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Abstract

Coherent manipulations involving the quantized motional
and internal states of a single trapped ion can be used to
simulate the dynamics of other systems. We consider some
examples, including the action of a Mach Zehnder interfer-
ometer which uses entangled input states. Coherent manipu-
lations can also be used to create entangled states of
multiple trapped ions ; such states can be used to demon-
strate fundamental quantum correlations.

1. Introduction

Stimulated, in part, by the interest in quantum computation
and quantum communication [1], a number of papers have
investigated the possibility of synthesizing or ““engineeringÏÏ
arbitrary quantum states of trapped ions (for recent reviews,
see Refs. [2] and [3]). To the extent that this can be accom-
plished for a large number of trapped ions, such a system
would allow general quantum computations, including the
factorization of large numbers [1, 4]. By anybodyÏs reckon-
ing, factorizing large numbers is a daunting task. Therefore,
it is desirable that a quantum computer, or a system which
can generate arbitrary entangled states, have wider applica-
bility. Various possibilities have been explored in the recent
literature [5È11]. Some of these proposals extend the ideas
of Feynman who considered whether or not one quantum
system could be used to simulate the behavior of another
quantum system [12]. In this spirit, we discuss some simple
examples of how a single trapped ion might be used to
simulate the behavior of other quantum systems, such as
entangled particles acted on by a Mach Zehnder interferom-
eter. We also brieÑy discuss how the states of multiple
trapped ions can be entangled ; these states can be employed
in fundamental demonstrations of quantum measurements.

2. Coupling of a two-level trapped ion to its motion

We Ðrst consider a single ion trapped in a 3-D harmonic
well with oscillation frequencies and along threeu

x
, u

y
u

z
cartesian axes. This situation is closely approximated by a
single ion conÐned in a Paul (rf ) trap. We will be interested
in two internal states of the ion which we label as o CT and
o BT, and which are separated in energy by We apply a+u0 .
(classical) radiation Ðeld or Ðelds (typically laser Ðelds) of
the form

E(x, t)\ E0 cos (k Æ x [ ut ] /). (2.1)
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The Hamiltonian which describes the (resonant) coupling
between the ionÏs internal states and its motion (provided by
E(x, t)) can be written in the rotating-wave approximation
as

HI \ +X(S
`

)e ei*k Õ x~dt`Õ+] h.c., (2.2)

where X is the coupling strength (Rabi frequency), is theS
`

raising operator for the internal states x is(S
`

o BT \ o CT),
the ionÏs position relative to its equilibrium position, d 4 u

and / is a phase factor of the Ðeld [3]. In eqs (2.1)[ u0 ,
and (2.2), k is the wavevector of the Ðeld for single photon
transitions or k is the di†erence between the two wavevec-
tors when two-photon stimulated-Raman transitions are
used [13]. Similarly, u is the frequency of the applied Ðeld
for single-photon transitions, or is the di†erence in fre-
quencies of the two applied Ðelds when stimulated-Raman
transitions are used. The exponent e is equal to 1 when
internal state transitions are involved and e \ 0 when the
internal state is unchanged (stimulated-Raman transitions).

In an interaction picture of the ionÏs motion, this Hamil-
tonian becomes [3]

HI \ +X(S
`

)e e~i(dt~Õ) <
j/x, y, z

exp (i[g
j
(a

j
e~iujt ] a

j
s eiujt)])

] h.c., (2.3)

where and are the lowering and raising operators fora
j

a
j
s

harmonic motion in the jth direction, and is theg
x
4 k Æ xü x0

Lamb-Dicke parameter in the x direction, where x0 4

(m is the ion mass), and similarly for andJ+/(2mu
x
) g

y
g
z
.

