is fed or rejected.
We first give a general algorithm that solves the problem in
O(n2m log n) time. Then, we give an improved algorithm
that works for convex parts and convex traps and solves the
problem in O((n + m) log n) time.

To determine whether a part will survive a given trap, we
sweep the trap underneath the part and check if safeness is
retained during the sweep. Lemma 2 gives us the idea of the
algorithm. Namely, we check whether at any moment during
the sweep, all points of the convex hull of the supported area
are in an open half plane through c. If this is not the case, the
part is safe.

We distinguish three types of vertices in the arrangement of
the two possibly intersecting polygons T and P : the vertices
of P , the vertices of T , and the vertices due to the intersections
of an edge of P and an edge of T .

The convex hull CH(S(q)) is equal to the convex hull of
a subset of these vertices. Recall that S(q) = P − int(T (q)).
The vertices of P can only contribute to CH(S(q)) if they are
not in T . The trap T does not contribute to CH(S(q)), but we
have to take into account the intersection points of edges of
P and T . In general, it is not necessary to take into account
every intersection between edges of T and edges of P . It is

sufficient, by definition of the convex hull, to only use the (at
most) two outermost intersections of each edge of the part.

We compute, for each edge e of the part, the angles of
the rays emanating from c through the edge’s left- and right-
most point of support during the sweep—for vertical edges,
we compute these angles for the lowest and highest point of
support. We call these rays extremal rays. We are interested
whether there is a half plane bounded by a line through c that
contains all the extremal rays—in other words, whether at
any time during the sweep, there is a single angular interval
greater than π containing no rays. In the following, we first
analyze the complexity of the motions of the rays during the
sweep and then give an algorithm to answer the question of
safeness.

The defining features of T and P of the extremal rays
change during the sweep of the trap. We define ray-angle
functions φ−

e and φ+
e . These functions give a mapping from

the amount of shift of the trap to the angles of extremal rays
(see Fig. 3). An edge e need not be supported at all times
during the sweep. Hence, these functions are only partially
defined. We will argue that the total combinatorial complexity
of φ−

e and φ+
e is O(m). We note that the intersection of

the edge e and a feature of T leads to a constant complexity
curved part of one of the functions. The total combinatorial
complexity of φ−

e and φ+
e is therefore bounded by the number

of features of T , which is O(m).
Now consider a graph of all ray-angle functions of all edges

of P in the (x, φ)-plane. Here, an x-value corresponds to the
amount of shift of the trap. A vertical line in the graph (i.e.,
a line with a fixed x-value intersects O(n) functions). If the
distance between two function values is greater than π for
some x, then the part is unsafe at the corresponding position
of the trap and hence rejected.

We check this condition using a frequently used geometric
technique called a sweep line algorithm. We sweep a vertical
line � across the graph in the (x, φ)-plane. While we do so,
we keep track of the ray-angle functions intersecting �. The
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T(q)
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+(q)e

  −(q)eφ

φ

Fig. 3. The part P and its center of mass c above a trap T at placement q. The extremal rays are drawn for all edges of P .
For edge e, φ−

e (q) and φ+
e (q) are shown.

description of the ray-angle functions intersecting the sweep
line is called the status of the sweep line. For details on sweep
line algorithms, we refer to the book of de Berg et al. (1997).

During the sweep, the status needs to be updated at specific
values of x. The values at which we update the status of �
are called events. First, there are events for x-values at which
there is an endpoint of a segment of a ray-angle function,
since at these values, a ray-angle function must be inserted
into or removed from the status structure. Also, there are
events when two ray-angle functions change order. Finally,
there are events at which two neighboring ray-angle functions
have distance π .

When we process an event, we first check which type of
event we are dealing with. If the event is due to two neighbor-
ing ray-angle functions becoming π apart, we check whether
the two functions are indeed still neighboring. In this case,
the part is unsafe, and we reject it. An event due to a begin-
or endpoint of a ray-angle function segment forces insertion
or deletion of a ray-angle function in the status structure. The
last kind of event raises the need to update the order of the
values of the ray-angle functions in the status structure. From
the changes in the status structure, we compute new events.

The reader might have noticed that it can occur that, due
to an update of the status structure, the events that correspond
to two rays that make an angle of π become invalid. We do
not remove them from the set of upcoming events, but we
recheck, as mentioned before, the validity of these events at
the moment they are processed.

In our case, the status structure is implemented as a bal-
anced binary tree storing the order in which the ray-angle
functions are intersected by the sweep line. Since there are
O(n) ray-angle functions present in the intersection with the
sweep line, the updates and checks take O(log n) time. The
events are stored in a priority queue. For adjacent functions,

we compute their intersections, as well as the x-value for
which they are π apart, and enqueue these events.

There are O(n) partially defined ray-angle functions of
combinatorial complexityO(m). Each pair of ray-angle func-
tions intersects at most O(m) times. Thus, each pair of ray-
angle functions introduces O(m) events. There are O(n2)

pairs of ray-angle functions. Hence, the total number of events
is bounded by O(n2m).

THEOREM 1. Let P be a polygonal part with n vertices and
T be a polygonal trap withm vertices. We can report whether
P is rejected or fed in O(n2m log n) time.

3.2. Convex Traps and Parts

In the case of a convex part and a convex trap, the problem
can be solved more efficiently. In this section, we give three
lemmas that result in an O((n+m) log n) algorithm for this
case. First, it is shown that the vertices resulting from the
intersecting edges of the part and the trap are sufficient to
compute the safeness of the part. Lemma 4 shows that we no
longer need to consider the supported area of the part outside
the trap, but we can confine with S(q)∩T (q). Second, Lem-
mas 5 and 6 show that there are only few events, and moreover
these events can be processed efficiently, leading to the faster
algorithm.

LEMMA 4. Let P be a convex part with center of mass c at
the origin and T (q) be a convex trap at placement q. P is
safe if and only if c is in the convex hull of the vertices of
S(q) ∩ T (q) or c /∈ T (q).
Proof. (⇒) Trivial.

