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ABSTRACT

Aims. We attempt to explain grain growth to mm sized particles and their retention in the outer regions of protoplanetary disks, as
observed at sub-mm and mm wavelengths, by investigating whether strong inhomogeneities in the gas density profiles can decelerate
excessive radial drift and help the dust particles to grow.
Methods. We use coagulation/fragmentation and disk-structure models, to simulate the evolution of dust in a bumpy surface density
profile, which we mimic with a sinusoidal disturbance. For different values of the amplitude and length scale of the bumps, we
investigate the ability of this model to produce and retain large particles on million-year timescales. In addition, we compare the
pressure inhomogeneities considered in this work with the pressure profiles that come from magnetorotational instability. Using the
Common Astronomy Software Applications ALMA simulator, we study whether there are observational signatures of these pressure
inhomogeneities that can be seen with ALMA.
Results. We present the conditions required to trap dust particles and the corresponding calculations predicting the spectral slope
in the mm-wavelength range, to compare with current observations. Finally, we present simulated images using different antenna
configurations of ALMA at different frequencies, to show that the ring structures will be detectable at the distances of either the
Taurus Auriga or Ophiucus star-forming regions.

Key words. circumstellar matter – accretion, accretion disks – stars: pre-main sequence – planet and satellites: formation –
protoplanetary disks

1. Introduction

The study of planet formation is an important field in astron-
omy with a large amount of research having been completed
since the middle of the twentieth century, although countless
unanswered questions remain. One of these questions is what
is the cause of the observed grain growth to mm sized parti-
cles in the outer disk regions (Beckwith & Sargent 1991; Wilner
et al. 2000, 2005; Testi et al. 2001, 2003; Andrews & Williams
2005; Rodmann et al. 2006; Natta et al. 2007; Isella et al.
2009; Lommen et al. 2009; Ricci et al. 2010a, 2011; Guilloteau
et al. 2011), which suggests that there is a mechanism operat-
ing to prevent the rapid inward drift (Klahr & Henning 1997;
Brauer et al. 2007; Johansen et al. 2007). Different efforts aim
to explain theoretically the growth from small dust particles
to planetesimals, which have led to the development of differ-
ent numerical models, e.g. Nakagawa et al. (1981), Dullemond
& Dominik (2005), Brauer et al. (2008), Zsom & Dullemond
(2008), Okuzumi (2009), Birnstiel et al. (2010a). Since circum-
stellar disks exhibit a wide range of temperatures, they radiate
from micron wavelengths to millimeter wavelengths, which is
why they can be observed with infrared and radio telescopes.
With the construction of different kinds of these telescopes, e.g.
Spitzer, Herschel, SMA, EVLA, or ALMA, astronomers can ob-
serve in more detail the material inside accretion disks around

young stars. The parallel development of theory and observa-
tions have allowed astrophysicists to study the different stages
of planet formation, making this topic one of the most active
fields in astronomy today.

In the first stage of planet formation, the growth from sub-
micron sized particles to larger objects is a complex process
that contains many physical challenges. In the case of a smooth
disk with a radial gas pressure profile that monotonically de-
creases with radius, the dust particles drift inwards because the
gas moves with a sub-Keplerian velocity due to the gas pres-
sure gradient. Before a large object can be formed, the radial
drift causes dust pebbles to move towards the star. Moreover,
the large relative velocities produced by turbulence and radial
drift cause the solid particles to reach velocities that lead to
fragmentation collisions that prevent dust particles from form-
ing larger bodies (Weidenschilling 1977; Brauer et al. 2008;
Birnstiel et al. 2010b). The combination of these two problems
is called a “meter-size barrier” because on timescales as short as
100 years, a one-meter-sized object at 1 AU moves towards the
star owing to the radial drift, preventing any larger object from
forming.

The observations in the inner regions of the disk, where plan-
ets such as Earth should form, are very difficult because these
regions are so small on the sky that few telescopes can spa-
tially resolve them. In addition, these regions are optically thick.
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However, a meter-size barrier in the inner few AU is equivalent
to a “millimeter-size barrier” in the outer regions of the disk.
These outer regions (>∼50 AU) are much easier to spatially re-
solve and are optically thin. Moreover, one can use millime-
ter observations, which probe precisely the grain size range of
the millimeter-size. Therefore, the study of dust growth in the
outer disk regions may teach us something about the formation
of planets in the inner disk regions.

Observations of protoplanetary disks at sub-millimeter and
mm wavelengths show that the disks remain dust-rich over sev-
eral million years with large particles in the outer regions (Natta
et al. 2007; Ricci et al. 2010a). However, it remains unclear how
to prevent the inward drift and how to explain theoretically that
mm-sized particles are observed in the outer regions of the disk.
Different mechanisms of planetesimal formation have been pro-
posed to resist the rapid inward drift, such as: gravitational in-
stabilities (Youdin & Shu 2002), the presence of zonal flows
(Johansen et al. 2009, 2011; Uribe et al. 2011), or dead zones
of viscously accumulated gas that form vortices (Varnière &
Tagger 2006). With the model presented here, we wish to simu-
late mechanisms that allow long-lived pressure inhomogeneities
to develop in protoplanetary disks, by artificially adding pressure
bumps to a smooth density profile.

To confront the millimeter-size barrier, it is necessary to stop
the radial drift by considering a radial gas pressure profile that
does not monotonically decrease with radius. We instead take a
pressure profile with local maxima adding a sinusoidal perturba-
tion of the density profile. These perturbations directly influence
the pressure, following a simple equation of state for the pressure
in the disk. Depending on the size of the particle, the dust grains
are perfectly trapped in the pressure peaks because a positive
pressure gradient can cause the dust particles to move outwards.
On the other hand, turbulence can mix part of the dust particles
out of the bumps, so that overall there may still be some net
radial inward drift. More importantly, dust fragmentation may
convert part of the large particles into micron-size dust particles,
which are less easily trapped and thus drift more readily inward.

Birnstiel et al. (2010b) compared the observed fluxes and
mm spectral indices of the Taurus (Ricci et al. 2010a) and
Ophiucus (Ricci et al. 2010b) star-forming regions with pre-
dicted fluxes and spectral indices at mm wavelengths. They ne-
glected the radial drift,assuming that the dust particles to re-
mained within the outer disk regions. They attempted to keep the
spectral index at low values, which implied that the dust parti-
cles had millimeter sizes (Beckwith & Sargent 1991). However,
they over predicted the fluxes. As an extension of their work,
we model here the combination of three processes: the ra-
dial drift, the radial turbulent mixing, and the dust coagula-
tion/fragmentation cycle in a bumpy surface density profile. Our
principal aim is to find out how the presence of pressure bumps
can help us to explain the retainment of dust pebbles in the outer
regions of protoplanetary disks, while still allowing for moder-
ate drift and achieving a closer match with the observed fluxes
and mm spectral indeces. In addition, we show simulated images
using different antenna configurations of the complete range of
operations of ALMA, to study whether it is possible to detect
these inhomogeneities with future ALMA observations.

