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Summary

The elasticity operator, for zero Poisson coefficient, with stress-free boundary conditions on a
two-dimensional strip with local perturbation of Young’s modulus, is considered. We prove the
existence of embedded eigenvalues and describe their asymptotic behaviour.

1. Introduction

We consider a two-dimensional strip � = {x ∈ R2 : |x2| < 2−1π} of a homogeneous and isotropic
linear elastic material. Let

a0[u, u] =
∫

�
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2
)

dx, u ∈ H1(�,C2), (1.1)

be the quadratic form of the elasticity operator

A0 = − (� + grad div) (1.2)

for zero Poisson coefficient with stress-free boundary conditions on �; see (2.4) below. The spec-
trum of the operator A0 is purely absolutely continuous and coincides with [0, +∞).

Let f ∈ L∞(R; (−∞, 1]) be a function of compact support, extended to � by f (x1, x2) = f (x1)
for x ∈ �. The function f describes a local perturbation of Young’s modulus: for α ∈ (0, 1) we
consider the perturbed operator Aα corresponding to the quadratic form

aα[u, u] =
∫

�
(1 − α f )

(
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∣∣∣∣∂u2

∂x2

∣∣∣∣
2

+
∣∣∣∣∂u2
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)

dx, u ∈ H1(�,C2). (1.3)

We shall discuss the existence of embedded eigenvalues of Aα for α ∈ (0, 1), and we describe the
asymptotic behaviour of these eigenvalues as α → 0.

The topic of this paper is closely related to a series of works on trapped modes for perturbed
quantum and acoustic waveguides; see among others (1 to 6) and the references therein. These
papers study the operator −� on some infinite domain and discuss the existence and the asymptotics
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400 C. FÖRSTER AND T. WEIDL

of eigenvalues, appearing for certain perturbations of the domain, such as a bending of the domain,
a local deformation of the boundary, an inclusion of an obstacle or a local change of the boundary
conditions.

In contrast to the Laplacian with Dirichlet boundary conditions (quantum waveguides), the es-
sential spectrum of the Laplacian with Neumann boundary conditions (acoustic waveguides) on
a strip-like domain fills the non-negative semi-axes. Therefore, any eigenvalue is embedded into
essential spectrum, and it is not possible to apply variational techniques directly. However, if the
perturbed domain satisfies a certain spatial symmetry, the Laplacian splits into the orthogonal sum
of two operators. Eventually the essential spectrum of the first operator is separated from zero, and
the lower discrete portion of its spectrum can be studied in the usual way (1). It is not difficult to
extend the results of (2) to the case of Neumann boundary conditions, if one considers the Lapla-
cian being reduced to antisymmetric functions on a symmetric domain; the results on the Dirichlet
Laplacian in (2, 6) do not require such a symmetry.

Passing to elliptic systems of equations one finds new effects. For instance it has been shown
in (7) that, in contrast to the Neumann Laplacian, the elasticity operator with stress-free boundary
conditions on a semi-strip has at least one positive eigenvalue. This effect is related to the so-called
edge resonance and it is due to an interaction between the spatial and the internal degrees of freedom
of the operator.

While the method in (7) is based on a variational argument which only allows to treat the case
of zero Poisson’s ratio ν, in (8) a semi-analytical method was presented which indicates, supported
by numerical evidence, that also for a certain ν �= 0 a trapped mode can be observed. Further new
results on trapped modes in elastic media can be found in (9 to 11).

To obtain mathematically rigorous results we restrict ourselves to the case of zero Poisson’s ratio
which corresponds to the investigation of the operator given by (1.2). In this case, beside the spatial
symmetries, an additional hidden symmetry can be observed which allows to remove the essential
spectrum below a certain cut-off frequency � > 0 and to investigate trapped modes arising below �.
The importance of this internal symmetry for similar problems has already been pointed out in (12).

Besides applying these symmetries, the proof of the existence of the edge resonance in (7) ex-
ploits another interesting fact. Note that the separation of variables for the Laplacian on � leads to
parabolic eigenvalue branches, which achieve their minima at zero frequency. In contrast to this,
separating variables in the x1-direction for the reduced operator A0 on �, one finds that the branch
of the lowest eigenvalues of the respective reduced fibre operators achieves its minimal value at two
different points ξ = ±	 of the Fourier coordinate ξ , corresponding to two opposite elastic waves
with non-zero frequencies; see Lemma 3.2. This fact also implies edge resonances for the elasticity
operator on three-dimensional semi-rods with appropriate cross-sections (13).

In some sense this paper can be considered as a continuation of (7). It is also closely related to
(14). The proof of the existence of trapped modes applies arguments of (15), where the appearance
of virtual bound states has been discussed in the general case. After the existence and the number
of the trapped modes have been established, we use variational methods to calculate the asymptotic
behaviour of these bound states. In the given case this seems to be easier than to deduce the number
of trapped modes and their asymptotics at once.

1.1 Notation

Statements or formulae containing the index ± have to be read independently with the index + and
the index −.
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TRAPPED MODES 401

2. Statement of the problem

We put � = R× J with J = (− 1
2π, 1

2π) and consider the quadratic form

ã[u, u] =
∫

�

(
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∣∣∣∣
2
)

dx, (2.1)

which is well defined on functions u = (u1, u2)
T ∈ d[a] = H1(�,C2). The form (2.1) appears, for

instance, in elasticity theory for plane stress or plane strain problems. In both models the positive
constants cl and ct depend upon the density of the material, the Young modulus and the Poisson
coefficient; see (16, 17).

In this paper we stress the special case of zero Poisson coefficient. Then both physical models
yield c2

l = 2c2
t , and choosing a suitable set of units, we shall study the form

a0[u, u] =
∫
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)
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which is (2.1) for cl = √
2, ct = 1. This form is associated with the positive self-adjoint operator

A0 = − (� + grad div) (2.3)

on the domain

Dom A0 =
{

u ∈ H2(�,C2) :
∂u2

∂x2

∣∣∣∣
x2=± 1

2 π

= ∂u1

∂x2
+ ∂u2

∂x1

∣∣∣∣
x2=± 1

2 π

= 0

}
. (2.4)

The inequality

a0[u, u] � 2‖u‖2
H1(�,C2)

, u ∈ H1(�,C2), (2.5)

is obvious. On the other hand the class of functions u ∈ L2(�,C2), for which the integral (2.2) is
well defined and finite, coincides with H1(�,C2). Moreover, the reverse estimate

a0[u, u] + ‖u‖2
L2(�,C2)

� c(�)‖u‖2
H1(�,C2)

, u ∈ H1(�,C2), c(�) > 0, (2.6)

holds, which is an extension of the well-known Korn inequality (18).
Considering now the form aα for α ∈ (0, 1), as given in (1.3), we see that this form is also

closed on the domain d[aα] = d[a0] = H1(�,C2) in H = L2(�,C2), where it induces a positive
self-adjoint operator Aα in H .