(⇐) We elaborate on the case that c ∈ CH(S(q)) ∩ T (q)
because if c /∈ T (q), the part is evidently safe. We will show
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that CH(S(q) ∩ T (q)) = CH(S(q)) ∩ T (q). We prove this
by contradiction. Let us assume that there is a point p in
CH(S(q))∩T (q) that is not in CH(S(q)∩T (q)). This point
is in CH(S(q)). Consequently, there are two points p′ and p′′
in S(q), such that p lies on the edge p′, p′′. Furthermore, p′
and p′′ have to lie outside CH(S(q)) ∩ T since otherwise p
is in CH(S(q))∩T (q) also. But since P is convex, any point
on this edge is contained in P , and the intersection points of
p′, p′′ with the boundary of CH(S(q)) ∩ T (q) are evidence
for p to lie inside CH(S(q)) ∩ T (q). �

We restrict ourselves to the part of the motion when c ∈
T (q), which is a necessary condition for unsafeness of the
part. We maintain rays emanating from c, intersecting the
vertices of CH(S(q)∩ T (q)), and check whether the angular
distance between any pair of neighboring rays remains smaller
than π . We shall not explicitly construct the graph of ray-
angle functions but rather maintain the ordered set of vertices
that are intersected by the rays.

We need events for each q at which the ordered set of ver-
tices of CH(S(q) ∩ T (q)) changes combinatorially. The set
could change due to appearance or disappearance of vertices
from S(q) ∩ T (q) or when three vertices of S(q) ∩ T (q) be-
come collinear. The following lemma tells us that any event
will coincide with a edge-vertex crossing of P and T (q).

LEMMA 5. The combinatorial structure of CH(S(q)∩T (q))
only changes when a vertex of T (q)moves across an edge of
P , or an edge of T (q) moves across a vertex of P .

Proof. Suppose that the combinatorial description of
CH(S(q)∩T (q)) changes when there is no vertex-edge cross-
ing. Clearly, no intersection point of P and T (q) appears
or disappears. Thus, the combinatorial change is due to the
collinearity of the three moving intersection points, v1, v2,
and v3. These three points move along three edges of T , e1,
e2, and e3. Consequently, there has to be a line intersecting a
convex shape through three edges, which is impossible. This
completes the proof by contradiction. �

Hence, there are four possible events where we need to
update the combinatorial description of CH(S(q) ∩ T (q))

(see Fig. 4).

1. An edge of T (q)moves across a vertex of P , introduc-
ing or deleting a vertex of CH(S(q) ∩ T (q)).

2. A vertex of T (q)moves across an edge of P , introduc-
ing or deleting a vertex of CH(S(q) ∩ T (q)).

3. An edge of T (q)moves across a vertex of P , changing
the defining edges of a vertex.

4. An edge of T (q)moves across an edge of P , changing
the defining edges of a vertex.

LEMMA 6. The events each require a constant complexity
update of CH(S(q) ∩ T (q)).

Proof. The convex hull before the event is denoted by
CH(S(q)∩ T (q)) and after the event by CH(S(q ′)∩ T (q ′)).

Case 1. Let v denote the vertex appearing or disappearing
from the boundary of CH(S(q) ∩ T (q)). Let us assume that
v appears on the boundary of the convex hull. The other case
is similar. We show that CH(S(q) ∩ T (q)) changes locally;
that is, an edge (v1, v2) changes into two edges (v1, v) and
(v, v2). Suppose, on the contrary, that some of the vertices
from the boundary of CH(S(q) ∩ T (q)) do not appear on
the boundary of CH(S(q ′)∩T (q ′)) because they are covered
by v (Fig. 5). Let va, v, vb be the neighboring vertices on
CH(S(q ′) ∩ T (q ′)), after insertion of v. Vertices covered by
v are vertices inside the triangle va, v, vb. Let vc be a covered
vertex. Recall that the vertices of CH(S(q)∩T (q)), as well as
the vertices ofCH(S(q ′)∩T (q ′)), are on the boundary ofT (q)
(respectively, T (q ′)), so va, vb, vc, and v are on the boundary
of a convex polygon. But, vc lies in the interior of the triangle
va, v, vb; therefore, vc cannot exist, and it follows that the
transition from CH(S(q) ∩ T (q)) to CH(S(q ′) ∩ T (q ′)) is
indeed local.

Case 2. A vertex of CH(S(q) ∩ T (q)) is split into two
vertices, or two vertices merge. This is a local change.

Cases 3 and 4. The edges defining a vertex change. The
direction of the motion of the vertex changes, but the trajectory
remains continuous. This is a local change as well. �

By appropriately storing the ordered set of vertices of the
convex hull, we can locate the place where the update is nec-
essary in logarithmic time. Hence, the events can be handled
in logarithmic time. After preprocessing, we know at which
placements of the trap that the edges of the trap coincide with
vertices of the part and vice versa. Therefore, maintaining the
convex hull requires O((n+m) log n) time.

During the motion of the trap, c always has the same dis-
tance to the railing. Therefore, at any moment during the
motion, there are only two edges of CH(S(q) ∩ T (q)) that
c can possibly cross. The intersecting edges of the trap and
the part defining these edges might change, though. Every
time the description of a relevant edge changes, a new event
is generated for the placement at which the center of mass will
cross the new edge. This is accomplished without increasing
the asymptotic running time. From the motion of the cen-
ter of mass, and the motion of the relevant edges, we derive
placements of the trap at which the center of mass leaves the
convex hull. We add these placements as extra events. We
handle such events as follows. We first check whether the
event is still valid by checking the relevance of the edge as-
sociated with the event. If so, we report rejection of the part;
otherwise, we discard the event. This gives no extra over-
head to the algorithm. The following theorem summarizes
the result.

THEOREM 2. Let P be a convex polygonal part, and let T be
a convex polygonal trap. We can report whether P is rejected
or fed by T in O((n+m) log n) time.
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1. 2. 3. 4.

T(q)

P

Fig. 4. The four possible events types.

T(q)

va

vc

vb

v

(S(q))

Fig. 5. An illustration of Case 1 of the proof of Lemma 6.

4. Design of Traps

In this section, we discuss the design of traps. Given a partic-
ular part and a collection of traps (e.g., all rectangular traps),
the goal is to find a trap in the collection that satisfies the
feeding property (i.e., that allows the part to be fed in only
one orientation). We start with various collections of rectilin-
ear traps in Sections 4.1 through 4.4 with increasing numbers
of degrees of freedom and conclude with general polygonal
traps in Section 4.5.