This paper is ordered as follows: Sect. 2 describes the co-
agulation/fragmentation model and the sinusoidal perturbation
that we apply to the initial conditions of the gas surface density.
Section 3 describes the results of these simulations, the com-
parison between existing mm observations of young and form-
ing disks, and the results of our model. We discuss whether the
type of structures generated by our model will be detectable with

future ALMA observations. In Sect. 4, we explore the relation of
our model to the predictions of current simulations of the magne-
torotational instability (MRI) (Balbus & Hawley 1991). Finally,
Sect. 5 summarizes our results and the conclusions of this work.

2. Dust evolution model

We used the model presented in Birnstiel et al. (2010a) to calcu-
late the evolution of the dust surface density in a gaseous disk,
the radial drift, and the amount of turbulent mixing. The dust size
distribution evolves owing to the grain growth, cratering, and
fragmentation. We accounted for the relative velocities caused
by Brownian motion, turbulence, and both radial and azimuthal
drift, as well as vertical settling are taken into account.

In this work, we do not consider the viscous evolution of
the gas disk because the aim is to investigate how dust evolu-
tion is influenced by the stationary perturbations of an otherwise
smooth gas surface density. The effects of a time-dependent per-
turbation and the evolution of the gas disk will be the subject of
future work. For a comprehensive description of the numerical
code, we refer to Birnstiel et al. (2010a).

To simulate the radial pressure maxima that allow the trap-
ping of particles, we consider a perturbation of the gas surface
density that is assumed for simplicity to be a sinusoidal pertur-
bation such that

Σ′(r) = Σ(r)

(

1 + A cos

[
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r
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, (1)

where the unperturbed gas surface density Σ(r) is given by the
self similar solution of Lynden-Bell & Pringle (1974)
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where rc is the characteristic radius, taken to be 60 AU, and γ is
the viscosity power index equal to 1, which are the median val-
ues found from high angular resolution imaging in the sub-mm
of disks in the Ophiucus star-forming regions (Andrews et al.
2010). The wavelength L(r) of the sinusoidal perturbation de-
pends on the vertical disk scale-height H(r) by a factor f as

L(r) = f H(r), (3)

with H(r) = csΩ
−1, where the isothermal sound speed cs is de-

fined as

c2
s =

kBT

µmp

, (4)

and the Keplerian angular velocity Ω is

Ω =

√

GM⋆

r3
, (5)

where kB is the Boltzmann constant, mp is the mass of the proton,
and µ is the mean molecular mass, which in proton mass units is
taken as µ = 2.3. For an ideal gas, the pressure is defined as

P(r, z) = c2
sρ(r, z), (6)

where ρ(r, z) is the gas density, such that Σ′(r) =
∫ ∞

−∞
ρ(r, z)dz.

With the surface density described by Eq. (1), we can have
pressure bumps such that the wavelength increases with radius.
These bumps are static, which may not be entirely realistic.
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Fig. 1. Comparison between the gas surface density (left plot) taken in this work (Eq. (1)) for two different values of the amplitude and constant
width (dashed and dot-dashed lines). The Rossby wave instability (Regaly et al. 2012), and the presence of zonal flows caused by MHD instabilities
(Uribe et al. 2011). Right plot shows the pressure gradient for each of the gas surface density profiles.

However, these can be a good approximation of long-lived, az-
imuthally extended pressure bumps,which might for instance be
the result of MHD effects (see Johansen et al. 2009; Dzyurkevich
et al. 2010). The influence of time-dependent pressure perturba-
tions (e.g. Laughlin et al. 2004; Ogihara et al. 2007) on the dust
growth process will be the topic of future work. The left plot of
Fig. 1 (dashed lines) shows the behavior of the perturbed surface
density for two values of the amplitude and fixed value of the
width. The right plot of Fig. 1 shows the corresponding pressure
gradient.

The very fine dust particles move with the gas because they
are strongly coupled to the gas because the stopping time is very
short. In the presence of a drag force, the stopping time is de-
fined as the time that a particle, with a certain momentum, needs
to become aligned to the gas velocity. However, when the par-
ticles are large enough and they do not move with the gas, they
experience a head wind, because of the sub-Keplerian velocity
of the gas, hence lose angular momentum and move inwards. In
this case, the resulting drift velocity of the particles is given by
Weidenschilling (1977)

udrift =
1

St−1 + St

∂rP

ρΩ
· (7)

Comparing Eq. (7) with the expression for the drift velocity
given by Birnstiel et al. (2010a, Eq. (19)), we find that the drag
term for the radial movement of the gas is not taken here since
we assume a stationary gas surface density. The Stokes num-
ber, denoted by St, describes the coupling of the particles to
the gas. The Stokes number is defined as the ratio of the eddy
turn-over time (1/Ω) to the stopping time. For larger bodies,
the Stokes number is much greater than one, which implies that
the particles are unaffected by the gas drag and consequently
move on Keplerian orbits. When the particles are very small,
St≪ 1, they are strongly coupled to the gas. Since the gas orbits
at sub-Keplerian velocity because of its pressure support, there

Table 1. Parameters of the model.

Parameter Values

A {0.1; 0.3; 0.5; 0.7}
f {0.3; 0.7; 1.0; 3.0}

α 10−3

R⋆[R⊙] 2.5
T⋆[K] 4300
Mdisk[M⊙] 0.05

ρs[g/cm3] 1.2
v f [m/s] 10

is a relative velocity between the dust particles and the gas. The
Stokes number is equal to unity when the particles are still in-
fluenced by the gas drag but not completely coupled to the gas,
instead being marginally coupled and moving at speeds between
the Keplerian and the sub-Keplerian gas velocity.

The retainment of dust particles owing to pressure bumps de-
pends on the size of the particles. Since very small particles, with
St≪ 1, are tightly coupled to the gas, they do not drift inwards.
However, radial drift becomes significant when the size of the
particles increases and reaches its strongest value when St = 1
(see Eq. (7)). In the Epstein regime, where the ratio of the mean
free path of the gas molecules λmfp to the particle size, denoted
by a, satisfies λmfp/a ≥ 4/9, the Stokes number is given by

St =
aρs

Σg

π

2
, (8)

where ρs is the solid density of the dust grains, which is assumed
to be constant (see Table 1). In this case, particles are small
enough to be in this regime. Parameterizing the radial variation
in the sound speed via

cs ∝ r−q/2, (9)
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where for a typical disk, the temperature is assumed to be a
power law such that T ∝ r−q, which is an approximation to the
temperature profile taken for this model. Therefore, the wave-
length of the perturbation L(r) scales as:

L(r) = f H(r) ∝ f r(−q+3)/2. (10)

The pressure bumps have the same amplitude A and wave-
length L(r) as the density, because the over-pressure is induced
by adding inhomogeneities to the gas surface density and pa-
rameterizing the temperature on the midplane by a power law
(Nakamoto & Nakagawa 1994). The model taken here can ar-
tificially imitate e.g. the case of zonal flows in protoplanetary
disks, where over-densities create pressure bumps. Zonal flows
are formed by MRI, which depend on the degree of ionization
in the disk, i.e. on the temperature of the disk and other fac-
tors such as the exposure to cosmic and stellar rays. The MRI
appears to be the most probable source of turbulence, and if
the turbulence is not uniform, there can be excitation of long-
lived pressure fluctuations in the radial direction. For instance,
Johansen et al. (2009) performed shearing box simulations of a
MRI turbulent disk that exhibit large scale radial variations in
Maxwell stresses of 10%. Dzyurkevich et al. (2010) presented
three-dimensional (3D) global non-ideal MHD simulations in-
cluding a dead zone that induces pressure maxima of 20–25%.
Uribe et al. (2011) presented 3D global MHD simulations, lead-
ing to pressure bumps of around 25%. However, when the vis-
cosity drops, the gas surface density changes causing a local
inversion of the pressure gradient and an accumulation of dust
particles. This matter accumulation causes Rossby wave insta-
bilities (Lovelace et al. 1999) that lead to non-axisymmetric dis-
tributions in the disk, which we cannot exactly model at this mo-
ment since our dust evolution models are axisymmetric.