The spectrum of the operator A0 is purely absolutely continuous and fills the non-negative semi-
axis. It is well-known (19), that a local change of the boundary conditions or a local change of
the quadratic form will not change the essential spectrum. Therefore the essential part of the spec-
trum of Aα fills the non-negative semi-axes. In this paper we shall discuss the existence of positive
eigenvalues of the operator Aα which are embedded into its continuous spectrum.

3. Auxiliary material

3.1 Spatial and internal symmetries

For H = L2(�,C2) let Hj be the subspaces of vector functions

Hj :=
{

u ∈ H : ul(x1, −x2) = (−1)l+ j ul(x1, x2), l = 1, 2
}

, j = 1, 2.
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402 C. FÖRSTER AND T. WEIDL

Then H = H1 ⊕ H2. Further let H3 be the set

H3 = {u ∈ H : u = (u1(x1), 0)}.

This forms a subspace in H1. The orthogonal complement H4 to H3 in H1 consists of all functions
w = (w1, w2) ∈ H1 for which ∫

J
w1(x1, x2)dx2 = 0

for almost every x1. Let Pj be the orthogonal projections onto Hj , j = 1, . . . , 4. Then Pj P1 =
P1 Pj = Pj for j = 3, 4. A simple calculation shows that

d[a( j)
α ] := Pj d[aα] ⊂ d[aα], j = 1, . . . , 4,

and

aα[u, w] = 0 for all u ∈ d[a(l)
α ], w ∈ d[a( j)

α ] if l, j = 2, 3, 4 and l �= j.

Hence, these subspaces are reducing for the operator Aα and

Aα = A(3)
α ⊕ A(4)

α ⊕ A(2)
α on H = H3 ⊕ H4 ⊕ H2, (3.1)

where the operators A( j)
α are the restrictions of Aα to Dom A( j)

α = Dom Aα ∩ Hj and correspond
to the closed forms a( j)

α , given by the differential expression (1.3) on d[a( j)
α ], j = 2, 3, 4. Put

A(1)
α = A(3)

α ⊕ A(4)
α on H1 = H3 ⊕ H4, (3.2)

being the restriction of Aα to Dom Aα ∩ H1. Then it holds that

Aα = A(1)
α ⊕ A(2)

α on H = H1 ⊕ H2. (3.3)

The decomposition (3.3) reflects the spatial symmetry of the operator Aα , while the decomposition
(3.2) exploits the specific internal structure of Aα . We point out that the latter symmetry fails for
elasticity operators with non-zero Poisson coefficients.

3.2 Separation of variables for A0

Applying the unitary Fourier transform 
 in the x1-direction and its inverse 
∗, one finds that

A0


∗ permits the orthogonal decomposition


A0

∗ =
∫ ⊕

R

A(ξ)dξ on H =
∫ ⊕

R

hdξ, h = L2(J,C2).

The self-adjoint operators A(ξ) are given by the differential expressions

A(ξ) =
⎛
⎝2ξ2 − ∂2/∂x2

2 −iξ ∂/∂x2

−iξ ∂/∂x2 ξ2 − 2∂2/∂x2
2

⎞
⎠ (3.4)
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TRAPPED MODES 403

on the domains

Dom A(ξ) =
{

w ∈ H2(J,C2) :
∂w2

∂x2

∣∣∣∣
x2=± 1

2 π

= ∂w1

∂x2
+ iξw2

∣∣∣∣
x2=± 1

2 π

= 0

}
. (3.5)

The symmetry (3.1) extends to the operators A(ξ). Put

h j := {h ∈ w : wl(x2) = (−1) j+lwl(−x2), l = 1, 2}, j = 1, 2.

Let h3 be the one-dimensional subspace spanned by the constant vector function (1, 0), and set
h4 := h1 � h3 with respect to the scalar product in h. Then we have

Hj =
∫ ⊕

R

h j dξ and 
A( j)
0 
∗ =

∫ ⊕

R

A( j)(ξ)dξ, j = 1, . . . , 4, (3.6)

where the operators A( j)(ξ) are the restrictions of A(ξ) to Dom A( j)(ξ) = Dom A(ξ) ∩ h j . More-
over, it holds that

A(ξ) = A(1)(ξ) ⊕ A(2)(ξ) on h = h1 ⊕ h2,

A(ξ) = A(3)(ξ) ⊕ A(4)(ξ) ⊕ A(2)(ξ) on h = h3 ⊕ h4 ⊕ h2.
(3.7)

The operators A( j)(ξ) correspond to the quadratic forms

a( j)(ξ)[w,w] =
∫ π/2

−π/2

(
2ξ2|w1|2 + 2

∣∣∣∣∂w2

∂x2

∣∣∣∣
2

+
∣∣∣∣∂w1

∂x2
+ iξw2

∣∣∣∣
2
)

dx2 (3.8)

being closed on the domains d[a( j)(ξ)] = H1(J,C2) ∩ h j , j = 1, . . . , 4.

3.3 The spectral analysis of the operator A(4)
0

During this paper the spectral decomposition of the operator A(4)
0 will be of particular interest.

Because of the decomposition (3.6) we have in fact to carry out the spectral analysis of the operators
A(4)(ξ). Being the restrictions of the non-negative second-order Sturm–Liouville systems (3.4) to
Dom A(ξ) ∩ h4, the operators A(4)(ξ) have a non-negative discrete spectrum, which accumulates
to infinity only. Let {λ j (ξ)}∞j=1 be the non-decreasing sequence of the eigenvalues of A(4)(ξ). The
quantities λ j (ξ) are the solutions of the well-known Rayleigh–Lamb dispersion equation

β−1
j sin

(
πβ j

2

)
γ 2

j cos
(πγ j

2

)
+ ξ2 cos

(
πβ j

2

)
γ −1

j sin
(πγ j

2

)
= 0, (3.9)

where

β j = β j (ξ) :=
√

λ j (ξ) − ξ2, γ j = γ j (ξ) :=
√

λ j (ξ)

2
− ξ2 , (3.10)

cf. (20) or (21). The functions β j and γ j take either real or purely imaginary values. It is easy to see
that the actual choice of the branch of the square root is of no importance.
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404 C. FÖRSTER AND T. WEIDL

An elementary but careful analysis of the boundary problem (3.4) on Dom A(ξ) ∩ h4 shows that
these eigenvalues are simple for any fixed ξ ∈ R.1 The form a(4)(ξ) is a holomorphic family of the
Kato type (a), hence the operators A(4)(ξ) form a holomorphic family of the Kato type (B); see (22,
p. 395). Thus the even functions λ j (ξ) are real analytic in ξ . We shall need the following simple
assertion, the proof of which we attach as an Appendix to this paper.