Figure 6 shows a picture of the rectilinear traps we
shall present in the next four subsections—balconies, gaps,
canyons, and slots—each with the parameters that define
them. The goal of these subsections is to find values for these
parameters such that the shape of the resulting trap rejects
every orientation of the part, except one.

Clearly, a trap that is entirely contained in another trap
will feed all orientations of the latter and possibly more. For
a general pair of traps, on the contrary, neither the first trap
needs to be contained in the other or vice versa. Consequently,
it is hard to order different traps based on the rejection or
feedability of traps.

We can, however, for a given orientation σ of P , subdivide
the parameter space of all possible trap shapes into shapes that
feed P in orientation σ and shapes that reject P in orienta-
tion σ .

On the boundaries of the different regions of the subdi-
vision, we find critical trap shapes, which feed the part but
have critical placements—only slightly enlarging such a crit-
ical trap shape will turn the critical placement into an unsafe
placement, turning the trap into a trap that rejects the part.
Combining the subdivisions of the trap shapes for different
orientations will, on its turn, lead to trap shapes for which
only one orientation is fed.

4.1. Balconies

A balcony is an interruption of the upper part of the supporting
area of the track. The lower boundary, el , of this interruption
is parallel to the railing. The starting and closing edges of
the interruption, es and ec, are orthogonal to the railing. The
length of the interruption exceeds the diameter of the part,
so that the part cannot simultaneously intersect es and ec. A
balcony shape is given by the balcony width, µ, which is the
distance between el and the railing (see Fig. 6a).

We assume that the part is in a fixed stable orientation, so
one of its convex hull edges is aligned with the railing. We
want to identify a critical balcony. If we start decreasing the
balcony width µ from the width of the track to zero, then
initially the trap will move across the part without causing
the part to fall through. At a certain balcony width, the part

CH
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Fig. 6. The four rectilinear traps of this section: (a) a balcony, (b) a gap, (c) a canyon, and (d) a slot. The thick lines at the
bottom of the pictures depict the railing. The line at the top depicts the edge of the track at the inside of the bowl. The traps
are dashed.

will not survive the balcony, and this clearly remains the case
for smaller balcony widths. We refer to the smallest balcony
width for which the part survives as the critical balcony width
for this orientation of the part. If the critical balcony width
µ of one stable orientation σ is smaller than the critical bal-
cony widths of all other stable orientations, then a balcony
of a width slightly larger than µ (but smaller than all other
critical balcony widths) will reject all stable orientations but
σ . Hence, this balcony width has the feeding property.

In the following, we show that the critical balcony width
for orientation σ corresponds to the distance of the center of
mass c to the railing. We denote byH the half plane extending
downward from el . We observe that P ∩ H ⊆ S(q) for any
placement q of T . Equality holds for placements for which
P is between es and ec. The part in orientation σ is fed by
T if and only if P is safe for all placements of T . Since
P ∩H ⊆ S(q) for any placement q of T , P is fed if and only
if P is safe for placements q of T for which P is between es
and ec, as well as P ∩H = S(q). Consequently, by Lemma
1, P is fed if and only if c ∈ CH(P ∩H).

A balcony T , for which the width µ equals the distance of
c to the railing for P in orientation σ , has c on the boundary
of CH(P ∩ H). Thus, placements q of T for which P is
between es and ec have c on the boundary of CH(S(q)) and
are critical placements, but they still feed P in orientation
σ . The distance of c to the railing equals the radius of P
in direction σ . Therefore, the critical balcony width for P
in orientation σ is radius(σ ). In sum, there exists a balcony
with the feeding property if the open interval between the two

smallest radii of all stable orientations of P is nonempty (i.e.,
there is a unique orientation for which the radius is minimal).
Since we can compute all radii of P in linear time (Mason
1982), we can determine the balcony widths that have the
feeding property in linear time as well.

THEOREM 3. In O(n) time, we can design a balcony with
the feeding property for a polygonal part with n vertices or
report that no such balcony exists.

Proof. The stable orientations and radii corresponding to
these orientations of P are computed in linear time. If there
is a unique orientation for which the radius is minimal, the
feeder is constructed using a balcony slightly higher than this
minimum radius. Otherwise, we will always end up with two
or more orientations. �

Note that the railing of the track always touches the part at
the convex hull. Therefore, the given analysis holds for both
convex and nonconvex parts. The only parts we cannot feed
with a balcony are parts for which the minimal radius is not
unique. We might also use a balcony at the other side of the
track, facing the railing. This “reverse” balcony can be used
to select part orientations with a radius greater than the width
of the reverse balcony. The combination of a balcony and a
reverse balcony in succession on the feeder track is very pow-
erful. Actually, we can select any radius ρ by first rejecting
orientations with radii greater than ρ and then rejecting ori-
entations with radii smaller than ρ. So only parts for which
each radius occurs more than once cannot be handled in this
way.
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4.2. Gaps

A gap is an interruption of the supporting area that spans the
entire width of the track. Both its boundaries are perpendicu-
lar to the railing. The shape of a gap can thus be characterized
solely by the distance γ between these two parallel bound-
aries. We shall refer to this distance as the gap length (see
Fig. 6b).

We again assume that the part is in a fixed stable orientation,
so one of its convex hull edges is aligned with the railing. We
want to identify a critical gap. If we start increasing the gap
length γ from zero to infinity, then initially the trap will move
across the part without causing the part to fall through. At
a certain gap length, the part will not survive the gap, and
this clearly remains to be the case for all larger gap lengths.
We refer to the largest gap length for which the part survives
as the critical gap length for this orientation of the part. If
the critical gap length γ of one stable orientation σ is larger
than the critical gap lengths of all other stable orientations,
then a gap of length slightly smaller than γ (but larger than
all other critical gap lengths) will reject all stable orientations
but σ . Hence, this gap length has the feeding property. If
the largest critical gap length does not correspond to a unique
orientation of the part, then there is no gap that can reject all
but one orientation of the part, and there exists no gap with
the feeding property.