To constrain the values of the amplitude and wavelength
of the perturbation, we take into account three different fac-
tors. First, it is important to analyze the necessary conditions
to have a local outward movement of the dust particles. Second,
we compare our assumptions with current studies of zonal flows
(Johansen et al. 2009; Uribe et al. 2011). And thirdly, we only
work with small-enough amplitude disturbances such that the
disk has an angular momentum per unit mass that increases out-
wards, meaning that it is Rayleigh stable.

The Rayleigh criterion establishes that for a rotating fluid
system, in the absence of viscosity, the arrangement of angu-
lar momentum per unit mass is stable if and only if it increases
monotonically outward (Chandrasekhar 1961), implying that

∂

∂r
(rvφ) > 0. (11)

Since turbulence is necessary to ensure angular momentum
transport, instabilities may occur if a magnetic field is present,
and in those cases the angular velocity decreases with radius
(MRI). For a typical α-turbulent disk, the MRI scale time is
much longer than the time needed by the disk to recover the
Rayleigh stability, which implies that the disk should remain
quasi-stable at all times (Yang & Menou 2010). Any perturbation
in the gas surface density that is Rayleigh unstable will almost
instantly diminish sufficiently to ensure that the gas becomes
Rayleigh stable again, thereby lowering its amplitude. This hap-
pens on a scale time that is much shorter than what MRI could
ever counteract. The angular velocity of Eq. (11) is given by

v2φ = v
2
k +

r

ρ

∂P

∂r
= v2k(1 − 2η) (12)

where

η = −
1

2rΩ2ρ

∂P

∂r
· (13)

The Rayleigh stability of the disk depends on the amplitude and
the width of the bumps. In this case, we wish to study the in-
fluence of the amplitude of the perturbation, such that for this
analysis we constrain the value of the wavelength of the pertur-
bation, where f equals to unity, such that it remains consistent
with the values expected from predictions of zonal flows models
by Uribe et al. (2011, see Fig. 1).

Taking the perturbed gas density of Eq. (1) and f = 1.0,
it is possible to find the upper limit of the amplitude to satisfy
Eq. (11), i.e. the condition to remain Rayleigh stable at all times.
This calculation allows the maximum value of the amplitude A
to be at most ∼35% of the unperturbed density.

Various investigations have focused on the possibility of
Rayleigh instabilities when disks have sharp peaks in their ra-
dial density profiles (see e.g. Papaloizou & Lin 1984; Li et al.
2001; and Yang & Menou 2010). These profiles can exist when
the temperature in the midplane is insufficient to ionize the gas
(Gammie 1996) and as a result the turbulence parameter α de-
creases. These regions are known as “dead zones” and these are
possible locations for the formation of planet embryos. In the
boundaries of these regions, Varnière & Tagger (2006) showed
that it is possible to have a huge vortex with a local bump in
the gas surface density. Lovelace et al. (1999) demonstrated that
these perturbations create an accumulation of gas that leads to
the disk being unstable to Rossby wave instability (RWI). As
a comparison of the amplitudes generated by RWI vortices and
the amplitudes of our perturbations, the left plot of Fig. 1 also
shows the azimuthally average gas surface density of a large-
scale anticyclonic vortex modeled by Regaly et al. (2012). In
these cases, the equilibrium of the disk is affected in such a way
that the disk becomes Rayleigh unstable. Since we focus on per-
turbations that allow the disks to remain Rayleigh stable at all
evolutionary times, we do not consider our perturbed density to
be similar to this kind of amplitudes.

Since the drift velocity is given by Eq. (7), to prevent an in-
ward drift, the value of η from Eq. (13) must be negative, imply-
ing that the pressure gradient has to be positive in some regions
of the disk. Doing this calculation for the condition that η < 0,
we get that the values of the amplitude A have to be at least about
10%. In right plot of Fig. 1, we see that with an amplitude of 10%
the pressure gradient barely reaches positive values in the inner
regions of the disk (<∼50 AU). Summarizing the upper and lower
values of the amplitude, we should find that 0.10 <∼ A <∼ 0.35,
when the width of the perturbation is taken to be f = 1.

Taking into account the growth-fragmentation cycle and the
existence of pressure bumps, the radial drift efficiency can be
lower if the bumps have appropriate values of the amplitude and
the length scale. When the particles grow by coagulation, they
reach a certain size with velocities high enough to cause frag-
mentation (fragmentation barrier). The two main contributors to
the of relative velocities are the radial drift and the turbulence.
In the bumps, the radial drift can be zero if the pressure gradi-
ent and the azimuthal relative velocities are high enough; how-
ever there are still non-zero relative velocities owing to the turbu-
lence. Therefore, it is necessary to have this condition, to ensure
that the particles do not reach the threshold where they fragment.
The maximum turbulent relative velocity between particles, with
St ∼ 1, is given by Ormel & Cuzzi (2007)

∆u2
max ≃

3

2
αStc2

s , (14)
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where Eq. (14) is off by a factor of 2 for St <∼ 0.1. Therefore, to
break through the mm size barrier, we must ensure that ∆umax

is smaller than the fragmentation velocities of the particles v f .
Collision experiments using silicates (Güttler et al. 2010) and
numerical simulations (Zsom et al. 2010) show that there is an
intermediate regime between fragmentation and sticking, where
particles should bounce. In this present study, we did not take
into account this regime because there are still many open ques-
tions in this field. For example, Wada et al. (2011) suggest that
there is no bouncing regime for ice particles that may be present
in the outer regions of the disks (see Schegerer & Wolf 2010).
Laboratory experiments and theoretical work suggest that typ-
ical fragmentation velocities are on the order of few m s−1 for
silicate dust (see e.g. Blum & Wurm 2008). Outside the snow-
line, the presence of ices affects the material properties, mak-
ing the fragmentation velocities increase (Schäfer et al. 2007;
Wada et al. 2009). Since in this work we consider a radial range
from 1 AU to 300 AU, the fragmentation threshold velocity is
assumed to be v f = 10 m s−1. All the parameters used for this
model are summarized in Table 1.