LEMMA 3.1 For all w ∈ P4 H1(J,C2) and ξ ∈ R the following estimate holds:

a(ξ)[w,w] � max{(8√
3 − 12), 2−1ξ2}‖w‖2

L2(J,C2)
. (3.11)

Hence the lowest eigenvalue λ1(ξ) of A(4)(ξ) satisfies the bound

λ1(ξ) � max{8√
3 − 12, 2−1ξ2}, ξ ∈ R. (3.12)

The constants in (3.11), (3.12) are not sharp but suffice for our purposes. In particular we conclude
that the spectrum σ(A(4)

0 ), which by (3.6) coincides with the union of the images of the spectral
branches λ j (ξ) over all j ∈ N and ξ ∈ R, is absolutely continuous and given by

σ(A(4)) = [�, ∞), � = min
ξ∈R

λ1(ξ) � 8
√

3 − 12 > 1·856.

The following lemma describes the structure of the global minima of the function λ1(ξ). Its proof
uses entirely elementary tools, but since this statement is crucial for what follows, we shall provide
a sketch of the proof at the end of the paper.

LEMMA 3.2 The eigenfunction λ1(ξ) achieves its minimal value � at exactly two points ξ = ±	,
	 > 0, and there exists a value q > 0 such that

λ1(ε ± 	) = � + q2ε2 + O(ε3) as ε → 0. (3.13)

Being solutions of transcendent equations, 	, � and q do not have explicit analytic expressions.
A numerical evaluation for these values gives

	 = 0·632138 ± 10−6,

� = 1·887837 ± 10−6,

q = 0·849748 ± 10−6.

(3.14)

The eigenfunction corresponding to λ j can be given by ψ j = ψ̃ j/‖ψ̃ j‖L2(J,C2), where

ψ̃ j = ψ̃ j (ξ, x2) =

⎛
⎜⎜⎜⎜⎝

iξ cos

(
β jπ

2

)
cos(γ j x2) + iξγ 2

j

ξ2 cos
(γ jπ

2

)
cos(β j x2)

−γ j cos

(
β jπ

2

)
sin(γ j x2) + γ 2

j

β j
cos
(γ jπ

2

)
sin(β j x2)

⎞
⎟⎟⎟⎟⎠ (3.15)

1 In particular, the trivial eigenfunction u = (1, 0) with the eigenvalue 2ξ2 of (3.4), (3.5) does not belong to h4 and has to
be excluded.
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TRAPPED MODES 405

if γ j �= 0, or

ψ̃ j = ψ̃(ξ, x2) =
⎛
⎜⎝i

(
cos((2l − 1)x2) + 2(−1)l

π(2l − 1)

)

sin((2l − 1)x2)

⎞
⎟⎠ , j =

∣∣∣∣l − 1

2

∣∣∣∣+ 1

2
, (3.16)

in the case γ j = 0, which occurs for ξ = (2l − 1) and λ j (ξ) = 2ξ2 = 2(2l − 1)2, l ∈ Z.

4. Statement of the main result

Let φ = (φ(1), φ(2)) = ψ1(	, ·) be the normalized eigenfunction (3.15) of A(4)(	) corresponding
to the eigenvalue �. Put

θ =
∫ π/2

−π/2

⎛
⎝2	2

∣∣∣φ(1)
∣∣∣2 + 2

∣∣∣∣∣∂φ(2)

∂x2

∣∣∣∣∣
2

−
∣∣∣∣∣∂φ(1)

∂x2
+ i	φ(2)

∣∣∣∣∣
2
⎞
⎠ dx2.

A numerical evaluation with the values for 	 and � as in (3.14) gives

θ = 1·816478 ± 10−6. (4.1)

Moreover, for a given function f ∈ L∞(R; (−∞, 1]) of bounded support put

µ j = �

∫
R

f (x1)dx1 + (−1) jθ

∣∣∣∣
∫
R

e2i	x1 f (x1)dx1

∣∣∣∣ , j = 1, 2. (4.2)

Let q be the respective parameter in (3.13).

THEOREM 4.1 If

µ1 > 0 and µ2 > 0, (4.3)

then for all sufficiently small positive α the spectrum of A(4)
α below � consists of two eigenvalues

ν j (α) = � − α2π2

q2 µ j + o(α2), (4.4)

where j = 1, 2. If

µ1 > 0 and µ2 < 0, (4.5)

then for all sufficiently small positive α the spectrum of A(4)
α below � consists of one eigenvalue

ν1(α), satisfying (4.4) for j = 1. If

µ1 < 0 and µ2 < 0, (4.6)

then A(4)
α does not have spectrum below � for all sufficiently small positive α.

Obviously the eigenvalues ν j (α) of A(4)
α are embedded eigenvalues for the complete elasticity

operator Aα .
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406 C. FÖRSTER AND T. WEIDL

5. On the existence of discrete spectrum

The effect that arbitrarily small perturbations will draw bound states from the threshold of the con-
tinuous spectrum is sometimes depicted as the existence of ‘virtual bound states’ for the unperturbed
operator at the edge of its spectrum. One of the main difficulties in this context is that Kato’s pertur-
bation theory is not applicable in a straightforward way. There is extensive literature on this subject;
see, for example, (14) and the more operator theoretical treatment in (15).

In particular, the later approach allows one to deal with the appearance of several virtual bound
states, as is the case in our setting. Indeed, in contrast to many analogous problems for the Laplace
operator, where only one trapped mode appears for small couplings, the matrix structure of the
elasticity operator gives rise to two small coupling modes. This is due to the structure of the band
functions near the spectral minimum as described in Lemma 3.2.

Applying (15) we reduce the initial problem to the study of an isolated eigenvalue of multiplicity
two (corresponding to the two ‘virtual eigenvalues’ of A(4)

0 at �) of an auxiliary Birman–Schwinger
type operatorB. Using standard analytic perturbation theory we discuss the splitting of this double
eigenvalue and discover which branches actually give rise to trapped modes.