The part is safe if and only if there is a supported triangle
around the center of mass. This implies that, when the part
is unsafe, the supported area of the part is contained in a half
plane that does not contain the center of mass. We distinguish
two different types of unsafe, or critical, placements of the
part:

1. The supported area of the part is intersected by at most
one edge of the gap.

2. The supported area of the part is intersected by both
edges of the gap.

In the first type of unsafe placements, the part is only sup-
ported to the left (or the right) of the vertical axis through the
center of mass. For the second type of unsafe placements,
the supports are contained in a half plane below (or above)
the center of mass. The corresponding critical placements
also have supports on a line through the center of mass. In
Figure 7, four types of unsafe placements are given.

The critical gap length for a stable orientation σ equals the
smallest gap length associated with the critical placements of
the trap of the two types. The first type of placement does not
exist as long as the length of the gap does not exceed the radii
of the part in the direction σ − π/2 and σ + π/2. Clearly,
if one of these radii is less than the gap length, then the part
will fall either forward or backward. Thus, the critical gap
length is at most min{radius(σ − π

2 ), radius(σ + π
2 )}. It is

a bit harder to compute the shortest gap length for which the
second type of placement does not occur.

We start by investigating how the supports of the part can
be contained in a half plane below the center of mass (the case
for the supports above the center of mass is similar). Lemma 3
is the basis for our analysis throughout the rest of this section.
We let ρl and ρr be two rays emanating from the center of
mass c, such that S(q) is tangent to the left side of ρl and the
right side of ρr . Figure 8 shows a part at a critical placement
of the gap that is supported by two sides of the gap.

The supported area of the part now consists of two regions,
one to the left of the gap and one to the right of the gap. The
center of mass is in the gap. The widest gap length for which
these two regions exist is the gap length that exactly spans
the part, supporting the left- and rightmost pieces of the part.
Unless c is on the line through the outermost vertices of P ,
this gap length will not correspond to a critical placement—ρl
and ρr will make an angle unequal to π , and the part will be
unsupported.

We conclude that we will have to narrow the gap, until we
reach a critical placement (i.e., until the angle between the
two rays emanating from c makes an angle of π ).

We define a function φl , which links γl to the angle of ρl
with the positive vertical axis (see Fig. 8). The function φr
is defined similarly. Intuitively, moving the left edge of the
gap toward c makes the angle of the left ray with the vertical
axis smaller, and moving the rightmost edge of the gap toward
c will make the angle of the right ray with the vertical axis
smaller. We search for the combination of both motions, for
which the rays emanating from c eventually make an angle of
π . In the following, we shall validate the intuition and show
how to compute the different gap lengths that correspond to
critical placements.

An important first observation is that ρl will always touch
CH(S(q)) at the top. Hence, only the points of P with the
maximum y-value for each x-value are important. The union
of these points is called the upper envelope of the part. The
upper envelope can be computed inO(n log n) time, using an
algorithm for computing the upper envelope of line segments
by Hershberger (1989).

The second observation is that supported points of P for
γl are also supported for γ ′

l with γ ′
l < γl . Hence, the sup-

ported area to the left of c only increases as γl decreases, and
consequently, φl is monotonic.

From the two observations, it follows that a geometric rep-
resentation of φl can be computed in two stages. First, we
compute the upper envelope of P . Second, we transform the
upper envelope into a shape for which the value of ρl(γl) co-
incides with the intersection of the vertical line at distance γl
from the vertical axis. We call this shape the upper tangent
envelope.

The upper tangent envelope for the left side of P can be
incrementally constructed by traversing the vertices of the
upper hull of P from left to right. We start the traversal
at the leftmost vertex v1 of P . The upper tangent envelope
is given by the line segment (v1, c). As we travel along a
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(a) (b) (c) (d)

Fig. 7. The types of unsafe placements of a part above a gap. CH(S(q)) is shaded. (a) The supports are to the left of the center
of mass. (b) The supports are to the right of the center of mass. (c) The supports are in a half plane below the center of mass.
(d) The supports are in a half plane above the center of mass.

γ

ρl ρr

P

(S(q))

Fig. 8. A critical placement of the gap for the part. ρl and ρr are rays emanating from c, touching CH(S(q)) on either side.

vertex vi , there are two possibilities to augment the upper
tangent envelope. We consider the line segment (vi−1, vi). If
the segment lies (partially) above the upper tangent envelope
computed so far, we add two segments to the upper tangent
envelope: the segment of (vi−1, vi) above the upper tangent
envelope and (vi, c). Otherwise, we discard vi . We stop at the
artificial vertex at the intersection of the vertical axis (through
c) and P .

The upper tangent envelope is a representation ofφl andφr .
The value of φl(γl) is given by the angle of the ray emanating
from c to the intersection of the vertical line at distance γl
from the vertical axis.

The next step is to find all values of γl and γr for which
|φl(γl) − φr(γr)| = π . We start with γl at v1 and find the
value of γr for which |φl(γl)−φr(γr)| = π . We decrease the
value of γl while maintaining |φl(γl) − φr(γr)| = π . From
the monotonicity of φl and φr , it follows that by doing this,
γr never needs to be decreased. Hence, in a single traversal
of the edges of the left side of the upper tangent envelope, we
can find corresponding edges of the right side of the tangent
envelope for which there are values γl and γr with critical
placements of the trap.

Using elementary trigonometry, we compute for each dis-
covered pair of edges the minimal gap length for which there
is a critical placement. Altogether, this takes linear time in

the complexity of the upper tangent envelope.

LEMMA 7. For any orientation of the part, the critical gap
length can be computed in O(n log n) time.

THEOREM 4. InO(n2 log n) time, we can design a gap with
the feeding property for a polygonal part with n vertices or
report that no such gap exists.

Proof. The stable orientations of P are computed in O(n)
time. For each stable orientation, we compute the critical gap
length in O(n) time. We determine the largest critical gap
length γ . If there is only one orientation that has critical gap
length γ , then we design a gap of length slightly smaller than
γ (but larger than all other critical gap lengths). This gap feeds
only the orientation with critical gap length γ . Otherwise, we
conclude that any gap will either reject all orientations, or
feed at least two orientations, and we report failure. �

If the part is convex, the upper tangent envelope of the
upper hull of the part is simply the boundary of the part. This
allows for a faster computation of the feeder gap length. The
critical gap length of a given orientation can now be computed
in linear time.