For particles with St <∼ 1, taking the size at which the tur-
bulent relative velocities ∆umax are as high as the fragmentation
velocity v f , we can find the maximum value of the grain size,
which is

amax ≃
4Σg

3παρs

v2
f

c2
s

(15)

where amax is valid only for St <∼ 1 because for larger bodies the
turbulent relative velocities are smaller than the given in Eq. (14)
(for a detailed discussion of the turbulent relative velocities see
Ormel & Cuzzi 2007).

The dust grain distribution n(r, z, a) is the number of particles
per cubic centimeter per gram interval in particle mass, which
depends on the grain mass, the distance to the star r, and the
height above the mid-plane z, such that

ρ(r, z) =

∫ ∞

0

n(r, z, a) · mdm (16)

is the total dust volume density. The quantity n(r, z, a) can
change because of the grain growth and distribution of masses
via fragmentation. The vertically integrated dust surface density
distribution per logarithmic bin is defined to be

σ(r, a) =

∫ ∞

−∞

n(r, z, a) · m · adz (17)

and the total dust surface density is then

Σd(r) =

∫ ∞

0

σ(r, a)d ln a. (18)

3. Results

In this section we describe our results of dust evolution, the
comparison to current mm observations of young disks and the
observational signatures of our model that we will detect using
ALMA.

3.1. Density distribution of dust particles

The simulations were performed for a disk of mass 0.05 M⊙,
with a surface density described by Eq. (1) from 1.0 AU to

10
1

10
2

r ( AU )

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

a
(c
m
)

− 7

− 6

− 5

− 4

− 3

− 2

− 1

0

1

lo
g
σ[
g
/
cm

2
]

Fig. 2. Vertically integrated dust density distribution at 1 Myr for A =
0.1 and f = 1 (top) and A = 0.1 and f = 3 (bottom). The white
line shows the particle size corresponding to a Stokes number of unity,
which shows the same shape as the gas surface density Σ′ of Eq. (1)
(see Eq. (8)). The blue line represents the maximum size of the parti-
cles before they reach fragmentation velocities (fragmentation barrier
according to Eq. (15)).

300 AU, around a star with one solar mass. The turbulence pa-
rameter α is taken to be 10−3, unless another value is specified.
Figure 2 shows the vertically integrated dust density distribution,
taking into account coagulation, radial mixing, radial drift, and
fragmentation, after 1 Myr of the evolution of the protoplanetary
disk. The solid white line shows the particle size correspond-
ing to a Stokes number of unity. From Eq. (8), we can see that
when St = 1, the particle size a is proportional to the gas surface
density Σ′, and the solid line then reflects the shape of the sur-
face density. The blue line of Fig. 2 represents the fragmentation
barrier, which illustrates the maximum size of the particles be-
fore they reach velocities larger than the fragmentation velocity
(see Eq. (15)). Hence, particles above the fragmentation barrier
should fragment to smaller particles, which again contribute to
the growth process.

Both plots of Fig. 2 have the same amplitude of the sinu-
soidal perturbation A = 0.1. The factor f , which describes the
width of the perturbation, is taken to be f = 1 in the top plot,
and f = 3 in the bottom plot of Fig. 2.

This result shows the following. First, the amplitude A = 0.1
of the perturbation is not high enough to have a positive pressure
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Fig. 3. Ratio between final and the initial dust mass between 50 AU and 100 AU, at different times of evolution. Taking a constant value of the
amplitude A = 0.1 and different values of the width of the perturbed density (Eq. (1)). For α = 10−3, we present our results in the left plot and for
α = 10−4 in the right plot.

gradient in those regions (see right plot of Fig. 1) such that par-
ticles can be retained in the outer regions of the disk after some
Myr. Instead the dust particles are still affected by radial drift
and turbulence such that the particles do not grow to larger than
mm size in the outer regions.

Second, taking a greater value of the factor f , at the same
amplitude, implies that the retention of particles is even weaker.
This is because with a wider perturbation is it harder to have
positive pressure gradient. For a smaller value of f , the pres-
sure gradient is expected to be higher because the surface profile
should be steeper, hence any dust trapping much more efficient.
However, the diffusion timescale τν depends quadratically on the
length scale ℓ. Therefore, when the wiggles of the perturbation
are assumed to have a shorter wavelength, the diffusion times be-
come much shorter, implying that the turbulence mixing ejects
the dust particles from the bumps more rapidly, even when the
surface density is steeper for narrow wiggles. More precisely,
τν ∝ ℓ

2ν−1 where the viscosity is defined as ν = αcsh. For this
reason, we note in Fig. 3-left plot that the trapping is more ef-
fective taking values of the width less than one, but only by a
very small margin. As a result, the ratio of the final to the initial
mass of the dust for r ∈ [50, 100] AU remains almost constant
when the width is taken to be larger than 0.3. We conclude that
for an amplitude of A = 0.1, the trapping after several million
years does not become more effective when the wavelength of
the perturbation is assumed to be shorter.

Only when the diffusion timescales become larger or equal
to the drift timescales for a given pressure profile, turbulence pa-
rameter and Stokes number, can the dust particles be retained in-
side the bumps and therefore grow. From Eq. (7), we can deduce
that the drift timescales can be given by τdrift ∝ ℓ(∂ℓP)−1, where
within the bumps ℓ is the width of the perturbations (which de-
pends directly on f ). As a consequence, after an equilibrium
state is reached, both the drift and diffusion timescales are pro-
portional to the square of the width. Accordingly, for a given
value of f , the effects of turbulent mixing and radial drift cancel.

We note in Fig. 3 that for f = {0.3, 0.2} there is a small ef-
fect on the retention of particles for α = 10−3 (left plot) and a

significant effect for α = 10−4 (right plot). This implies that for
these values of f and A, the pressure gradient becomes positive
enough in the outer regions (r ∈ [50, 100] AU) to trap the par-
ticles. Since A and f are the same in both cases, the pressure
gradient is exactly the same. However, for α = 10−3, the low ef-
ficiency that becomes evident when f is reduced, vanishes after
two Myr, because turbulent mixing and radial drift cancel each
other.

Nevertheless, when α is lowered by one order of magnitude
(right panel of Fig. 3), the diffusion timescales become longer. In
this case, the drift timescales become shorter than the diffusion
timescales, hence the ratio of the final to the initial dust mass in-
creases on average for each f . When f is small enough for there
to be positive pressure gradient ( f = {0.3, 0.2}), outward drift
wins over turbulent mixing, and as a result the trapping of parti-
cles is a visibly effective. However, there is almost no difference
between f = 0.3 and f = 0.2. On contrast, this counterbalance
effect between radial drift and turbulence when f varies does not
happen when the amplitude of the perturbation changes.

We fixed the value of the width of the perturbation to unity,
because this value is consistent with current model predictions
of zonal flows. The comparison between our assumption of the
density inhomogeneities and the work of Uribe et al. (2011) is
discussed in Sect. 4. In addition, for larger values of the width,
we should have higher values of the amplitudes to maintain a
positive pressure gradient. In this case, however the disk easily
becomes Rayleigh unstable when the amplitude increases. These
are the reasons why we fix the value of the width to unity and no
higher.

