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ABSTRACT 

In this paper, we introduce a method to obtain the nearest trapezoidal approximation of fuzzy numbers so that preserv-
ing conditions expect interval and include the core of a fuzzy number. 
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 1. Introduction : 0,1A R I   which satisfies: 

Trapezoidal fuzzy intervals are often used in practice. An 
interesting problem is to approximate general fuzzy in-
tervals by means of trapezoidal ones, so as to simplify 
calculations. The investigations in this area were started 
by Ma et al. [1] that proposed the symmetric triangular 
approximation. Actually, symmetric triangular approxi-
mation is a particular case of the trapezoidal approxima-
tion that was discussed by many authors including 
Abbasbandy, Amirfakhrian [2], Abbasbandy and Asady 
[3], Coroianu [4], Ban [5-8], Grzegorzewski [9-11], 
Grzegorzewski and Mrowka [12,13], Grzegorzewski, K. 
Pasternak-Winiarska [14,15] and Yeh [16-21] and other 
methods same as [22-27]. Although, there are many 
scholars who have investigated interval, triangular and 
trapezoidal approximation of fuzzy numbers, but the re-
sult of approximation is not always a fuzzy number, 
sometimes it is not a fuzzy set. For example Grzegor-
zewski and Mrowka proposed in [12] a method to find 
the nearest (with respect to a well-known metric between 
fuzzy numbers) trapezoidal approximation operator that 
preserving the expected interval. Unfortunately, there 
was a gap in the suggested solution which was later im-
proved by Grzegorzewski and Mrowka [13] and finally 
solved by Ban [7] and Yeh [18]. In this paper, we com-
bine the ideas proposed in papers [3,12], so that preserv-
ing conditions expect interval and include the core of a 
fuzzy number. In Section 2, we recall some fundamental 
results on fuzzy numbers. Trapezoidal approximation and 
examples are in Section 3. 

2. Preliminaries 

Definition 1. (cf. [28]) A fuzzy number is a fuzzy set like 

1) A is the strictly quasi-convex, 
2)   0A x   outside some interval  ,c d

c a b d
, 

3) There are real numbers a, b such that     
and 

a)  x  is monotonic increasing on A ,c a , 
b)  x  is monotonic decreasing on A ,b d , 

  1,A x a x b   . c) 
The set of all these fuzzy numbers is denoted by 

  F R . The -cut, 2 0,1 

 

, of a fuzzy number A is 
a crisp set defined as 

  :A x R A x .    

Every -cut of a fuzzy number A is a closed interval 
   ,A AL AU     , where 

    
    

inf : ,

sup : .

AL x R A x

AU x R A x

 



  

  

 

 


The set of all elements that have a nonzero degree of 
membership in A is called the support of A [27], i.e. 

 supp : 0A x R A x   .  

Definition 2. (complement) The complement of a 
fuzzy number A is defined as 

    1 .A x A x    

 A ,The pair of functions L AU

, , ,a a a a R

 gives a parametric 
representation of fuzzy number A (see [29]). Another 
important type of fuzzy numbers was introduced in [23] 
as follows. 

Let 1 2 3 4   such that  A 
fuzzy number defined as 

1 2 3 4 .a a a a  
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where  is denoted by 1 2 3 4A a a a a
 1 2 3 4, , ,

 lr and 
if  by lr  A a a a a r

 


 
. Its parametric form is 

     3, , 0,1

L U

l ra a a a a a



  

 
 

      
 

1l r   , , , .

1 1

1 2 1 4 4

, A  A A 

 

A popular fuzzy number is the trapezoidal fuzzy num-
ber, completely characterized by Equation (1) when 

, denoted by 1 2 3 4A a a a a
 

 We denoted 
by F R  the set of all fuzzy numbers and  FT R

   ,L AU

 the 
set of all trapezoidal fuzzy numbers. 

Definition 3. For arbitrary fuzzy numbers A,  
A A    

   ,L BU
 

B B
and B,  

    

  

   the quantity 

   

 

1

0

1

0

,D A B A

  

2

2

d

d

L L

U U

B

A B

  

  



 

 




       (2) 

is the distance between A and B, [3,24,25]. The function 
,D A B  is a metric in  F R  and   ,F R D  is a 

complete metric space. The expected interval  EI A  of 
a fuzzy number    ,AL AUAA   

 

 
1 1

0 0

dL u

A

A

    introduced 
independently by Dubois and Prade [30] and Heilpern 
[31]. It is defined by 

   

 d ,

,

A

EI A E A E

   

  
 
 
 
 

 


      (3) 

Grzegorzewski [9] shows that the interval  EI A  is 
the nearest interval to the fuzzy number A. Hence in [31] 
the expected value of a fuzzy number A defined follow-
ing as 

      E A AE



1

2
EV A           (4) 

and B. Asady and M. Zendehnam in [32] show that 
EV A

  : 1R A x 
 is the best approximation of a fuzzy number A. 