THEOREM 5. In O(n2) time, we can design a gap with the
feeding property for a convex polygonal part with n vertices
or report that no such gap exists.

CH
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Fig. 9. The angle of ρl with the vertical axis for a given γl . The upper tangent envelope of the part is dashed.

4.3. Canyons

A canyon is a rectangular interruption of the supporting area
of the track. The lower and upper boundaries, el and eu, of this
interruption are parallel to the railing. The starting and closing
boundaries, es and ec, of the interruption are orthogonal to the
railing. The length of the interruption exceeds the diameter
of the part. Hence, there is no placement q of a canyon for
which both es and ec intersect S(q) (see Fig. 6c).

We assume that the part is in a fixed stable orientation and
seek critical canyons. To this end, we characterize unsafe
and critical placements of a canyon. The following lemma
allows us to restrict ourselves to placements q of the canyon
for which es and ec do not intersect S(q).

LEMMA 8. LetP be a part. LetT be a canyon. Suppose there
is an unsafe placement q of T , with (es ∪ ec) ∩ S(q) �= ∅.
There exists an unsafe placement q ′ of T with (es ∪ ec) ∩
S(q ′) = ∅.

Proof. We suppose without loss of generality that el∩S(q) �=
∅. Let Su(q) denote the area of S(q) above eu, Sl(q) denote
the area of S(q) below el , and Sc(q) denote the area of S(q)
between es and ec. The canyon is longer than the length
diameter of the part, so there exists a placement q ′ for which
P lies between es and ec, and clearly (es ∪ ec) ∩ S(q ′) �= ∅.
S(q ′) = (Su(q) ∪ Sl(q)) ⊂ S(q). Hence, any triangle that
certifies the safeness of P at placement q ′ of T also exists in
S(q) and consequently certifies the safeness at placement q.
This implies, by assumption, that when P is unsafe at q, P is
unsafe at placement q ′ of T as well. �

A consequence of Lemma 8 is that a canyon can be char-
acterized by distances µ and ν, respectively, of the lower
and upper boundaries from the railing. Moreover, a criti-
cal canyon is characterized by a critical placement q with
(es ∪ ec) ∩ S(q) = ∅. In the remainder of this section, we
focus on placements q with (es ∪ ec)∩S(q) = ∅. We distin-
guish two types of unsafe, or critical, placements.

1. The supported area of the part is intersected by at most
one edge of the canyon.

2. The supported area of the part is intersected by both
edges of the canyon.

In the first type of unsafe placements, the part is only sup-
ported above (or below) a horizontal line through the center of
mass. For the second type of unsafe placements, the supports
are contained in a half plane to the left (or the right) of the
center of mass. The corresponding critical placements also
have supports on a line through the center of mass.

We denote the height of P in orientation σ by h. Recall
that the y-coordinate of c is denoted by cy . The first type
of unsafe placements exists when µ = 0 and ν > cy , or
when µ < cy and ν > h. It is a bit harder to compute the
second type of critical placements, but they might exist when
0 ≤ cy ≤ ν ≤ h.

We suppose that S(q) lies in a half plane to the right of c
(the other case is similar). We derive the dependency between
µ and ν in a way that is rather similar to the discussion in
Section 4.2.

The supported area of the part, S(q), consists of two re-
gions. One region is above the canyon, and the other is below
the canyon. We let ρl and ρr be two rays emanating from c,
such that S(q) is tangent to the left side of ρl and the right
side of ρr . The canyon is at a critical placement if the angle
betweenρl andρr isπ . This situation is depicted in Figure 10.

We define two functions, φl and φr , which link µ to the
angle ofρl with the horizontal axis and link ν to the angle ofρr
with the horizontal axis. We make two observations that will
shortly lead to a graphical representation of φl and φr . First,
we observe that ρl and ρr always touch CH(S(q)) at one of
the leftmost points for any y-value. Second, we observe that
the supported area of the part only increases as we increase
µ—causing ρl to rotate in clockwise direction—or decrease
ν—causing ρr to rotate in a counterclockwise direction.

CH
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Fig. 10. A critical placement q for the depicted part. ρl and ρr are rays emanating from c, touching CH(S(q)) on either side.

Hence, φl andφr are monotonic, and their representation is
given by the left tangent envelope of the part. The left tangent
envelope can be computed in O(n log n) time, similar to the
upper tangent envelope of Section 4.2.

The next step is to derive the dependency of ν on µ from
the left tangent envelope. We start with µ = 0 and compute
ν for which |φl(µ)− φr(ν)| = π . Next, we increase µ while
maintaining the collinearity of the rays. From the monotonic-
ity of φl and φr , it follows that we never have to decrease ν
in this process. We find a linear number of pairs of edges of
the left tangent envelope that are simultaneously intersected
by the two rays. For every pair of edges, we can compute the
dependency betweenµ and ν, using elementary trigonometry.

We gathered every combination of µ and ν for all critical
placements of a canyon for a part in a given orientation. The
next step is to combine the combinations for every orientation
and select the combinations that only feed one orientation.

To find pairs (µ, ν) that satisfy the feeding property, we
draw a graph of all critical canyon shapes (µ, ν) for every
orientation ofP . The graph consists ofO(n) curved segments
per stable orientation of the part. The segments are connected,
and the relationship between µ and ν is monotonic. We call
a connected sequence of these segments a border. We draw
the border for all possible orientations in the (µ, ν)-plane of
all possible canyon shapes.

The border for an orientation σ divides the (µ, ν)-plane
into a feeding and a rejecting region for σ . We recall that from
the monotonicity of φl and φr , it follows that a canyon (µ, ν)
that does not have a critical placement for P in orientation σ
rejects P in orientation σ if there is a critical placement of a
canyon (µ′, ν′), with µ ≥ µ′ and ν ≥ ν′. The canyon (µ, ν)
feeds P in orientation σ otherwise. Hence, in the graph, the
area above the border of σ corresponds to canyons that reject

P in orientation σ and the area below the border to canyons
that feed P in orientation σ .