Simulations of MRI-active disks suggest that the typical val-
ues of the turbulence parameter α are in the range of 10−3−10−2

(Johansen & Klahr 2005; Dzyurkevich et al. 2010). In this work,
we focus on the results for α = 10−3, because for greater tur-
bulence the viscous timescales become shorter than the growth
timescales of the dust, causing the particles to escape from the
bumps and then drift radially inwards before any mm-sizes are
reached. In addition, if α is taken to be one order of magnitude
higher, the fragmentation barrier is lower by about one order
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Fig. 4. Particle size corresponding to a Stokes number of unity for
A = 0.3 and f = 1.0 and location of the fragmentation barrier for two
different values of the turbulent parameter α. The dashed line corre-
sponds to r = 50 AU to distinguish the maximum size particle in the
outer regions of the disk for each case.

of magnitude in grain size, implying that particles do not grow
to grater than mm-sizes in the outer regions of the disk (see
Eq. (14)). Figure 4 shows the location of the fragmentation bar-
rier for the case of A = 0.3 and f = 1.0 and two different values
of α. We note that the maximum value of the grain size for the
case of α = 10−2 is on the order of a few mm in the outer regions
of the disk r > 50 AU, while for α = 10−3 the grains even reach
cm-sizes.

Figure 5 compares the surface density distribution for two
different values of the amplitude of the perturbation A = 0.1 and
A = 0.3, at different evolution times. Taking A = 0.3, we note
that in the pressure bumps there is a high density of dust parti-
cles, even after 5 Myr of evolution for a maximum radius around
80 0AU. For A = 0.3 and r >∼ 100 AU, there is a small amount of
particles above the fragmentation barrier for the different times
of evolution. We note that the line of the fragmentation barrier
given by Eq. (15) was calculated by taking into account only tur-
bulent relative velocities, since radial and azimuthal turbulence
relative velocities were assumed to be zero at the peaks of the
bumps. Particles with St > 1 were no longer strongly coupled
to the gas, hence they are not affected by gas turbulence, and
the relative velocities produced by turbulence were smaller, im-
plying that they had been able to grow over the fragmentation
barrier. Moreover, we can see in the right plot of Fig. 1 that the
pressure gradient for A = 0.3 and r >∼ 100 AU is always negative,
hence for those regions the pressure bumps may not reduce the
efficacy of radial drift. Therefore, the total relative velocities for
r >∼ 100 AU can decrease, leading some particles (with St > 1) to
grow beyond the fragmentation barrier. Only the particles with
St < 1 and that exceed the fragmentation barrier should even-
tually fragment to smaller particles. For regions r <∼ 100 AU,
dust particles continuously grow to mm-size particles by coag-
ulation because the collision velocities produced by turbulence
are smaller that the assumed fragmentation velocity v f .

As we have mentioned before, the efficiency of the dust trap-
ping depends on the amplitude of the pressure bumps. It is ex-
pected that for higher amplitudes there is a greater trapping of
particles because the pressure gradient is also more positive (see
right plot of Fig. 1). Taking the perturbed density of Eq. (1), we

can see in Fig. 6 that between 50 AU and 100 AU from the star,
the amount of dust grows significantly from A = 0.1 to A = 0.3.
From A = 0.3 to A = 0.5, there is still a considerable growth, but
the rate of growth is slower. From A = 0.5 to A = 0.7, the rate
remains almost constant, reaching a threshold. When the ampli-
tude is increased, the amount of dust particles retained in the
bumps increases to a limit when the dust growth stops because
the particles reach the maximum possible value where they start
to fragment owing to the high relative velocities.

As we explained in Sect. 2, taking a fixed value of f = 1.0,
the disk remains Rayleigh stable for 0.10 <∼ A <∼ 0.35, which
means that for those values of the amplitude, these types of per-
turbations can be explained via MRI without any need to suggest
that Rayleigh instability is present at any evolution time. The
amplitude of A = 0.3 is the most consistent with current MHD
simulations of zonal flows Uribe et al. (2011), where pressure
reaches radial fluctuations of 25% (see left plot of Fig. 1). The
amplitude of A = 0.1 is more consisted with the case of the pres-
sure fluctuation of zonal flows of the order of 10% by Johansen
et al. (2009).

Figure 7 shows the radial dependence of the dust-to-gas ratio
for different times of the simulation, for two values of the pertur-
bation amplitude and wavelength without the gas inward motion.
For A = 0.1 and f = 1.0 (top-left plot of Fig. 7), we can see that
the dust-to-gas ratio decreased significantly with time across the
whole disk. This implies that the dust particles do not grow con-
siderably with time, which is what we expected because with this
amplitude the trapping of the particles into the pressure bumps
is ineffective. Consequently, owing to turbulence the dust parti-
cles collide, fragment, and become even smaller, such that they
mix and the retention of these small particles, with St < 1, be-
comes more difficult. Thus, the radial drift is not reduced, the
particles with St <∼ 1 drift inward. The particles that survive are
those that have very small St ≪ 1, and are strongly coupled to
the gas. Hence, the dust-to-gas ratio initially decreases quickly
and then becomes almost constant with time, which implies that
after several Myr only the very small dust particles remain. The
top-right plot of Fig. 7 shows that taking the same amplitude but
a shorter wavelength, the dust-to-gas ratio has the same behavior.
This confirms that when α turbulence is constant, a decrease in
the wavelength leads to shorter diffusion timescales. Therefore,
the trapping is not more effective even if the surface density is
steeper for narrow bumps.

In contrast, owing to the strong over-pressures at A = 0.3
(bottom plots of Fig. 7), the dust-to-gas ratio remains almost
constant with time for r < 100 AU, oscillating radially between
∼10−3 to ∼10−1. This oscillating behavior, even after 5 Myr of
dust evolution, is possible because the particles are retained in
the bumps and grow sufficient to increase the dust-to-gas ratio
inside the bumps. Only around ∼100 AU from the star does the
dust-to-gas ratio decrease slowly with time. This implies that for
r < 100 AU, the drift is counteracted by the positive local pres-
sure gradient when the timescales for the growth are comparable
to the disk evolution times, i. e. the viscous timescales. Changing
the width of the perturbation to f = 1.0 for the left-bottom plot
and f = 0.7 for the right-bottom plot of Fig. 7, has only a minor
effect on the dust-to-gas ratio as explained before.

3.2. Comparison to current data of young disks
in the millimeter range

We compared the models predictions of the disk fluxes at mil-
limeter wavelengths with observational data obtained for young
disks in Class II young stellar objects (YSOs).
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Fig. 5. Vertically integrated dust density distribution with a fixed value of length scale of f = 1, for A = 0.1 (left column) and A = 0.3 (right
column) at different times 0.5 Myr, 1.0 Myr, 3.0 Myr, and 5.0 Myr from top to bottom, respectively. The solid white line shows the particle size
corresponding to a Stokes number of unity. The blue line represents the fragmentation barrier according to Eq. (15).
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Fig. 6. Ratio of the final to the initial dust mass between 50 AU and
100 AU, at different times of evolution. We assumed a constant value of
the width f = 1.0 and different values of the amplitude of the perturbed
density (Eq. (1)).