Finally, let us recall that . coreA x

3. Trapezoidal Approximation of Fuzzy 
Numbers 

Suppose we want to approximate a fuzzy number by a 

trapezoidal fuzzy number. Thus, we use an operator 
   :T F R FT R  which transforms fuzzy numbers 

into family of trapezoidal fuzzy number. 
Abbasbandy and Asady [3] considered a trapezoidal 

approximation that includes the -cut superset, i.e.,  

     1 core coreT A T A            (5) 

Grzegorzewski and Mrówka [12] said that an operator 
   :T F R FT R

 T A
 fulfills the criterion if for any fuzzy 

number A its output value  preserves the expected 
interval, i.e.,  

      2T EI A EI T A            (6) 

In this part, we combine ideas proposed in the papers 
[3,12] to obtain the nearest trapezoidal fuzzy number 
respect to the original fuzzy number so that it preserves 
T1 and T2 conditions. Since, any x belongs to the core A 
of a fuzzy number A if and only if it does not belong to 
the complement of A 

 corex A x A    

Therefore, for preserving of these points we consider 
 core coreA T A . Also, we are going to preserve the 

expected interval of the fuzzy number that this additional 
requirement by the significant role of the expected inter-
val is in many situations and applications (see, e.g., [5-11, 
33]. Additionally, the propose approach can provide de-
cision makers with a new alternative to trapezoidal ap-
proximation of fuzzy numbers. 

Now, given a fuzzy number B with -cut set  

   ,BL BU , the problem is to find a trapezoidal      
 fuzzy number , , ,T B t t t t

          

1 2 3 4  which is the nearest 
to B with respect to metric D and preserves the condi-
tions T1 and T2 i.e. we have 

      

1
2

0

1
1 22

0

min , d

d

L L

U U

D B T B B T B

B T B

  

  


 






 











 

(7) 

Subject to 

     2 3, 1 , 1 ,L Ut t B B             (8)   

   
1 1

3 41 2

0 0

, d , d ,
2 2 L U

t tt t
B B


   

       
 



   (9) 


 As, in order to minimize ,D B T B  it suffices to 
minimize function 
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  (10)    

   

 

   

1 1 2

1 1

1
0 0

1 1

2
0 0

3

1

4
0

, 0,

4 d 6 d ,

2 d 6 d ,

1 ,

1 2 d ,

L L

L L

U

U U

h h h

t B B

t B B

t B

t B B

    

with respect to h1 and h2. Subject to 

               (11) 

and 

               (12) 

and 
1

0

t B             (13) 

and  
1

0

t B             (14) 

Clearly, with note to Equations (8), (9), we can say the 
conditions (11)-(14) are suitable for finding the nearest 
trapezoidal fuzzy number  T B

coreB

 to a fuzzy number B 
with the conditions as the expected interval and 

 are preserved. Theorem 1: Let B 
with 

 T Bcore
-cut set    , BUBL    

 

 

1 d

3 2 1 d ,

L LB  

, be a fuzzy number 
and 

 

 

1

1
0

1

0
L

d B

B    

 

 

1 d

3 2 1 d ,

U UB

  


         (15)  

 

 

1

2
0

1

0
U

d B

B

 

   

2 0

  



0d  d

         (16) 

Case 1: If 1  and   then, optimal solution 
of problem (10) is 

1 2 0h h 

 

 

1

0

1

0

d ,

d

L L

U U

B

B

 

and consequently, we have 

 

 
 

 

1

2

3

4

1 2

1 ,

1 ,

1 2

L

U

t B

t B

t B

t B

 

 





2 0

  





  

0d 

        (17) 

Case 2: If  and d1   then 

    

 



 

  

  





 

 



1 0d

       (18) 

  and d  then Case 3: If 2 0

   

 

   

   

1 2 2

1

1
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1 1

3
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4
0 0

0, ,
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1 0d  2 0

      (19) 

Case 4: If  and d  then 

   

   

   

   

1 1 2 2

1 1

1
0 0

1 1

2
0 0

1 1

3
0 0

1 1

4
0 0

,

4 d 6 d ,

2 d 6 d ,

2 d 6 d ,

4 d 6 d ,

L L
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U U

h d h d
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      (20) 

F 1 2,Proof: In order to minimize h h  it suffices to 
minimize function    1 2 1 22 , ,F h h f h h  with the par-
tial derivatives 

 

      

 

       

1 2

1

1 1
2

1 1
0 0

1 2
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1 1
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2 2
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4
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system (10) is 1 2  and the point  0,0  mini-
mizes the function F in the Equation (10). Because 
 1 2,F h h

0d 

 is lower bounded function and has only a 
critical point. Also, with note to Equations (11)-(14) and 
optimal solution  formula (17) is correct. 1 2

2) If 1  and 2d  are satisfied then the solu-
tions of the system (10) are 

0h h 
0

1 0 2 0h Case 1: , , h

Case 2: 1 1h d 2 0h  ,  

Moreover, since 
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therefore case 2 such that 1 1 , 2  minimizes 
the function F. Because the Hessian matrix for it is posi-
tive definite and for case 1 is not positive definite. Also, 
with note to Equations (11)-(14) and 

h d 0h 

1 1h d 2 0h ,   
Formulae (18) are satisfied. 