Our ultimate goal is to get a pair (µ, ν) that has the feed-
ing property (i.e., the corresponding canyon feeds only one
orientation of the part). A valid pair of (µ, ν) must lie above
the border of all but one orientation of the part. Moreover, a
valid pair (µ, ν) cannot lie above the borders of all orienta-
tions. It follows that it is sufficient to compute the boundary
of the set of pairs above the borders of all orientations and the
boundary of the set of pairs below the borders of all but one
orientation; it is necessary and sufficient for a pair to lie in the
area between these two boundaries if it is to have the feeding
property.

In the remainder of this section, we will show how to com-
pute the aforementioned boundaries.

In Figure 11, a picture of the border of a single orien-
tation and the intersecting borders of multiple orientations
is depicted. The shape that follows the boundary of the set
of pairs that lie above the borders of all orientations is the
upper envelope of the borders (the upper envelope was intro-
duced in Section 4.2). We compute the upper envelope by
means of an algorithm by Hershberger (1989), who computes
the upper envelope of a set of segments that intersect pair-
wise at most k times. The combinatorial complexity of the
upper envelope is *(λk+2(n

2)), where λs(n2) is the maxi-
mum length of a Davenport-Schinzel sequence of order s on
n2 symbols (see, e.g., Sharir and Agarwal 1995). The algo-
rithm of Hershberger runs in O(λk+1(n

2) log n) time. Af-
ter having computed the upper envelope, we strip the up-
per envelope from the graph and run the algorithm of Her-
shberger again to find the boundary of the set of pairs that
lie below the borders of all but one orientation of the part.
In our case, each pair of segments intersects at most twice.
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Fig. 11. (a) The border of a single orientation. (b) The graph of borders of multiple orientations.

Since λ3(n
2) = n2α(n), where α(n) is the extremely slow-

growing inverse Ackermann function, we obtain the following
theorem.

THEOREM 6. In O(n2α(n) log n) time, we can design a
canyon with the feeding property for a polygonal part with
n vertices or report that no such canyon exists.

In the convex case, the running time remains the same since
the final step, which computes the upper envelope, dominates
the running time of our algorithm.

4.4. Slots

A slot is a rectangular interruption of the supporting area of
the track. The lower and upper boundaries, el and eu, of this
interruption are parallel to the railing. The starting and closing
boundaries, es and ec, of the interruption are orthogonal to the
railing. The distances of the lower and upper boundaries from
the railing are specified by µ and ν, respectively. The length
of the interruption is γ (see Fig. 6d).

The strategy to determine critical placements of the part is
a combination of the approach of Sections 4.2 and 4.3. We
distinguish two types of unsafe, or critical, placements.

1. The supported area of the part is intersected by at most
one edge of the slot.

2. The supported area of the part is intersected by more
than one edge of the slot.

To characterize the critical placements of a slot, we recall
Lemma 3. A slot T is at a critical placement q if two rays
emanating from c in the opposite direction are both tangent
to CH(S(q)).

Since only two rays determine a critical placement, two
edges of the slot are sufficient to determine a critical place-
ment. Consequently, at most, two out of three of the param-
eters that describe a slot are necessary to describe a critical
slot. In other words, each critical slot has at least one param-
eter that is “free” (i.e., at least one parameter can be varied

without affecting the criticality of the slot shape). Figure 12
shows a critical slot shape with free parameter ν; increasing
ν still yields a critical slot shape.

A slot shape is given by the triple (µ, ν, γ ). We embed
the space of all slot shapes in R

3 and generalize the idea of
a two-dimensional graph of borders in R

2 from Section 4.3
to surfaces of critical slot shapes in R

3. This collection of
surfaces subdivides the space of all slot shapes into regions
of feeding and rejecting slots.

The computation of critical slot shapes forP in orientation
σ is rather similar to the computation of the critical gap lengths
or canyon shapes of the previous sections. For any pair of
boundary edges of the slot, we determine the relationship
between the angle of collinear rays touching CH(S(q)) and
the corresponding slot parameters. This results in a collection
of O(n) critical surfaces in the space of slot shapes.

We briefly discuss an algorithm that computes the result-
ing subdivision of R

3. For each orientation, there are O(n)
surfaces of constant algebraic complexity. Thus, the arrange-
ment consists ofO(n2) surfaces in a three-dimensional space.
We can compute sample points of the cells in the subdivision,
using an algorithm by Basu, Pollack, and Roy (1996). This
algorithm also computes at which side of the surfaces the
sample points are located, and hence we can determine which
orientations are fed and which orientations are rejected for
any sample point. Lemma 9 gives the computation time and
the number of points computed by their algorithm.

LEMMA 9. (Basu, Pollack, and Roy 1996). Let P =
{P1, . . . , Pξ }, a set of surfaces of constant algebraic degree
d in Rl . Then there exists an algorithm that outputs sam-
ple points of all semi-algebraically connected components
induced by the set P. The complexity of the algorithm is
bounded by ξ l+1dO(l).

In our case, l = 3 and ξ = n2. Hence, in O(n8) time, we
can compute representatives covering all combinatorially dif-
ferent slot shapes. For each representative, we test whether
it has the feeding property. If there does not exist such a
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Fig. 12. A critical slot shape for the depicted part. Parameters γ and µ establish a critical placement certified by the rays.
Increasing ν still yields a critical slot shape.

representative, there is no slot shape that has the feeding prop-
erty. The following theorem summarizes the result of this
section.

THEOREM 7. In O(n8) time, we can design a slot with the
feeding property for a polygonal part with n vertices or report
that no such slot exists.

The running time of the algorithm of this section can most
likely be improved. The main goal of the presentation of the
slot feeder is, however, to give an introduction to comput-
ing trap shapes from subdivisions of higher dimensional trap
shape spaces. In the next section, we shall compute traps with
an arbitrary number of degrees of freedom.

4.5. General Polygonal Traps

In this section, we will show how to design a general trap.
Our goal here is not to provide an optimal algorithm but to
give a general framework.

The proposed general trap is a polygon with k vertices.
The position of each vertex of the polygon is specified by
two parameters. This implies that a general polygon can be
specified by 2k parameters.