To do this, we calculated the time-dependent flux for the disk
models described in Sect. 2. For the dust emissivity, we adopted
the same dust model as Ricci et al. (2010a,b, 2011) and Birnstiel
et al. (2010b), i.e. spherical composite porous grains made of sil-
icates, carbonaceous materials, and water ice, with relative abun-
dances from Semenov et al. (2003). At each stellocentric radius
in the disk, the wavelength-dependent dust emissivity was calcu-
lated by considering the grain size number density n(r, z, a) de-
rived from the dust evolution models at that radius, as described
in Sect. 2.

In the millimeter wavelength regime, the opacity can be ap-
proximated by a power law (Miyake & Nakagawa 1993), which
means that the flux can be approximated to Fν ∝ ν

αmm , where
αmm is known as the spectral index. The spectral index gives us
information about the size distribution of the dust in the disk.
Figure 8 shows the time-dependent predicted fluxes at ∼1 mm
(F1 mm) and the spectral index between ∼1 and 3 mm (α1−3 mm)
for a disk model with f = 1 and A = 0.1 (top panel) or A = 0.3
(bottom panel). In the same plot, we present mm-data for young
disks in Taurus (Ricci et al. 2010a; and Ricci, priv. comm.),
Ophiucus (Ricci et al. 2010b), and Orion Nubula Cluster (Ricci
et al. 2011) are also shown.

As detailed in Birnstiel et al. (2010b), the F1mm versus
α1−3 mm plot reflects some of the main properties of the dust pop-
ulation in the disk outer regions, which dominate the integrated
flux at these long wavelengths. In particular, the 1mm-flux den-
sity is proportional to the total dust mass contained in the outer
disk. The mm-spectral index is instead related to the sizes of
grains: values lower than about three are caused by emission
from grains larger than about ∼1 mm, whereas values around 3.5
are due to smaller grains (Natta et al. 2007).

In the case of the disk model with f = 1 and A = 0.1,
the time evolution of the predicted mm-fluxes clearly reflects
the main features of the dust evolution depicted in the top plot
of Fig. 8. Grains as large as a few millimeters quickly form in
the disk outer regions (R >∼ 50 AU), and most of them are ini-
tially retained in those regions (<∼0.5 Myr). As a consequence,
the mm-spectral index of the disk is slightly lower than 3 at
these early stages. However, the radial drift of mm-sized pebbles
becomes soon significant and, as already described in Sect. 3,

perturbations with a length-scale of f = 1 and amplitude of
A = 0.1 are inefficient in retaining mm-sized particles in the
outer disk. The 1 mm-flux density significantly decreases be-
cause of the loss of dust from the outer regions, especially the
mm-sized grains, which are efficient emitters at these wave-
lengths. Given that the spectral index is a proxy for the grain
size, which is also affected by radial drift, its value increases
with time because of the gradual loss of mm-sized pebbles in
the outer disk. In this case, the under-predicted fluxes are incon-
sistent with observational data for disk ages >∼1 Myr, i.e. with the
mean estimated ages of PMS stars in the Taurus, Ophiucus, and
Orion regions.

Interestingly, a disk with perturbations in the gas surface
density with a larger amplitude of A = 0.3 shows different re-
sults. In this case, the trapping of particles in the pressure bumps
is efficient enough to retain most of the large pebbles formed in
the outer disk (see bottom plot of Fig. 8). Since radial drift is
much less efficient in this case, the predicted 1 mm-flux density
is less affected than in the A = 0.1 case and, more importantly,
the spectral index levels off at a value of ∼2.5. This model pro-
vides a good match to the bulk of the mm-data for disk ages of a
few Myr, as seen in the bottom panel of Fig. 8.

We also note that the match between the model presented
here for A = 0.3 is closer than that obtained by Birnstiel et al.
(2010b). In contrast to the present work, these authors com-
pletely ignored radial drift, thus restricted particles to remain
artificially in the disk outer regions. Specifically, for a disk with
the same unperturbed disk structure presented here, they found
a higher 1 mm-flux density than we obtained in the A = 0.3
perturbation case at a few Myr. This indicates that to interpret
the measured mm-fluxes of young disks we need to incorporate
in our models both radial drift and a physical mechanism acting
in the disk to trap, although not completely, mm-sized particles
in the outer disk.

3.3. Future observations with ALMA

The Atacama Large Millimeter/sub-millimeter Array (ALMA)
will provide an increase in sensitivity and resolution to ob-
serve in more detail the structure and evolution of protoplanetary
disks. With a minimum beam diameter of ∼5 mas at 900 GHz,
ALMA will offer a resolution down to 2 AU for disks observed
in Orion and sub-AU for disk in Taurus-Auriga (Cossins et al.
2010). Using the Common Astronomy Software Applications
(CASA) ALMA simulator (version 3.2.0), we run simulations
to produce realistic ALMA observations of our model using an
ALMA array of 50 antennas 12 m-each.

The selection of observing mode to obtain the images was
chosen to have simultaneously the most favorable values for the
resolution and sensitivity that should be available with ALMA.
The spatial resolution depends on the observing frequency and
the maximum baseline of the array. We did not consider the
largest array because for very large baselines, the sensitivity
could be not enough for the regions that we need to observe.
Therefore, we used different antenna arrays depending on the
observing frequency to achieve the highest possible resolution
with enough sensitivity. The sensitivity depends on the num-
ber of antennas, the bandwidth (which is taken as ∆ν = 8 GHz
for continuum observations), and the total observing time that
was fixed to four hours for each simulation. The sensitivity also
depends on the atmospheric conditions. ALMA is located in
Llano de Chajnantor Observatory, where the precipitable water
vapor (pwv) varies between 0.5 mm and 2.0 mm depending on
the observable frequency. For the simulations, we assumed that
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Fig. 7. Dust-to-gas mass ratio in the disk for different times in the disk evolution and the parameters summarized in Table 1: A = 0.1 and f = 1
(top-left); A = 0.3 and f = 1 (bottom-left); A = 0.1 and f = 0.7 (top-right) and A = 0.3 and f = 0.7 (bottom-right).

Table 2. Atmospheric conditions, total flux and rms for the simulated observations at 140 pc and at different observing wavelengths.

Amplitude Wavelength Atmospheric conditions Total flux rms
(mm) pwv (mm) τ0 (Jy) (Jy)

0.45 0.5 0.60 6.9 × 10−1 7.5 × 10−4

A = 0.3 0.66 1.0 0.40 7.6 × 10−1 3.8 × 10−4

1.00 1.5 0.20 2.2 × 10−1 1.4 × 10−4

3.00 2.3 0.03 4.0 × 10−1 2.0 × 10−5

A = 0.1 1.00 1.5 0.20 1.6 × 10−2 1.3 × 10−5

Notes. The pwv value takes into account the expected conditions for ALMA. The simulated images use the full ALMA configuration, but the
antenna configuration is chosen to ensure the best agreement between resolution and sensitivity.

the value of the pwv varies with frequency (see Table 2). The
synthetic images are fully consistent with the opacity dust distri-
bution discussed in Sect. 3.2.