Now, assume that X is small enough, and that andu
x
, u

y
are incommensurate so that we can (resonantly) exciteu

z
only one spectral component of the possible transitions
induced by this interaction. For a particular resonance con-
dition integers), and in thed \ [l

x
u

x
[ l

y
u

y
[ l

z
u

z
(l
j

Lamb-Dicke limit, we Ðnd

HI ^ +X eiÕ(S
`
)e <
j/x, y, z
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D

] h.c. (2.4)

The two mode case where is considerede \ l
z
\ 0, l

x
, l

y
D 0

by Drobny� and Hladky� [14], and in a di†erent excitation
scheme by Steinbach, et al. [15]. If the Lamb-Dicke limit is
not rigorously satisÐed, we must consider higher-order
terms in the expansion of the exponentials of eq. (2.3) [16] ;
speciÐc examples are discussed by Wallentowitz and Vogel
[17], and Steinbach, et al. [15]. These nonlinear terms
appear as corrections to the Rabi frequencies for Fock
states and have been observed in the experiments of Ref.
[18].
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3. Simulations of processes in optics

Referring to eq. (2.4), the carrier and Ðrst red and blue (z-
motion) sidebands on internal state transitions (e.g., e \ 1,

^1) are used in experiments to cool thel
x
\ l

y
\ 0, l

z
\ 0,

ion to the ground state of motion [13, 19], for quantum
logic [20], and to generate nonclassical motional states [2,
18]. The upper and lower sidebands correspond(l

z
\ ^1)

to emission and absorption of single vibrational quanta or
““phononsÏÏ associated with internal state changes ; this is
directly analogous to the emission and absorption of single
photons into a cavity by an atom inside. An interesting
system which could be simulated with these couplings is a
““phonon maserÏÏ which provides vibrational ampliÐcation
by stimulated emission [21]. The case e \ 0, l

x
\ l

y
\ 0,

has been used to create coherent [18] and Schro� d-o l
z
o\ 1

inger cat [22] states of motion. Coherent states of ion
motion correspond to coherent states in optics. The case
e \ 0, has been used to create squeezedl

x
\ l

y
\ 0, o l

z
o\ 2

states of ion motion [18]. A realization of the Hamiltonian
(e \ 1, for ions hasHI PS

`
(as)2] h.c. l

x
\ l

y
\ 0, l

z
\[2)

been reported by Leibfried, et al. [23]. This is similar to the
case of two-photon excitation in cavity QED analyzed by
Buck and Sukumar [24] and Knight [25]. An example of an
interesting new case would perhaps be the realization of
three-phonon downconversion (e.g., e \ 0, l

x
\ 3, l

y
\[1,

this is accomplished by driving a two-mode reso-l
z
\ 0) ;

nance using stimulated-Raman transitions where the di†er-
ence in frequencies of the two laser beams is equal to uy

This case corresponds to three-photon down-[ 3u
x
.

conversion in quantum optics (see Refs. [15], [26], and ref-
erences therein). A suggestion to realize a Hamiltonian
proportional to (e \ 0, isa

x
2 a

y
s ] h.c., l

z
\ 0, l

x
\ 2, l

y
\ [1)

discussed by Agarwal and Banerji [27].
Clearly, a very large number of possibilities could, in prin-

ciple, be realized just for a single ion ; moreover, the number
of possibilities increases dramatically if we consider all
modes of motion for multiple trapped ions. The only limi-
tation on how high in eq. (2.4) can be is that X beo l

j
o

chosen sufficiently small that couplings to other (unwanted)
resonances are avoided. This will require that decoherence
be small enough to see the desired dynamical behavior
before coherence is lost. Finally, the analogy to optics dis-
cussed here should not be surprising since a single ionÏs
motion (for one mode) and a single mode of the radiation
Ðeld are both described by quantized harmonic oscillators.

4. Mach Zehnder interferometer with entangled states

Realization of the various Hamiltonians indicated in eq.
(2.4) can lead to simulation of various devices of practical
interest. As an example, we can simulate the action of a
Mach Zehnder interferometer for various input states. We
consider to act on two modes of ion motion ; to be spe-HI
ciÐc, we will assume these are the x and y modes. The
analogy with a Mach-Zehnder interferometer for bosons is
that the two input modes to the boson interferometer are
replaced by the x and y modes of ion oscillation. The (50/50)
beamsplitters in the boson interferometer are replaced by an
operator [28È30]

B
B

\ exp [^in(a
x
s a

y
] a

x
a
y
s)/4] (4.1)