The problem of this section is as follows. Let P be a poly-
gonal part and let k be an integer. Design a polygonal trap
with k vertices such that P is rejected by the trap in all but
one stable orientation as the trap moves across P . Like in the
previous sections, we construct a subdivision of the space of
possible trap shapes. Since a trap shape is determined by 2k
parameters, the trap shape space in this section is R

2k . The
computations that lead to a subdivision of the trap shape space
will be carried out in a larger dimensional space. More specif-

ically, the computations will be carried out in an Euclidean
space which is spanned by the 2k parameters of the trap: the
position of the part and the (x, y)-plane.

We compute surfaces that correspond to critical placements
of the trap. We follow an approach that is related to robot
motion planning, using a cell decomposition. We refer the
reader to Latombe (1991) for an overview of robot motion
planning and Schwartz and Sharir (1983) on a solution to the
general motion planning problem, using an arrangement of
higher dimensional, algebraic surfaces.

Our approach to compute the safe placements of the part
uses Tarski sets, which are semi-algebraic sets. For ease of
presentation, we again describe the problem as if the part
will remain stationary during the motion, and the trap moves
across the part.

We shall denote the trap, specified by a 2k-dimensional
vector τ ∈ R

2k , at position q ∈ R, by Tτ (q). Let2int(Tτ (q))(·)
be the defining formula of the translated trap in R

2 ×R
2k; that

is, 2int(Tτ (q))(v), v ∈ R
2 is true if and only if v ∈ int(Tτ (q)).

Let 2P (·) be the defining formula of the part in R
2; that is,

2P (v), v ∈ R
2 is true if and only if v ∈ P . We assume

that 2P (·) and 2int(Tτ (q))(·) are semi-algebraic sets. The in-
tersection of the part and the supporting area of the track,
P − int(T (q)), are denoted by the following Tarski set �1.

�1 = {(v, τ, q) ∈ R
2k+3 | 2P (v) ∧ ¬2int(Tτ (q))(v)}.

To determine the safe placement of the part, we take points of
�1 and interpolate between points with the same q and s; that
is, we construct the convex hull of the supported area of the
part in the direction of the plane for each trap size and trap
position. This leads to the set

CH
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railing

Fig. 13. A general polygonal trap. The position of the vertices is parameterized.

�2 = {(v, τ, q) ∈ R
2k+3 | ∃v′ ∈ R

2∃v′′ ∈ R
2∃i ∈ [0, 1] :

v = iv′ + (1 − i)v′′ ∧
(v′, τ, q) ∈ �1 ∧ (v′′, τ, q) ∈ �1}.

Remember that a placement is safe if its center of mass is
inside the convex hull of the supported area of the part. The
safe trap shapes in R

2k are the shapes for which there exist
no unsafe placement of the trap. A few easy transformations
transform the set �2 into a lower dimensional arrangement
that captures the safeness of the part. The only portion of the
arrangement that is of interest is the portion that corresponds
to the center of mass of P . Therefore, we intersect �2 with
the (2k+ 1)-dimensional space corresponding to the position
of the center of mass. This results in

�3 = {(τ, q) ∈ R
2k+1 | (c, τ, q) ∈ �2}.

If, during the motion, the center of mass is not supported at
some placement, the part is rejected. Therefore, we project
the complement of the arrangement onto R

2k , obtaining

�4 = {τ ∈ R
2k | ∃s ∈ [0, 1] : (τ, q) /∈ �3}.

We now have a description of a subdivision of the trap shape
space R

2k for a single stable orientation into fed and rejected
cells. For each orientation of the part, we compute this ar-
rangement. The next step is to merge the m different �4 ar-
rangements and find a cell for which all but one orientation is
rejected. Let us denote �4 for orientation i by �4(i). In the
remainder of this section, we discuss how to compute a trap
that only feeds the first stable orientation of the part and reject
all other orientations of the part if such a trap shape exists.
Repeating this procedure for the other orientations completes
our extensive search for a feeder. Possible trap shapes that

feed the first orientation are given by

�5 = {τ ∈ �4(1) | ∀o ∈ [2, . . . , m] : τ /∈ �4(o
′)}.

Note that o is not a real algebraic variable, and its univer-
sal quantifier represents an ordinary for-loop. Unfortunately,
the remaining quantifiers found in the expansion of �4(i) are
harder to deal with.

To be able to eliminate these quantifiers, we first trans-
form �5 into an equivalent sentence with the quantifiers to
the left. This is standard procedure and can be found in, for
example, the book by Mishra (1993). We denote the resulting
formula by �. Traditionally, elimination of the quantifiers in
� can be done by Collins’ (1975) decomposition, which is a
(doubly) exponential algorithm in the number of vertices of
the trap. The output of Collins’ algorithm are the cells in the
arrangement in R

2k of any dimension.
We can improve the running time of the quantifier elimina-

tion algorithm by using recent techniques from real algebraic
geometry. For a survey, we refer the reader to Heintz, Recio,
and Roy (1991); Mishra (1993); and Chazelle (1994). For a
comprehensive introductory discussion to the results cited in
the following, refer to the thesis of Basu (1996).

We observe several interesting properties of our formula �.
Although the number of free variables of � is only bounded
by O(k)—the number of vertices of the trap—the number
of quantified variables is bounded by a constant. Also, the
degree d of the polynomials in � is bounded by a constant.

If we would settle for only the semi-algebraic description of
the surfaces (without decomposing the space of possible trap
shapes into connected components), we could use the recent
algorithm of Basu (1999), which benefits from the special
properties of our set � and uses singly exponential time in
our case. The following lemma states that we can remove the
quantifiers from our formula � by computing a set of surfaces
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that induces a fine subdivision of the trap shape space, which
is equivalent to our formula �.