5.1 Preliminary estimates I

We recall that 
 is the Fourier transform in x1-direction and 
∗ is its inverse. Let χ+ be the char-
acteristic function of the interval (0, 2	) and let χ− be the characteristic function of the interval
(−2	, 0). For u ∈ L2(�,C2) and j ∈ N we define

û( j)(ξ) = 〈(
u)(ξ, ·), ψ j (ξ, ·)〉L2(J,C2)
and û±(ξ) = χ±(ξ)û(1)(ξ).

Moreover, put

u( j) = (� j u) = 
∗(û( j)ψ j ) and u± = (�±u) = 
∗(û±ψ1).

The operators � j and �± are orthogonal projections onto invariant subspaces for A(4)
0 in H4,

�+�− = 0 and � j�k = 0 for j �= k.

Moreover, P4 =∑∞
j=1 � j . Since �− + �+ � �1, the operator

� = P4 − �+ − �−

is also an orthogonal projection onto an invariant subspace of A(4)
0 in H4, and we set ũ = �u.

Hence for u ∈ P4 H1(�,C2) we have ũ, u± ∈ P4 H1(�,C2) ⊂ H1(�,C2), and the form a0 can be
written as

a0[u, u] = a0[ũ, ũ] + a0[u−, u−] + a0[u+, u+]

=
∑
j�2

∫
R

λ j (ξ)|û( j)(ξ)|2dξ +
∫

|ξ |�2	
λ1(ξ)|û(1)(ξ)|2dξ

+
∫ 0

−2	
λ1(ξ)|û−(ξ)|2dξ +

∫ 2	

0
λ1(ξ)|û+(ξ)|2dξ. (5.1)
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Since λ j (ξ) is separated from � for all ξ if j � 2 or for |ξ | � 2	 if j = 1, we have a two-sided
estimate

a0[ũ, ũ] − �

∫
�

|ũ|2dx �
∑
j�2

∫
R

(1 + λ j (ξ))|û( j)|2dξ +
∫

|ξ |�2	
(1 + λ1(ξ))|û(1)|2dξ

� a0[ũ, ũ] + ‖ũ‖2
L2(�,C2)

� ‖ũ‖2
H1(�,C2)

. (5.2)

On the last line we make use of Korn’s inequality. Moreover, since λ1(ξ) − � � (ξ ∓ 	)2 with the
minus sign if ξ ∈ (0, 2	) and the plus sign if ξ ∈ (−2	, 0), we have

a0[u±, u±] − �

∫
�

|u±|2dx �
∫
R

(ξ ∓ 	)2|û±|2dξ �
∫

�

∣∣∣∣∂e∓i	x1 u±

∂x1

∣∣∣∣
2

dx . (5.3)

Combining (5.1) and (5.3) we obtain

a0[u, u] − �

∫
�

|u|2dx � ‖ũ‖2
H1(�,C2)

+
∫

�

{∣∣∣∣∂e−i	x1u+

∂x1

∣∣∣∣
2

+
∣∣∣∣∂ei	x1 u−

∂x1

∣∣∣∣
2
}

dx (5.4)

for all u ∈ P4 H1(�,C2).

5.2 Preliminary estimates II

Put

b[u, u] :=
∫

�

(∣∣∣∣ ∂u

∂x1

∣∣∣∣
2

+
∣∣∣∣ ∂u

∂x2

∣∣∣∣
2

+ |u|2
)

dx

1 + x2
1

, u ∈ P4 H1(�,C2). (5.5)

In view of (5.4) we have obviously

b[ũ, ũ] � c
(

a0
[
ũ, ũ
]− �‖ũ‖2

L2(�,C2)

)
, u ∈ P4 H1(�,C2). (5.6)

The analogous bound fails for the components u±, but it can be replaced by the following statement.

LEMMA 5.1 Assume u ∈ P4 H1(�,C2) and∫
R

û±(ξ)dξ = 0. (5.7)

Then

b[u±, u±] � c
(

a0[u±, u±] − �‖u±‖2
L2(�,C2)

)
. (5.8)

Proof. First note that u± ∈ P4 H1(�,C2) ⊆ H1(�,C2) implies that

∫
�

(
|u±|2 +

∣∣∣∣∂u±

∂x1

∣∣∣∣
2
)

dx =
∫
R

dξ(1 + ξ2)|û±(ξ)|2
∫

J
dx2|ψ1(ξ, x2)|2

=
∫
R

(1 + ξ2)|û±(ξ)|2dξ < ∞,
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408 C. FÖRSTER AND T. WEIDL

and by Hölder’s inequality û± ∈ L1(R,C). Thus condition (5.7) is justified. Put ζ(x) = (1 +
x2

1)−1/2. Since ∥∥∥∥ζ ∂u±

∂x1

∥∥∥∥
L2(�,C2)

� |	|∥∥ζu±∥∥
L2(�,C2)

+
∥∥∥∥∂e∓i	x1 u±

∂x1

∥∥∥∥
L2(�,C2)

,

in view of (5.3) it is sufficient to prove that

∥∥ζu±∥∥2
L2(�,C2)

+
∥∥∥∥ζ ∂u±

∂x2

∥∥∥∥
2

L2(�,C2)

� c

∥∥∥∥∂e∓i	x1u±

∂x1

∥∥∥∥
2

L2(�,C2)

. (5.9)

Let Q± : L2(R,C) → L2(�,C2) be the integral operators

(Q±h)(x1, x2) := e±i	x1√
2π

∫ 	

−	
eitx1ψ1(t ± 	, x2)|t |−1h(t)dt,

being defined on all appropriate functions h. Set ŵ±(t) = |t |û±(t ± 	). Then we have

u± = Q±ŵ± and ‖∂(e∓i	x1 u±)/∂x1‖L2(�,C2) = ‖ŵ±‖L2(R,C). (5.10)

Developing the eigenfunction ψ1(ξ, x2), given in (3.15), (3.16) in a Taylor series near ±	, we find

ψ1(t ± 	, x2) = ψ1(±	, x2) + tτ±(t, x2) for t ∈ [−	, 	],

where

ψ1,
∂

∂x2
ψ1, τ

±,
∂

∂x2
τ± ∈ L∞([−	, 	] × J,C2). (5.11)

Moreover it holds that

ζ Q± = e±i	x1√
2π

ψ1(±	, x2)Q0 + e±i	x1√
2π

Q1τ
±,

ζ
∂

∂x2
Q± = e±i	x1√

2π

∂ψ1(±	, x2)

∂x2
Q0 + e±i	x1√

2π
Q1

∂τ±

∂x2
,

(5.12)

where Q0 and Q1 are the integral operators

(Q0h0)(x1) := ζ

∫ 	

−	
eitx1 h0(t)

dt

|t | and (Q1h1)(x) := ζ

∫ 	

−	
eitx1 h1(t, x2)

tdt

|t | .