3) Proof is similar with 2) 
4) If 1  and 2  are satisfied then the solu-

tions of the system (10) are given by 
0d  0d 

1 0 2 0h 

1 0h

Case 1: , ; h

Case 2:  , 2 2h d ; 

Case 3: 1 1h d 2 0h,  ; 

Case 4: 1 1h d , 2 2

Because the Hessian matrix for of case 4 is positive 
definite and for others cases are not positive definite, 
then the solution of case 4 is minimizer and formulae (20) 
is correct. 2 Now we compare our method with the other 
works [3,7,20] in following examples. 

h d . 

Example 1. [7] Let us consider the fuzzy number 
 1,2,3,30 2A   , in the parametric forms, 

    1 , 30 27 , 0,1 .L UA A        

 

 

By substitute above equations on the (2) and (3) equa-
tions, we obtain the expect interval and core of the fuzzy 
number A same as follows 

   5
,12 , core 2,3

3
EI A A    

 

Also, trapezoidal approximation of it by the other 
methods and proposed method is shown in Table 1. 

Clearly, in Table 1, by Ban and Yeh methods, we have 

    EI A EI T A

 core core .

 

and 

T AA  

and, by Abbasbandy and Asady method, get 

    EI A EI T A

 core core .

 

and 

A T A  

Consequently, with note above results proposed 
method preserved T1 and T2 conditions (see Figures 
1-4). 

Example 2. Consider the fuzzy number  
 41 3

10,10,10,14B  

 coreT A 

 that the parametric form of it is 
as follows 

 
Table 1. Comparative results of example 1. 

 EI T A  The trapezoidal approximation of fuzzy numbers A Authors  

5

3
 

5
,12

3
 
  

  5 3,5 3,5 3,67 3  Ban 

71 78
,

35 35
 
  

 
5

,12
3
     

 47 35,71 35,78 35,726 35



 Yeh 

2,3  
33 240

,
20 20
     

 13 10,2,3,219 10



 Abbasbandy Asady 

2,3  
5

,12
3
    

 3 4,2,3,21  Proposed method 
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Figure 1. The trapezoidal approximation of A by Ban 
method. 
 

 

Figure 2. The trapezoidal approximation of A by Yeh 
method. 
 

 

Figure 3. The trapezoidal approximation of A by Abbas-
bandy and Asady method. 

 

Figure 4. The trapezoidal approximation of A by prposed 
method. 
 

   1 4 310 20 , 14 4BL BU .      

   

 

Clearly, by Equations (2) and (3) the expect interval 
and core of it are same as follows 

6,13 and core
56

5
10, .EI B B
     

 

Also, trapezoidal approximation of the fuzzy number 
B by the other methods and proposed method is shown in 
Table 2. 

Clearly, in Table 2 by Ban and Yeh methods, 
 core coreB T B  and even  core coreB T B    

(see Figures 5 and 6). But, for Abbasbandy and Asady 
method, we get     EI B EI T B . Finally, the results 
of proposed method are 

     EI A EI T A

 core core .Aand T A

z R 

 Therefore, we can say that 
proposed method preserves T1 and T2 conditions in ex-
ample 2. (please see Figures 7 and 8). 

Theorem 3. Trapezoidal approximation satisfies the 
following properties. 

 A1) Translation invariance: , F R  : then 
we have    T A z T A z 

z R
. 

  , A2) Scale invariance:  F R  : then we 
have    .T zA zT A  

Proof. Proof is similar to proof of Theorem 12 in [7]. 
Theorem 4. Trapezoidal approximation satisfies the 

identity property. 
 1 2 3 4, , ,B b b b b  be a trapezoidal fuzzy  Proof. Let 

number. By Equations (2) and (3), we get 2 1
1 2

t t
d 


, 

4 3
2 2

t t
d


. 

Therefore, d1 and d2 are po itive and conditions in the  s 
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Table 2. Comparative results of Example 2. 

    coreT B  EIproximation of fuzzy numbers B T B  The trapezoidal apAuthors 

169

15
  6,13     15  11 15,169 15,169 15,221TB B Ban 

410 54
,

39 5
 
  

  6,13     5  90 39,410 39,54 5,78YT B Yeh 

17
,13

3

56
10,

5
 
  

  
  

    3,10,56 5,74 5AAbbasbandy, Asady 4T B   

56
10,

5
 
  

  6,13     2,10,56 5,74 5P  Proposed method T B 

 

 

of B by BaFigure 5. The trapezoidal approximation n 

 

Figure 7. The trapezoidal approximation of B by Abbas-
bandy and Asady method. 
 

method. 
 

 

of B by Ye
method. 
Figure 6. The trapezoidal approximation h 

 

Figure 8. The trapezoidal approximation of B by proposed 
method. 
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Case 4) are satisfied, Theorem 1 is applicable. 
 1,2,3, 4k . 

4. Conclusion 

In this paper, we have been suggested an interesting ap-
proach to trapezoidal approximation of general fuzzy
numbers. The proposed method leads to the trapezoidal
fuzzy number which is the best one with respect to a
tain measure of distance between fuzzy numbers,  


We obtain k kt b , 

 
 

 cer-

,D u v . 
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