This operator can be realized by applying the interaction in
eq. (2.4) with and for a time givene \ l

z
\ 0, l

x
\ [l

y
\ 1

by A di†erential phase shift between the twoXg
x
g
y
t \n/4.

arms of the interferometer can be simulated by shifting the
relative phases of the Ðelds in eq. (2.4) between successive
applications of In a particle (e.g., boson) interferometer,B

B
.

one typically measures the number of particles in either one
or both output modes. For single ions, the experiments so
far have only one convenient observable, the internal state
of the ion (either o BT or o CT). Nevertheless, we can fully
characterize the action of the phonon interferometer by
repeating the experiment many times and measuring the
density matrix of the output state [23, 31].

It will be interesting to characterize the action of the
interferometer for various nonclassical input states. One
interesting input state is the two-mode Fock state

[32]. This state could be prepared by applyingo n
x
T
x
o n

y
T
y

the Fock state creation techniques described in Ref. [18]
sequentially to the ionÏs x and y modes. This state is inter-
esting because it has been shown that one could approach
the Heisenberg uncertainty limit in a Mach Zehnder inter-
ferometer by measuring the distribution of bosons in the
output modes [32È34]. The observable is the variance of the
number of particles detected in one of the output ports
when the arms of the interferometer are of approximately
equal length. As the di†erence in length of the arms deviates
from equality, the variance increases sharply. An alternative
technique for studying the action of a beamsplitter on the
two-mode Fock states has been suggested by Gou and
Knight [35] when Here, a beamsplitter could beu

x
\ u

y
.

simulated by Ðrst preparing along two orthog-o n
x
T
x
o n

y
T
y

onal axes and then probing along two other axes (x@ and y@)
which are rotated (in the xy plane) with respect to the Ðrst.
This technique could also be used to analyze, for example,
the state from an initially pre-(o 0T

x{ o 2T
y{] o 2T

x{ o 0T
y{)/J2

pared state [35].o 1T
x
o 1T

y
Another interesting input state to consider is the state

(Equivalently, the state afterB
B
s (oNT

x
o 0T

y
] o 0T

x
oNT

y
)/J2.

the Ðrst beam splitter is This(oNT
x
o 0T

y
] o 0T

x
oNT

y
)/J2.)

state has been shown to yield exactly the Heinsenberg
uncertainty limit for an interferometer for any value of N
and any di†erence of the lengths of the arms [8]. The
observable is the parity of the number of particles measured
in one of the output ports. For example, we could measure
the number of particles N(x) in the x output port. The result
of this measurement is assigned the value ([1)N(x).

For a single ion, the state after the Ðrst beamsplitter could
be prepared from the state by the followingo BT o 0T

x
o 0T

y
two steps :

(1) Apply a n/2 pulse on the Nth blue sideband of mode x
(e \ 1, this creates the statel

x
\[N, l

y
\ l

z
\ 0) ; (o BT o 0T

x] o CT oNT
x
) o 0T

y
/J2.

(2) Apply a n pulse on the Nth blue sideband of mode y
(e \ 1, this creates the statel

x
\ l

z
\ 0, l

y
\ [N) ;

o CT(oNTx o 0T
y
] o 0T

x
oNT

y
)/J2.

After the second beamsplitter, we have a state which can
be written as

Wfinal\ o CT ;
nx/0

N
C

nx
o n

x
T
x
oN [ n

x
T
y
. (4.2)

We now want to measure record the value N(x), andn
x
,

assign the value ([1)N(x) to the overall measurement. E†ec-
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tively, this assignment can be accomplished if we can Ðnd
interaction M which provides the mapping

MWfinal\ o CT ;
nx even

N
C

nx
eiÕ(nx) o n

x
T
x
oN [ n

x
T
y

] o BT ;
nx odd

N
C

nx
eiÕ(nx) o n

x
T
x
oN [ n

x
T
y
. (4.3)