Figure 9 shows a comparison between the model image and
a simulated ALMA image using the full configuration of ALMA
with a maximum baseline of around 3 km and an observation to-
tal time of four hours. This image is for an observing wavelength
of 0.45 mm (band 9 of ALMA 620–750 GHz). We note that the
simulated images take into account the atmospheric conditions
and the expected receiver noise based on technical information

of the antennas, but the residual noise after data calibrations
and its uncertainties are not considered. We note (see Fig. 9-
bottom plot) that with one of the full configurations (max. base-
line ∼3 km), it is possible to distinguish some ring structures
because the dust has drifted considerably into the rings relative
to the gas.

In Fig. 10, we note again the importance of having a high
value of the amplitude. If the gas surface density of the disk
is A = 0.3, then the effects will be observable with ALMA.
Both images of the figure have been computed with the complete

A114, page 10 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118204&pdf_id=7


P. Pinilla et al.: Trapping dust particles in the outer regions of protoplanetary disks

A=0.1  f=1

A=0.3  f=1

Fig. 8. Comparison of the observed fluxes at mm-wavelengths of young
disks in Taurus (red dots; from Ricci et al. 2010a; and Ricci, priv.
comm.), Ophiucus (blue dots; from Ricci et al. 2010b), and Orion
Nebula Cluster (green dots; from Ricci et al. 2011) star-forming regions
with the predictions of the disk models at different times in the disk
evolution (star symbols). Disk ages are indicated by numbers, in Myr,
above the star symbols. The predicted ∼1 mm-fluxes (x-axis) and spec-
tral indices between ∼1 mm and 3 mm (y-axis) are for the disk models
presented in Sect. 2 with perturbations characterized by f = 1 and either
A = 0.1 (top panel) or A = 0.3 (bottom panel). The ∼1 mm-flux densi-
ties for the Orion disks have been scaled by a factor of (420 pc/140 pc)2

to account for the different distances estimated for the Orion Nebula
Cluster (∼420 pc, Menten et al. 2007) and Taurus and Ophiucus star-
forming regions (∼140 pc, Bertout et al. 1999; Wilking et al. 2008).

antenna configuration of ALMA for an observing wavelength
of 1 mm and 2 Myr of the disk evolution. We can see that for
A = 0.1 it is impossible to detect any structures around the star
even considering a perfect data calibration. We note that ow-
ing to the trapping of dust particles at the peaks of the pressure
bumps, the contrasts between rings in the simulated images is
very clear, around ∼20–25%, while the contrast for the gas is
almost unrecognized.

Figure 11 compares the simulated images at different ob-
serving wavelengths using different antenna configurations of
ALMA. The antenna configuration is chosen by CASA depend-
ing on the expected resolution. The highest quality image was
obtained at 100 GHz and a maximum baseline of 16 km (most
extended ALMA configuration), where it is possible to clearly
detect the most external ring structure and some internal ring
structures. Nevertheless, with more compact configurations at
different frequencies it is still possible to detect some struc-
tures from the presence of the pressure bumps, which allow the

Fig. 9. Disk image at 2 Myr and observing wavelength of 0.45 mm, the
amplitude of the perturbation is A = 0.3 and the factor f = 1 for: disk
model with parameters of Table 1 (top) and a simulated image using full
configuration of ALMA (bottom) with a maximum value of baseline of
around 3 km and an observing time of 4 h. The contour plots are at
{2, 4, 6, 8} for the corresponding rms value (see Table 2).

Fig. 10. Comparison between the simulated images for an observing
wavelength of 1 mm and 2 Myr of evolution, using the full antenna
configuration of ALMA for two different values of the amplitude of the
perturbation: A = 0.1 (top) and A = 0.3 (bottom). The contour plots are
at {2, 4, 6, 8}, of the corresponding rms value (Table 2).
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Fig. 11. Disk simulated images with parameters of Table 1, A = 0.3 and f = 1 at 2 Myr of the disk evolution and for observing frequency of:
667 GHz with a maximum baseline of around 3 km (top left), 454 GHz (bottom left) with a maximum baseline of around 4 km, 300 GHz (top right)
with a maximum baseline of around 7 km, and 100 GHz with a maximum baseline of 16 km (bottom right). The contour plots are at {2, 4, 6, 8} the
corresponding rms value (see Table 2).

formation of mm-sized particles. However, it is important to take
into account that the simulated images of Figs. 9–12 assume a
perfect data calibration after observations, and that for long base-
lines and high frequencies the calibration effects become more
important.

Taking the ratio of the images at two different wavelengths,
we evaluated the values of the spectral index α1−3 mm, which in-
dicates the location of mm-sized grains. For the full configura-
tion of ALMA and a maximum value of the baseline of 12 km for
both observing frequencies, some regions with large particles are
distinguished that are regions of low spectral index α1−3 mm <∼ 3,
as explained in Sect. 3.2. In Fig. 12, we present is the spectral
index of the model data (top plot) and the spectral index for two
simulated images at 0.45 mm and 3.0 mm, and a total observing
time of four hours.

4. Approach to zonal flows predictions

We have so far assumed ad-hoc models of pressure bumps. We
have not, however, considered the processes that may cause
such long-lived bumps in protoplanetary disks? We now examine
whether zonal flows are the origin of long-lived pressure bumps.

One possible origin of pressure bumps is MRI turbulence.
Hawley et al. (1995) and Brandenburg et al. (1995) presented
the first attempts to simulate the nonlinear evolution of MRI in
accretions disk, taking a box as a representation of a small part
of the disk. More recent simulations have been performed for

a higher resolution (see e.g. Johansen et al. 2009) and a more
global setup (Flock et al. 2011).

In magnetorotational instability, “zonal flows” are excited
as a result of the energy transportation from the MRI unstable
medium scales, to the largest scales causing an inverse cascade
of magnetic energy, and creating a large-scale variation in the
Maxwell stress (Johansen et al. 2009).

Different 3D MHD simulations have shown that in the pres-
ence of zonal flows, pressure bumps can appear when there are
drops in magnetic pressure throughout the disk (Johansen et al.
2009; Dzyurkevich et al. 2010; Uribe et al. 2011). Nevertheless,
in the simulations of yet higher resolution performed by Flock
et al. (2011), pressure bumps are not formed. There is no conclu-
sion about how and whether these pressure bumps can be created
via zonal flows.

An alternative for the origin of the pressure bumps pro-
duced by MRI is the change in the degree of ionization. The
disk becomes MRI active when the degree of ionization is suffi-
ciently high for the magnetic field to be strongly coupled to the
gas. Variable degrees of ionization in the disk could cause local
changes in the magnetic stress, which could induce structures in
the density and pressure.