LEMMA 10. (Basu 1999). Let l and ω be constants and
P = {℘1, . . . , ℘ξ } be a set of ξ polynomials, each of constant
degree d, in l + κ variables, with coefficients in a real closed
field R. And let

7(Y) = (QωX
[ω]) · · · (Q1X

[1])F (℘1, . . . , ℘ξ ),

be a first-order formula, where Qi ∈ {∀, ∃}, Qi �= Qi+1,
Y = (Y1, . . . , Yκ) is a block of κ free variables, X[i] is a
block of a constant number of variables, and F(℘1, . . . ℘ξ ) is
a quantifier-free Boolean formula with atomic predicates of
the form℘i(Y,X

[ω], . . . , X[1]) {<,>}0. Moreover, let every
polynomial in P depend on at most a constant number of the
Yj s. Then there exists an equivalent set of surfaces, =(Y) of
size ξO(1)dO(κ)|F |, where |F | is the length of the formula F .
The algebraic degrees of the surfaces in =(Y) are bounded
by a constant.

In our case, ξ and |F | are O(knm) = O(kn2), and κ is
two times the number parameters of the trap. Hence, there is
a constant c, such that the output of the algorithm of Basu
(1999) is a quantifier-free formula of size O((kn)cdO(k))
and has constant-degree polynomials. The algorithm uses
O((kn)cdO(k)) arithmetic operations. The polynomials in the
quantifier-free formula represent surfaces of constant degree
in the trap shape space. The output of the algorithm is a set of
surfaces that subdivides the space of possible trap shapes into
regions for which the sets of rejected and fed orientations are
fixed.

From Lemma 9, it follows that we can compute sample
points in every connected component of the subdivision. We
fill in the variables of Lemma 10. From the number of sur-
faces, it follows ξ = O((kn)cdO(k)). The surfaces are em-
bedded in R

2k , and hence l = 2k. We conclude that we can
compute representatives covering all combinatorially differ-
ent k-vertex trap shapes using O((nk)O(k

2)) arithmetic oper-
ations. For each representative, we test whether the resulting
trap only feeds the first orientation of P . If there does not
exist such a representative, there is no k-vertex polygon that
only feeds the first orientation of P . Repeating the algorithm
for each stable orientation of P yields the following result.

THEOREM 8. In O((nk)O(k
2)) time, we can design a polyg-

onal trap with k vertices with the feeding property for a poly-
gonal part with n vertices or report that no such trap exists.

5. Experimental Results

The trap design algorithms in this paper assume the geomet-
ric model presented in Section 2. How well do the resulting
traps perform in practice? We discuss some of the differences
between theory and practice and then describe laboratory ex-
periments with a physical feeder (Berretty et al. 1999).

Our model of the bowl feeder makes several simplifying
assumptions. First, we assume that parts are singulated (i.e.,
that they do not tangle or nest together, which would create
hybrid shapes with varying boundaries and centers of mass).
Second, we assume that part motion along the track is fric-
tionless, continuous, and quasi-static. This approximates the
true motion in a vibratory bowl, which uses submillimeter
helical vibrations to cause parts to advance along the track
via a series of microscopic hops. Since these hops are very
small with respect to the part dimensions, our assumptions
are reasonable. Larger magnitude vibrations could induce
discontinuities in the position of the part that could allow it
to “hop across” a trap, especially if the trap is designed with
tight tolerances. Third, we assume all motion is planar: parts
with nonzero vertical extent can become jammed in a trap
as they fall. Last, we assume that the outer (vertical) track
railing is linear and not curved, as is the case with bowl feed-
ers that have circular railings. If this curvature is small with
respect to part dimensions, our linear assumption is reason-
able. We encourage future research that can relax some of the
assumptions above.

To study the behavior of our traps in practice, we tested two
traps in the laboratory (Berretty et al. 1999). Our experimen-
tal track, shown in Figure 14, uses a commercial inline vibra-
tory platform from Automation Devices, Inc. The platform
generates an asymmetric vibration at variable amplitudes that
moves parts along the track. The parts are standard fluores-
cent lightbulb sockets, approximately 2 inches in length. We
assume that parts are singulated and that the same part face
lies on the feeder track. Projecting the part onto the track
yields a polygonal shape that we provide as input to our trap
design algorithms. The two traps were designed along the
line of thought discussed at the end of Section 4.1; two traps
were combined to enable us to choose the orientation to be
fed. The balcony rejects orientations with a radius larger than
the fed orientation. The slot was designed to retain the fed
orientation and reject the remaining orientations. The bal-
cony and slot output from the algorithms were cut into sheet
metal with a milling machine and attached to the vibratory
platform.

In a controlled series of 100 trials with each of the part’s sta-
ble orientations, we experienced no failures: all undesired part
orientations were properly rejected by the pair of traps. The
traps never jammed; they successfully rejected many out-of-
plane part orientations not modeled by the algorithms. Fail-
ures were observed in cases when parts were not singulated:
pairs of overlapping parts could be arranged to slip past the
traps. Also, residual glue from a price label caused one part
to violate our motion model.

6. Discussion

In this paper, we have presented a geometric framework for the
trap design problem and reported algorithms for the analysis
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Fig. 14. Part on track and railing mounted on Model 5300A.1 (T-18) vibratory platform from Automation Devices, Inc.
Approximate length = 18 inches. The traps were designed by our algorithm and cut with a milling machine. The feeder
successfully feeds a stream of these parts.

and design of various traps for polygonal parts moving across
a feeder track. We are not aware of any previous geometric
algorithms for the systematic design of vibratory bowl feeder
traps.

Some of our algorithms have been implemented, and vari-
ous traps have been shown to work, both in simulation and in
practice (Berretty et al. 1999). Many open problems remain.
First, optimality of the algorithms has not been proven, and
we expect that some of the algorithms can be improved. In
particular, it would be interesting to improve the bounds for
general polygonal parts. A second question involves the no-
tion of uncertainty in part shape and motion of the part. For
a preliminary treatment of this issue, see Berretty (2000).

These results for geometric trap design suggest a variety
of new research problems. We want to extend these results
to parts with curved edges and to extend the treatment to
a full three-dimensional analysis. One approach to three-
dimensional parts is to consider each stable orientation of the
three-dimensional part as a distinct two-dimensional footprint
and then to design a sequence of traps that feeds only one foot-
print in one orientation. We will also treat out-of-plane effects,
in which three-dimensional volumes begin to fall into a trap
but become wedged. It would be helpful to know what part
geometries cannot be fed using traps and to develop design
algorithms that combine traps with other bowl feeder devices
such as steps and wiper blades.
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