After this mapping, we need only measure the internal
state ; if the ion is found in the o CT we assign the value ]1
to the measurement ; if the ion is found in the o BT state, we
assign the value [1. The mapping M can be achieved by
applying radiation with at the carrier frequency (e \ 1,kpxü

and insuring where ml
x
\ l

y
\ l

z
\ 0) X

nx, nx t \ 2nm^ n
x
n

is an integer. Here is the Rabi frequency forX
nx, nx

o BT % o CT which depends on due to terms in the expan-n
x

sion of exp (ik Æ x) which are nonlinear in x. We Ðnd [3]

X
n, n t ^ Xt e~gx2@2

C
1 [ ng

x
2
A
1 ] g

x
2
4

[ n
g
x
2
4
BD

. (4.4)

Therefore, if we satisfy andX exp ([g
x
2/2)t \ 2nm g

x
2(1

we achieve the desired mapping as long] g
x
2/4) \ (2m)~1,

as the contribution to the phase from the term proportional
to in this equation is small compared to n. Therefore wen

x
2

require m? N2/8 or, equivalently, g
x
> 2/N.

If N is large and/or the Lamb-Dicke parameter is very
small, creating the state byo CT(oNT

x
o 0T

y
] o 0T

x
oNT

y
)/J2

steps (1) and (2) above may be very slow. If we use an aux-
iliary internal state, we can speed up this process by employ-
ing Ðrst-order sidebands. To be speciÐc, we will assume we
can realize a coupling of the form of eq. (2.4), between the
o CT state and auxiliary state which we label oAT. We assume
state oAT is lower in energy than state o CT so that

A particular realization of states o BT, o CT,S
A`

oAT \ o CT.
and oAT is described in Ref. [20]. As an example, starting
with the state we can create the stateo BT o 0T

x
o 0T

y
,
with the following steps (and(o CT(o 3T

x
o 0T

y
] o 0T

x
o 3T

y
)/J2

appropriate choices of /) :

o BT o 0T
x
o 0T

y
[ (S

`
(n/2) ] h.c.)]

1

J2
(o CT ] o BT) o 0T

x
o 0T

y
[ (S

A`
(n)] h.c.)]

1

J2
(oAT ] o BT) o 0T

x
o 0T

y
[ (S

A`
a
x
s(n)] h.c.)]

1

J2
(o CT o 1T

x
] o BT o 0 T

x
) o 0T

y
[ (S

A`
a
x
(n)] h.c.)]

1

J2
(oAT o 2T

x
] o BT o 0T

x
) o 0T

y
[ (S

`
a
y
s(n)] h.c.)]

1

J2
(oAT o 2T

x
o 0T

y
] o CT o 0T

x
o 1T

y
)[ (S

`
a
y
(n)] h.c.)]

1

J2
(oAT o 2T

x
o 0T

y
] o BT o 0T

x
o 2T

y
)[ (S

A`
a
x
s(n)] h.c.)]

1

J2
(o CT o 3T

x
o 0T

y
] o BT o 0T

x
o 2T

y
)[ (S

`
a
y
s(n)] h.c.)]

1

J2
o CT(o 3T

x
o 0T

y
] o 0T

x
o 3T

y
). (4.5)

In this expression, the notation means theS
A`

a
x
s(n) ] h.c.

operator is applied for a time sufficient toS
A`

a
x
s ] h.c.

drive a n pulse, etc. From this, it is straightforward to see
how to generate the state o CT(oNT

x
o 0T

y
] o 0T

x
oNT

y
)/J2

for N odd. For N even, we can, for example, substitute two
carrier transitions for two sideband transitions in the above
steps.

One Ðnal example of a two-mode interferometer which
directly yields Heisenberg 1/N phase sensitivity is a ““beam-
splitterÏÏ which creates that state (o BT oNT

x
o 0T

y
This state (for N even) could be] o CT o 0T

x
oNT

y
)/J2).

created as in eq. (4.5) except the last two operations are
replaced by the operation For example, toS

A`
(n) ] h.c.

create the state we(o CT o 2T
x
o 0T

y
] o BT o 0T

x
o 2T

y
)/J2),

replace the last two steps of eq. (4.5) by

1

J2
(oAT o 2T

x
o 0T

y
] o BT o 0T

x
o 2T

y
) [ (S

A`
(n) ] h.c.)]