The operator Q1 is obviously bounded in L2(�,C2). Next note that for functions h2 ∈ H1(R,C)
with h2(0) = 0 Hardy’s inequality

‖ζh2‖L2(R,C) � 2‖∂h2/∂x1‖L2(R,C)

holds. Because of (5.7) we can apply this to h2 = e∓i	x1
∗û±, which leads to

‖Q0ŵ
±‖L2(R,C) � 2‖ŵ±‖L2(R,C).
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Combining this with (5.11) and (5.12), we conclude that

max

{
‖ζ Q±ŵ±‖L2(�,C2),

∥∥∥∥ζ ∂

∂x2
Q±ŵ±

∥∥∥∥
L2(�,C2)

}
� c‖ŵ±‖L2(R,C).

Then (5.10) implies (5.9).

5.3 The Birman–Schwinger principle I

On the domain d[m] = P4 H1(�,C2) we define the quadratic form

m[u, u] := a0[u, u] − �‖u‖2
L2(�,C2)

+ b[u, u]. (5.13)

Then P4 H1(�,C2) is a pre-Hilbert space with respect to the scalar product m. Let the Hilbert space
H be the completion of P4 H1(�,C2) with respect to m. Since a0[u, u] − �‖u‖2

L2(�,C2)
� 0 for

u ∈ P4 H1(�,C2), the form b extends to a bounded form on H, where it induces a non-negative
operatorB. The operator norm ofB does not exceed one. In fact the following holds.

LEMMA 5.2 The point 1 is an isolated eigenvalue of multiplicity two of the operator B. The re-
spective eigenspace can be represented by the two-dimensional linear set of fundamental sequences
ũς = {uς

k }∞k=1,

uς
k = ϑ(k−1x1)(ς+ei	x1ψ1(	, x2) + ς−e−i	x1ψ1(−	, x2)), (5.14)

where ς = (ς+, ς−) ∈ C2, ϑ ∈ C∞
0 (R,C) and ϑ(x1) = 1 in some neighbourhood of x1 = 0.

Proof. The spectrum of B is a subset of the interval [0, 1]. By (5.6) and (5.8) there exists δ > 0
such that

b[u, u] � (1 − δ)m[u, u] (5.15)

for all functions u ∈ P4 H1(�,C2) satisfying (5.7). Since this set of functions is of codimension two
in P4 H1(�,C2), and the latter set is dense in H, the total multiplicity of the spectrum of B above
1 − δ does not exceed two.

Obviously uς
k ∈ P4 H1(�,C2). Using the two-sided bound (5.4) it is easy to verify that ũς is

fundamental with respect to m, and

a�[uς
k , uς

k ] := a0[uς
k , uς

k ] − �‖uς
k ‖2

L2(�,C2)
→ 0 as k → ∞. (5.16)

By continuity the form a� extends to a bounded non-negative form on H. The union of the repre-
sentative sequences (5.14) over ς ∈ C2 forms a two-dimensional subspace H1 in H, on which a�

vanishes. But then it holds that

m[ũς , w̃] − b[ũς , w̃] = a�[ũς , w̃] = 0

for all ũς ∈ H1 and w ∈ H, or equivalentlyBũς = ũς . Hence the point 1 is an isolated eigenvalue
of multiplicity two forB.
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410 C. FÖRSTER AND T. WEIDL

5.4 The Birman–Schwinger principle II

Below χ[0,�) and χ(1,∞) are the characteristic functions for the respective intervals and

v[u, u] :=
∫

�
f

(
2

∣∣∣∣∂u1

∂x1

∣∣∣∣
2

+ 2

∣∣∣∣∂u2

∂x2

∣∣∣∣
2

+
∣∣∣∣∂u2

∂x1
+ ∂u1

∂x2

∣∣∣∣
2
)

dx, u ∈ H1(�,C2). (5.17)

Glazmann’s lemma and (1.3) imply that

rank χ[0,�)(A(4)
α ) = max dim L ,

where the supremum is taken over all linear sets L ⊂ P4 H1(�,C2) such that

a0[u, u] − αv[u, u] < �‖u‖2
L2(�,C2)

for all u ∈ L , u �≡ 0. (5.18)

Because of the boundedness of f the form v can be extended to a bounded hermitian form on H,
where it induces the bounded self-adjoint operatorV. PutB(α) := B+αV. Applying Glazmann’s
lemma to this operator, one finds

rank χ(1,∞)(B(α)) = max dim L ,

where the supremum is taken over all linear sets L from the subset P4 H1(�,C2) being dense in H,
such that

m[u, u] < b[u, u] + αv[u, u] for all u ∈ L , u �≡ 0. (5.19)

Comparing (5.18) and (5.19), one obtains the following variation of the Birman–Schwinger
principle:

rank χ[0,�)(A(4)
α ) = rank χ(1,+∞)(B(α)), 0 < α < 1. (5.20)

5.5 Proof of Theorem 4.1—Existence of eigenvalues

According to Lemma 5.2 the point 1 is an isolated eigenvalue of multiplicity two ofB = B(0) and
B has no spectrum above 1. The perturbation family B(α) is analytic of Kato type (A) in α (22).
Thus for small α > 0 the spectrum ofB(α) near or above 1 will consist of two eigenvalues, which
form two analytic branches

κ j (α) = 1 + ακ
(1)
j + O(α2), j = 1, 2.

Hence by (5.20) the value limα→+0 rank χ[0,�)(A(4)
α ) coincides with the quantity of the branches

κ j (α) satisfying κ j (α) > 1 for all sufficiently small α > 0.
Obviously κ

(1)
j > 0 implies κ j (α) > 1 and κ

(1)
j < 0 implies κ j (α) < 1 for small α. From

standard analytic perturbation theory we know (22) that the values κ
(1)
j are the eigenvalues of the

form v , being reduced to the two-dimensional eigenspace H1 of B at 1. Since we are interested in
the signs of these values only, according to (5.14) we have to calculate the signs of the eigenvalues
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of the matrix

M = lim
k→∞

⎛
⎝v[u(1,0)

k , u(1,0)
k ] v[u(1,0)

k , u(0,1)
k ]

v[u(0,1)
k , u(1,0)

k ] v[u(0,1)
k , u(0,1)

k ]

⎞
⎠

=
(

�
∫

f (x1)dx1 θ
∫

e2i	x1 f (x1)dx1

θ
∫

e−2i	x1 f (x1)dx1 �
∫

f (x1)dx1.