The question we now wish to answer is are the pressure
bumps generated by zonal flows of MRI-turbulence, strong
enough to trap the dust in a similar way to the models of Sect. 3?
To find this out, we consider the 3D MHD simulations of MRI-
turbulent protoplanetary disks by Uribe et al. (2011). These mod-
els have a resolution of (Nr ,Nθ,Nφ) = (256, 128, 256). We note
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Fig. 12. Spectral index α1−3 mm of the model data (top plot) and the spec-
tral index taking two simulated images at 0.45 mm and 3.0 mm, with a
time observation of four hours and using the full configuration (maxi-
mum baseline of 12 km).

that the MRI dynamical timescale is around one orbital period (at
one AU), while the dust growth timescale is longer than 100 or-
bital periods. It is currently infeasible to study the dust growth
process self-consistently in the full time-dependent 3D model.
This would require the development of a MHD model tens
to hundreds of times longer than currently achievable. Hence,
the strategy is to find first a quasi-steady state of the gas sur-
face density from MRI evolution, in which structures in the
pressure survive the entire simulation (around 1000 inner disk
orbits). Afterwards, to do the coagulation/fragmentation simu-
lation of the dust in 1D taking the gas surface density for a
specific azimuthal angle in the midplane from the results from
MHD simulations.

Top plot of Fig. 13 shows the ratio of the time-averaged sur-
face density at two different azimuthal angles where the ampli-
tude of a pressure bump reaches a maximum and a minimum at
two specific radii. We note, that the variations in the azimuthal
angle are very uniform, around ∼5%. This is why we wish to
work with the azimuthally averaged density.

For our simulations, we assumed that the pressure structure
survives and is stable on dust growth and evolution timescales.

Fig. 13. Top plot: ratio of the surface density at two different azimuthal
angles of of the disk from zonal flows simulation of Uribe et al. (2011).
The azimuthal angles are chosen such that for a specific radius, the am-
plitude of the pressure bump has a maximum Σmax, and a minimum Σmin.
Bottom plot: azimuthal velocity with respect to the Keplerian velocity
for the azimuthal and time-averaged surface density of the midplane.

The lifetime of these structures as determined by global disk
simulations is still uncertain, but it has been found to be on
the order of 10–100 local orbits (at the radial position of the
bump) (Johansen et al. 2009; Uribe et al. 2011). It is still an
open question whether this behavior can be directly re-scaled to
apply to the outer parts of the disk and in any case, the structures
should be eventually diffused on turbulent diffusion timescales.
In the future, the continuous generation and evolution of these
structures should be implemented alongside the dust evolution.
However, for lack of a better model of this time-dependence at
this stage, we assumed these structures to be static.

Since these MHD simulations use a radial domain where
r ∈ [1; 10], we rescaled this grid logarithmically, such that the
gas surface density was taken from 10 AU to 100 AU, and scaled
the surface density such that the total disk mass was 0.05 M⊙
(see Fig. 1-left plot (solid-line)). Comparing the gas surface den-
sity obtained from MHD simulations with the assumed perturbed
density Σ′ (Eq. (1)), we could see that the amplitude of the sur-
face density perturbation from zonal flows was around 25% and
comparable with the amplitude of 30% of Σ′. The widths of the
bumps from Uribe et al. (2011) are not uniform, but our assump-
tion of f = 1 agrees well with some of those bumps.
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Fig. 14. Vertically integrated dust density distribution after 2 Myr and 4 Myr of dust evolution; taking the azimuthal and time-average profile of
the gas surface density in the midplane from the MHD simulations (see Uribe et al. 2011, Fig. 3) without a planet. The solid white line shows the
particle size corresponding to a Stokes number of unity, which has the same shape as the density profile.

The bottom plot of Fig. 13 shows the azimuthal velocity with
respect to the Keplerian velocity for the azimuthal and time-
averaged surface density of the midplane. We note that the az-
imuthal velocity exceeds the Keplerian velocity for some regions
of the disk. This implies that for these regions, the presence of
zonal flows allows us to have a positive pressure gradient leav-
ing dust particles to move outwards. Therefore, the peaks of the
pressure bumps created by zonal flows may be regions where
dust particles can reach millimeter sizes.

Figure 14 shows the vertically integrated dust density distri-
bution after 2 Myr and 4 Myr of dust evolution (using the model
of Birnstiel et al. 2010a). We note that at that time of evolu-
tion the pressure bumps caused by zonal flows are able to retain
mm and cm sized particles in the outer regions of the disk. This
is why a high mass disk was considered in this case, in order to
simulate large grains. Around 50–60 AU, there is clearly a region
with a high vertically integrated dust density distribution for mm
and cm-sized particles.We note that the peak around 100 AU is
a result of the boundary condition.

5. Conclusions

Theoretical models of dust evolution in protoplanetary disks
show that the growth from sub-micron sized particles to larger
objects is prevented basically by two phenomena: radial drift
and fragmentation. Nevertheless, infrared and radio observations
show that millimeter-sized particles can survive under those cir-
cumstances in the outer regions of the disks. Therefore, vari-
ous theoretical efforts have focused on explaining the survival of
those bodies.

We have taken into account the strong inhomogeneities ex-
pected to persist in the gas density profile e.g. zonal flows, and
used the coagulation/fragmentation and disk-structure models of
Birnstiel et al. (2010a), to investigate how the presence of pres-
sure bumps can cause a reduction in the radial drift, allowing the
existence of millimeter-sized grains in agreement with observa-
tions. In this work, we assumed a sinusoidal function for the gas
surface density to simulate pressure bumps. The amplitude and

wavelength disturbances were chosen by considering the neces-
sary conditions to have outward angular momentum transport in
an α-turbulent type disk, outward radial drift of dust, and rea-
sonable values compared to the predictions of studies of zonal
flows (Uribe et al. 2011).

The results presented here suggest tha pressure bumps with
a width of the order of the disk scale-height and an amplitude of
30% of the gas surface density of the disk, provide the necessary
physical conditions for the survival of larger grains in a disk with
properties summarized in Table 1. Comparisons between the ob-
served fluxes of the Taurus, Ophiucus, and Orion Nebula Cluster
star-forming regions with the results of the models ratify that
the effect of the radial drift decreases allowing particles to grow.
Figure 8 shows how models with these kind of disturbances re-
produce more closely the mm-observations than models with full
or without radial drift.

In addition, we have presented a comparison between the
bumpy density profile assumed in this work and 3D MHD mod-
els of zonal flows that can cause long lived bumps in protoplan-
etary disks. We have shown that the pressure bumps produced
by the zonal flows of Uribe et al. (2011) agree with the ampli-
tudes and wavelengths used in this work. Therefore, considering
these bumps, the survival of dust particles is possible in the outer
regions after some Myr.

The simulated images using the CASA ALMA simulator
(version 3.2.0) show that, with a different antenna configura-
tion of the final ALMA stage, the ring structures, because of
the pressure bumps, should be detectable. Future ALMA obser-
vations will have an important impact on our understanding the
first stages of planet formation and will be very important in in-
vestigating if the grain growth and retetion can be explained by
the presence of these kind of inhomogeneities in the gas density
profile.
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