1

J2
(o CT o 2T

x
o 0T

y
] o BT o 0T

x
o 2T

y
). (4.6)

For N odd, we can, for example, substitute two carrier tran-
sitions for two sideband transitions in the above steps. If an
auxiliary state is not available, this state can be created by
Ðrst making the initial dual Fock state (o CT

with the methods described in] o BT) oN/2T
x
oN/2T

y
/J2

Ref. [18]. (In this example, we assume N is even.) Next, we
apply N/2 n-pulses alternating between the two interaction
Hamiltonians andH1\Xg

x
g
y
S
`

a
x
s a

y
] h.c. H2\

In this way, the ion is stepped throughXg
x
g
y
S
`

a
x
a
y
s] h.c..

the sequence

o BT oN/2T
x
oN/2T

y
[ (S

`
(n/2) ] h.c.)]

1

J2
(o BT oN/2T

x
oN/2T

y
] o CT oN/2T

x
oN/2T

y
)[ (H1)]

1

J2
(o CT oN/2 ] 1T

x
oN/2 [ 1T

y

] o BT oN/2 [ 1T
x
oN/2 ] 1T

y
)[ (H2)]

1

J2
(o BT oN/2 ] 2T

x
oN/2 [ 2T

y

] o CT oN/2 [ 2T
x
oN/2 ] 2T

y
)[ (H1)]

É É É[ (H2) ]
1

J2
(o BT oNT

x
o 0T

y
] o CT o 0T

x
oNT

y
). (4.7)

The interactions and follow from eq. (2.4) withH1 H2e \ 1, and e \ 1,l
x
\[1, l

y
\ 1, l

z
\ 0, l

x
\ 1, l

y
\[1,

respectively. The kth pulse has Rabi frequencyl
z
\ 0

in the Lamb-Dicke regime.Xg
x
g
y
J(N/2 ] k)(N/2 [ k] 1)

After a relative phase is accumulated in the two ““pathsÏÏ of
the interferometer (simulated by adjusting the phase of the
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laser pulses as discussed above), then the steps in eqs (4.7) or
(4.5) and (4.6) are reversed. Upon measuring the probability
of occupation in state o BT or o CT, the interference fringes
exhibit 1/N phase sensitivity.

If the Lamb-Dicke criterion is not satisÐed, the two com-
ponents of the wavefunction superposition may experience
di†erent Rabi frequencies during each pulse, leading to
undesired evolution. However, as long as it can beg

x
\ g

y
shown that the system will evolve as in eq. (4.7), even when
the Lamb-Dicke criterion is not satisÐed [3].

5. Quantum correlations

The coherent manipulations on single ions discussed above
can be extended to multiple ions [4]. As one step towards
this goal, a controlled-not quantum logic has been demon-
strated [20] between qubits formed with the ground and
Ðrst excited state for one mode of motion (o n

x
\ 0T

x
4

and the ionÏs internal stateso 0T
m

, o n
x
\ 1T

x
4 o 1T

m
)

(o BT 4 o 0T, o CT 4 o 1T). The controlled-not gate exhibited
the logic

o e1Tm
o e2T ] o e1Tm

o e1 = e2T (5.1)

where = signiÐes addition mod 2. For a collection of ions
in a trap, we select a particular mode (say the center-of-mass
mode along the axis of a linear Paul trap) to comprise the
motional qubit. By Ðrst mapping the internal state of ion i
onto the motional qubit (which is shared by all ions), per-
forming the logic in eq. (5.1) between the motional qubit and
ion j, followed by reversing the Ðrst mapping step, we can
realize a controlled-not logic operation between ion i and
ion j [4]

o e1Ti
o e2Tj

] o e1Ti
o e1 = e2Tj

. (5.2)

Application of these gates to small numbers of trapped
ions can lead to interesting experiments which may shed
light on the viability of local hidden-variables theories. For
example, for two ions, starting with the state weo 0T1 o 0T2
can apply a n/2 pulse to the internal states of ion 1 followed
by a controlled-not between ions 1 and 2

o 0T1 o 0T2]
1

J2
(o 0T1] o 1T1) o 0T2

]
1

J2
(o 0T1 o 0T2] o 1T1 o T2). (5.3)