)
. (5.21)

The eigenvalues of M are µ1 and µ2 from (4.2). Then the conditions (4.3), (4.5), or (4.6) correspond
to κ

(1)
1 > 0 and κ

(1)
2 > 0, κ

(1)
1 > 0 and κ

(1)
2 < 0, or κ

(1)
1 < 0 and κ

(1)
2 < 0, respectively. This

concludes the proof.

6. The asymptotic behaviour of trapped modes

We have shown that in the setting of Theorem 4.1 the spectrum of the operator A(4)
α below � consists

of exactly two eigenvalues ν1(α) � ν2(α) in the case (4.3), or exactly one eigenvalue ν1(α) in the
case (4.5), if the positive parameter α is sufficiently small. In this section we shall calculate the
asymptotic behaviour of these eigenvalues in the cases (4.3) and (4.5) as α → 0.

6.1 Preliminary estimates III

We take a finite interval I such that supp f ⊂ I , and let χI be the characteristic function for I . For
ν < � we consider on H4 the two rank one operators

(T ±
ν w)(x) = ψ1(±	, x2)e

±i	x1χI (x1)

∫
�

ψ1(±	, x ′
2)ŵ(ξ, x ′

2)dξdx ′
2√

q2(ξ ∓ 	)2 + � − ν
.

Put Tν = T +
ν + T −

ν . Then the form

yν[w,w] = v[Tνw, Tνw]

is well defined and bounded on L2(�,C2). Let Yν be the associated self-adjoint operator of rank
two.

LEMMA 6.1 Let q be the respective parameter in (3.13) and let µ j be the eigenvalues of M in
(5.21). The eigenvalues µ j (ν), corresponding to the non-trivial part of Yν , satisfy the asymptotic
equation

µ j (ν) = π

q
√

� − ν
µ j + o

(
1√

� − ν

)
as ν → � − 0, j = 1, 2.

Proof. Let Wδ be the unitary scaling operator

(Wδw)(x) = √
δw(δx1, x2), δ > 0.

Put

η±
δ (ξ, x2) =

√
q

π

ψ1(±	, x2)√
q2(ξ ∓ δ−1	)2 + 1

.
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412 C. FÖRSTER AND T. WEIDL

These functions are normed in L2(�,C2). Let T̃ ±
ν be the rank one operators

(T̃ ±
ν w)(x) = ψ1(±	, x2)e

±i	x1χI (x1)
〈
w, η±

δ

〉
L2(�,C2)

, δ = √
� − ν.

Then it holds that √
π−1qδT ±

ν = T̃ ±
ν Wδ
, δ = √

� − ν. (6.1)

Let Ỹν be the rank two self-adjoint operator, corresponding to the quadratic form

ỹν[w,w] = v[T̃νw, T̃νw], T̃ν = T̃ +
ν + T̃ −

ν .

Further, set

η̃δ = η−
δ − η+

δ

〈
η−

δ , η+
δ

〉
L2(�,C2)

‖η−
δ − η+

δ

〈
η−

δ , η+
δ

〉
L2(�,C2)

‖L2(�,C2)

.

Let Sν , S̃ν : H4 �→ C
2 be the operators

Sν =
(〈·, η+

δ

〉
L2(�,C2)〈·, η−

δ

〉
L2(�,C2)

)
and S̃ν =

(〈·, η+
δ

〉
L2(�,C2)

〈·, η̃δ〉L2(�,C2)

)
, δ = √

� − ν.

The operator S̃ν is a partial isometric mapping from the linear span of η±
δ onto C2. The identity

ỹν[w,w] = 〈M Sνw, Sνw〉C2 implies Ỹν = S∗
ν M Sν . The eigenvalues of the non-trivial part of

S̃∗
ν M S̃ν are µ j . Since

〈
η+

δ , η−
δ

〉
L2(�,C2)

→ 0 as δ → 0, we have

S̃∗
ν M S̃ν − Ỹν = S̃∗

ν M S̃ν − S∗
ν M Sν → 0 as ν → � − 0.

By (6.1) the eigenvalues µ j (ν) of Yν coincide with the eigenvalues of the non-trivial part of the
operator πq−1δ−1Ỹν , δ = √

� − ν. But then

qπ−1µ j (ν)
√

� − ν → µ j as ν → � − 0, j = 1, 2.

6.2 Preliminary estimates IV

Let Rν = (A(4)
0 − ν)−1 be the resolvent of A(4)

0 at the spectral point ν. For ν < � the operator R1/2
ν

is a bounded mapping from H4 to d[a(4)] = P4 H1(�,C2) ⊆ H1(�,C2). Hence the form

xν[w,w] = v[R1/2
ν w, R1/2

ν w]

is well defined and bounded on H4. Let Xν be the associated bounded self-adjoint operator on H4.

LEMMA 6.2 There exists a positive constant C such that the estimate

‖Xν − Yν‖ � C(1 + 1/
4
√

� − ν) (6.2)

holds for all ν < �.

Proof. Put δ = √
� − ν. By Korn’s inequality the operator ∇ R1/2

ν is bounded on H4 for fixed
ν < �. Since R1/2

ν � is uniformly bounded for all ν � �, it is then easy to see that the operator
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∇ R1/2
ν � is uniformly bounded for all ν � �. Moreover, for ν < � the operators χI ∇ R1/2

ν �± are
Hilbert–Schmidt, and

‖χI ∇ R1/2
ν �±u‖2

L2(�,C2)
� c1‖u‖2

L2(�,C2)

∫
0<±ξ<	

ξ2dξ

λ1(ξ) − ν

� c2‖u‖2
L2(�,C2)

∫
dξ

q2(ξ ∓ 	)2 + δ2 � c3δ
−1‖u‖2

L2(�,C2)
(6.3)

for all u ∈ H4. The same type of estimate shows that

‖χI ∇T ±
ν u‖2 � c4δ

−1‖u‖2
L2(�,C2)

, u ∈ H4. (6.4)

Computing the corresponding Taylor series with remainder estimates we see that

eiξ x1ψ1(ξ, x2)ψ1(ξ, x ′
2)√

λ1(ξ) − ν
= e±i	x1ψ1(±	, x2)ψ1(±	, x ′

2)√
q2(ξ ∓ 	)2 + δ2

(1 + (ξ ∓ 	)R±(ξ, x, x ′)),

where the functions R± are uniformly bounded on (−2	, 2	) × (I × J )2. But then

‖χI ∇(R1/2
ν (�+ + �−) − Tν)u‖2

L2(�,C2)
� c5‖u‖2

L2(�,C2)

∫ 	

0

(ξ − 	)2dξ

q2(ξ − 	)2 + δ2

� c6‖u‖2
L2(�,C2)

. (6.5)

Recall that

v[u, u] � c‖χI ∇u‖2
L2(�,C2)

(6.6)

for u ∈ P4 H1(�,C2). We decompose the form xν as follows:

xν[u, u] = v[R1/2
ν (�+ + �−)u, R1/2

ν (�+ + �−)u] + r [u, u],

where by (6.3), (6.6) the form

r [u, u] = v[R1/2
ν �u, R1/2

ν �u] + 2�v[R1/2
ν �u, R1/2

ν (�+ + �−)u]

satisfies the estimate

|r [u, w]| � C(1 + δ−1/2)‖u‖L2(�,C2)‖w‖L2(�,C2).