If the states of the resulting entangled particles are detected
outside of each otherÏs light cones, then, for particular sets
of measurements, we may derive BellÏs inequalities [36]
which local hidden-variables theories must obey, but which
quantum mechanics violates. The experiments performed by
Aspect and co-workers [37] (and more recent versions È see
Ref. [38] and A. Zeilinger and P. Kwiat, these proceedings)
provide strong evidence against local hidden-variables theo-
ries. The Aspect et al. experiments used polarization mea-
surements on entangled pairs of photons. The detection of
the photonsÏ polarization states occurred outside each
othersÏ light cones. Thus, the measurement on one photon
could not have a†ected the other measurement, which
closed possible ““loopholesÏÏ in the proof of quantum mecha-
nics over other explanations.

However, some loopholes still remain open. Since the
photon detection in the Aspect et al. experiments was not
100% efficient, the group had to make assumptions that the
photons they measured were a ““fairÏÏ sample of the whole
population of events. Thus, their experiments do not rule
out the (seemingly implausible) possibility of local hidden-
variables theories in which the hidden variables cause some
sub-ensemble of the photon pairs to preferentially interact
with the measurement apparatus.

In the system of two ions, we may detect the state of
either ion with nearly 100% efficiency through the use of
““electron-shelvingÏÏ (for a discussion, see Ref. [3]). On the
other hand, it may be difficult to perform measurements on
two ions outside each otherÏs light cone. Such a measure-
ment would require separating the ions by a distance larger
than the speed of light times the measurement time. In prin-
ciple of course, the ions could be Ðrst entangled and then
placed in di†erent traps which could be separated by large
distances before measurements were performed. Alternative-
ly, it may be possible to entangle distant pairs of ions using
optical Ðbers [11]. Nonetheless, an experiment with two
entangled ions conÐned in the same trap could be viewed as
complementary to those of Aspect and others : the photon
experiments deÐnitively close loopholes of causality, and the
ion experiments could close loopholes due to detection inef-
Ðciency. Such experiments have the additional appeal of
studying EPR on massive particles (E. Fry, these
proceedings). EPR states of atoms have recently been
created in an atomic beam using the methods of cavity
QED (S. Haroche, these proceedings) ; if detection efficiency
can be improved, these experiments could also close loop-
holes due to detection inefficiency. Finally, even though
measurements of quantum correlations between entangled
ions cannot be easily performed outside each otherÏs light
cone, one can argue strongly that the ions cannot transfer
information by any known mechanism. Therefore, if the
observed correlations violate BellÏs inequalities, the corre-
lations are established by some new force of nature or are,
in fact, inherent in the structure of quantum mechanics.

An intriguing possibility for ions is the possibility of
making ““GHZ statesÏÏ [39, 40]. For three ions, the GHZ
state has the form

W \ 1

J2
(o 0T1 o 0T2 o 0T3] eiÕ o 1T1 o 1T2 o 1T3). (5.4)

This state can be made starting with the state
applying the Ðrst two steps shown in eq.o 0T1 o 0T2 o 0T3 ,

(5.3), and following with a controlled-not gate between ions
1 and 3 [4]. For such a state, a single measurement can
distinguish between the predictions of quantum mechanics
and those of any local hidden-variables theory [39, 40].

Aside from these possibilities, Bell states, GHZ states, and
Schro� dinger-cat states are highly entangled, and are thus of
inherent interest for the study of uniquely quantum behav-
ior. As the experiments improve, it will be interesting to
push the size of entangled states to be as large as possible.
The question is not whether we can make states which have
the attributes of Schro� dinger cats, but how big can we make
the cats? Certain theories which address the measurement
problem will be amenable to experimental tests, for
example, quantitative limits on spontaneous wavefunction
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collapse theories [41, 42] can be established. The isolation
from the environment exhibited by trapped ions, coupled
with the control possible over their quantum state and high
detection efficiency make them an interesting laboratory for
the study of fundamental issues in quantum mechanics.
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