The identity

xν[u, u] − yν[u, u] = 2�v[(R1/2
ν (�+ + �−) − Tν)u, R1/2

ν (�+ + �−)u]

− v[(R1/2
ν (�+ + �−) − Tν)u, (R1/2

ν (�+ + �−) − Tν)u] + r [u, u]

implies together with (6.4), (6.5) and (6.6) that

|〈(Xν − Yν)u, u〉L2(�,C2)| � C(1 + δ−1/2)‖u‖2
L2(�,C2)

as u ∈ H4. This completes the proof.
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414 C. FÖRSTER AND T. WEIDL

6.3 The proof of Theorem 4.1—Formula (4.4)

For t ∈ R let χ{t} be the characteristic function for the point t . The operator αXν is the Birman–
Schwinger operator for the perturbed operator family A(4)

α ,

rank χ{1}αXν = rank χ{ν}(Aα) (6.7)

and

rank χ[1,∞)αXν = rank χ[0,ν](Aα) (6.8)

for all ν < � and 0 < α < 1; see (23). By (6.3) and (6.6) we see that

|〈Xνu, u〉L2(�,C2)| � cδ−1‖u‖2
L2(�,C2)

. (6.9)

Put δ j (α) =√� − ν j (α). Then (6.7) and (6.9) imply

δ j (α) = O(α) as α → +0.

The estimate (6.2) transforms into

‖δ j (α)Xν j (α) − δ j (α)Yν j (α)‖ � C(δ j (α) +√δ j (α)) = O(
√

α)

as α → 0. The operators δ j (α)Yν j (α) are of rank two, and by Lemma 6.1 their non-trivial eigen-
values δ j (α)µ j (ν j (α)) satisfy δ j (α)µ j (ν j (α)) → q−1πµ j , j = 1, 2. By standard perturbation
theory we conclude that, if µ j �= 0, j = 1, 2, the operators δ j (α)Xν j (α) have all spectra in an
O(

√
α)-neighbourhood of zero, except two eigenvalues � j (α) → q−1πµ j for j = 1, 2, respec-

tively. In the cases (4.5), (4.3) µ j > 0 implies now that the point � j (α) becomes the j th largest
eigenvalue of δ j (α)Xν j (α) for sufficiently small α > 0. That means α� j (α)δ−1

j (α) becomes the j th
largest eigenvalue of αXν j (α), which on its turn by (6.7), (6.8) equals 1. Hence

α−1δ j (α) = � j (α) → q−1πµ j

as α → 0. This concludes the proof.

7. Conclusions

We have proven the existence of trapped modes in elastic strips perturbed by local changes of
Young’s modulus. We furthermore have obtained an asymptotic formula which describes the be-
haviour of the trapped modes in the limit of small differences of Young’s modulus.

In a forthcoming paper the results of this article will be extended to three-dimensional elastic
plates. Further extensions which are in the focus of our present work concern the treatment of other
limit cases like the limit of small or large areas of changed Young’s modulus. Also extensions to
other types of perturbations like cracks or holes in the three-dimensional medium can be treated by
variational techniques.
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APPENDIX

A.1 Sketch of the Proof of Lemma 3.1

For brevity we shall write w′
j instead of ∂w j /∂x2. The functions w j are continuous. Since w1 is symmetric

and orthogonal to the constant function, it is easy to see that

4‖w1‖2
L2(J,C) � ‖w′

1‖2
L2(J,C) and ‖w1‖2

C(J,C) � ‖w′
1‖L2(J,C)‖w1‖L2(J,C). (A.1)

On the other hand, for w2 being antisymmic it holds that

‖w2‖2
L2(J,C) � ‖w′

2‖2
L2(J,C) and ‖w2‖2

C(J,C) � ‖w′
2‖L2(J,C)‖w2‖L2(J,C). (A.2)

Minimizing the expression for a(ξ)[w,w] in ξ and using the first bound in (A.1), (A.2), respectively, one
obtains

a(ξ)[w,w] � ‖w′
1‖2

L2(J,C) + 2‖w′
2‖2

L2(J,C) −
‖w′

1‖2
L2(J,C)‖w2‖2

L2(J,C)

2‖w1‖2
L2(J,C) + ‖w2‖2

L2(J,C)

� 2
4‖w1‖4

L2(J,C) + ‖w2‖4
L2(J,C) + 2‖w1‖2

L2(J,C)‖w2‖2
L2(J,C)

2‖w1‖2
L2(J,C) + ‖w2‖2

L2(J,C)

.

Minimizing the right-hand side under the restriction ‖w‖2
L2(J,C2)

= ‖w1‖2
L2(J,C) +‖w2‖2

L2(J,C) we arrive at

a(ξ)[w,w] � (8
√

3 − 12)‖w‖2
L2(J,C). (A.3)

For the second estimate we shall use the fact that

|〈w′
1, w2〉L2(J,C)| � 2‖w1‖C(J,C)‖w2‖C(J,C) + ‖w1‖L2(J,C)‖w′

2‖L2(J,C).

Then in view of the second of the bounds in (A.1), (A.2), respectively, we have

a(ξ)[w,w] � 2ξ2‖w1‖2
L2(J,C) + ξ2‖w2‖2

L2(J,C) + ‖w′
1‖2

L2(J,C) + 2‖w′
2‖2

L2(J,C)

− ξ‖w′
1‖L2(J,C)‖w2‖L2(J,C) − ξ‖w1‖L2(J,C)‖w′

2‖L2(J,C)

− 2ξ
√

‖w1‖L2(J,C)‖w′
1‖L2(J,C)‖w2‖L2(J,C)‖w′

2‖L2(J,C).

This chain of inequalities can be continued as follows:

a(ξ)[w,w] � 2ξ2‖w1‖2
L2(J,C) + ξ2‖w2‖2

L2(J,C) + ‖w′
1‖2

L2(J,C) + 2‖w′
2‖2

L2(J,C)

− (1 + δ)ξ‖w′
1‖L2(J,C)‖w2‖L2(J,C) − (1 + δ−1)ξ‖w1‖L2(J,C)‖w′

2‖L2(J,C)

� ξ2

(
2 − (1 + δ−1)2

8

)
‖w1‖2

L2(J,C) + ξ2

(
1 − (1 + δ)2

4

)
‖w2‖2

L2(J,C)
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for all δ > 0. In particular, for δ = √
2 − 1 we conclude that

a(ξ)[w,w] � 23 − 16
√

2

4(
√

2 − 1)2
ξ2‖w1‖2

L2(J,C) + 1

2
ξ2‖w2‖2

L2(J,C) �
1

2
ξ2‖w‖2

L2(J,C2)
. (A.4)

It remains to combine (A.3), (A.4) and to apply this to

λ1(ξ) = min
w∈P4 H1(J,C2)

‖w‖−2
L2(J,C2)

a(ξ)[w,w].

A.2 Proof of Lemma 3.2

First note that by (A.1) and (A.2) we have

a(ξ)[w,w] � 2 min{ξ2, 1}‖w‖2
L2(J,C2)

and a(0)[w,w] � 2‖w‖2
L2(J,C2)

for all w ∈ P4 H1(J,C2), w �≡ 0. Moreover, if

w(x2) =

⎛
⎜⎜⎜⎝

−
√

7

8
cos

(
3x

4

)
+ 9

√
7

56
cos

(
5x

4

)
+ 4

√
7

105π

√
2 + √

2

3

8
sin

(
3x

4

)
+ 9

40
sin

(
5x

4

)
⎞
⎟⎟⎟⎠ ,

then w ∈ P4 H1(J,C2) and

a(4−1√
7)[w,w]

‖w‖2
L2(J,C2)

= 21468
√

2π − 30330π2 + 1120 + 560
√

2

9384
√

2π − 15165π2 + 1280 + 640
√

2
< 1·91. (A.5)

Hence

λu = 8
√

3 − 12 � � < 1·91 = λo, (A.6)

and the non-constant analytic function λ1(ξ) achieves its global minima � at a finite number of points ξn such
that 0 < ξ2

n < λo/2. In a neighbourhood εn of these points ξn we have λ1(ξ) < 2 and hence 0 � γ1 < 1,
β1 > 0. Now it is easy to see that the equation (3.9) has no solution with γ1 = 0 or β1 � 1 as ξ ∈ εn . Hence
1 − λ1(ξ)/2 < γ 2

1 (ξ) < λ1(ξ)/2 and

γ 2
1 (ξ)ϒ(β1(ξ)) + ξ2ϒ(γ1(ξ)) = 0 for ξ ∈ εn, (A.7)

where ϒ(x) = x−1 tan(πx/2). Differentiating (A.7) with respect to z = ξ2 and applying (A.7), (3.10), we
claim that

ϒ̃(γ ) := ((2γ 2 − �)ϒ(γ ) + 8π−1)((2γ 2 + �)ϒ(γ ) − 4π−1) − 2� + 32π−2 = 0 (A.8)

at the points γ =
√

�/2 − ξ2
n . Note that 2�−32π−2 > 0. Consider (A.8) as an equation in γ ∈ (

√
1 − λo/2,√

λo/2). The second factor on the left-hand side is positive and increasing in γ . Using (A.6) it is not difficult to
see that the first factor is increasing in γ as well, hence the product is increasing where it is non-negative, and
the equation (A.8) has not more than one solution γ ∈ (

√
1 − λo/2,

√
λo/2). We conclude that λ1(ξ) achieves

its minimal value at exactly two points ξ = ±ξ0 �= 0.

Next we sharpen the estimate on γ =
√

�/2 − ξ2
0 . By (A.6) we see that

ϒ̃(γ̃ ) � ((2γ̃ 2 − λu)ϒ(γ̃ ) + 8π−1)((2γ̃ 2 + λo)ϒ(γ̃ ) − 4π−1) − 2λu + 32π−2 (A.9)
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if (2γ̃ 2 − λu)ϒ(γ̃ ) + 8π−1 � 0 and

ϒ̃(γ̃ ) � ((2γ̃ 2 − λo)ϒ(γ̃ ) + 8π−1)((2γ̃ 2 + λu)ϒ(γ̃ ) − 4π−1) − 2λo + 32π−2 (A.10)

if (2γ̃ 2 − λo)ϒ(γ̃ ) + 8π−1 � 0. By the same monotonicity argument as above the functions on the right-
hand side of (A.9), (A.10) have only one root γ̃u , γ̃o, respectively, within (

√
1 − λo/2,

√
λo/2). But then

γ̃u � γ � γ̃o. Evaluating (A.9), (A.10) at the points γ̃ = γu = 11/16 and γ̃ = γo = 25/32, where ϒ(γ̃ ) can
be calculated explicitly, one claims γu < γ̃u � γ � γ̃o < γo.

Differentiating (A.7) twice with respect to z = ξ2, we see that d2λ1(ξ)/dξ2|ξ=±ξ0 = 0 would imply

0 =
(

6λ2γ 2 − 3

4
π2λ4 + 16γ 6 + 44λγ 4 − 28γ 8π2 − 6γ 6π2λ + 10π2λ2γ 4 + 3

2
π2λ3γ 2

)
sin
(πγ

2

)

+
(

16γ 6 + 6λ2γ 2 − 2π2λ2γ 4 + 1

4
π2λ4 + 2γ 6π2λ − 1

2
π2λ3γ 2 + 44λγ 4 + 4γ 8π2

)
sin

(
3πγ

2

)

+ (10πγ 5λ + 4πγ 7 + 3πλ2γ 3 − 2πλ3γ ) cos

(
3πγ

2

)

+ (−15πλ2γ 3 − 66πγ 5λ − 20πγ 7 + 2πλ3γ ) cos
(πγ

2

)

for λ = � and γ =
√

�/2 − ξ2
0 . However, the function on the right-hand side is negative for all pairs (γ, λ) ∈

(γu , γo)×(λu , λo) and thus d2λ1(ξ)/dξ2|ξ=±ξ0 �= 0. A respective numerical calculation can be made rigorous
by estimating the sine and cosine by appropriate finite Taylor series, inserting these estimates into the right-
hand side of the above equation, estimating the derivatives of the resulting polynomial and evaluating the
polynomial on a sufficiently dense finite set of test points.
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