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Introduction 

 Traumatic spinal cord injuries (SCI) have devastating physical, psychosocial, and 

vocational implications for patients and caregivers. Direct lifetime costs can reach a 

staggering $1.1-4.6 million per patient with over 1 million people affected in North America 

alone (Figure 1)1-3. For treating physicians, a working knowledge of current and emerging 

therapies in SCI is critical to expediently deliver care and improve long-term functional 

outcomes for patients4, 5. This article summarizes the evidence-based management of a 

patient with acute SCI and discusses upcoming neuroprotective and neuroregenerative 

strategies on the cusp of translation. A primer on the unique pathophysiology of SCI is 

provided to aid in understanding the rationale behind the diverse range of therapeutic 

approaches discussed below. 

Pathophysiology 

Primary and secondary spinal cord injury 

SCI can be divided into primary and secondary phases.6, 7 The primary SCI is caused 

by the physical forces of the initial traumatic event and is often the most important 

determinant of injury severity; physical forces involved can include compression, shearing, 

laceration and acute stretch/distraction .8 After the primary injury event a cascade of 

secondary injury events is initiated which serves to expand the zone of neural tissue injury 

and exacerbate neurological deficits.9, 10 Secondary SCI is a delayed and progressive tissue 

injury following the primary SCI. During this secondary injury cascade, inflammatory cells 

such as macrophages, microglia, T-cells and neutrophils infiltrate the injury site as a result of 

disruption of the blood-spinal cord barrier . These cells trigger the release of inflammatory 

cytokines such as tumor necrosis factor (TNF)α, interleukin (IL)-1α, IL-1β and IL-6, with 

levels of these cytokines peaking 6-12 hours after injury and remaining elevated up to 4 days 



after injury11. In addition, a loss of ionic homeostasis after SCI causes increased intracellular 

calcium, which activates calcium-dependent proteases and causes mitochondrial dysfunction, 

ultimately leading to cell death.12 Notably, oligodendrocytes are susceptible to apoptotic loss. 

This apoptotic loss has been observed distant from the epicenter of SCI as well as at the 

lesion epicenter and leads to demyelination of preserved axons.13-15 Moreover, phagocytic 

inflammatory cells release reactive oxygen species (ROS) which causes DNA oxidative 

damage, protein oxidation and lipid peroxidation. Delayed necrosis and apoptosis are induced 

by this process.16-18 After SCI, upregulated release of excitatory amino acids, such as 

glutamate and aspartate, is observed due to release from disrupted cells.19, 20 The excessive 

activation of excitatory amino acid receptors produces excitotoxicity and further propagation 

of loss of neurons and glia by both necrotic and apoptotic cell death.21 

 

Barriers to regeneration 

It is widely recognized that regeneration in the adult mammalian central nervous 

system (CNS), which includes the spinal cord, is difficult due to limited plasticity and 

inhibitory factors produced from myelin degradation. 22 Although recent progress in the field 

of SCI research has demonstrated that the CNS has more inherent regenerative capacity than 

that was once thought,23, 24  it does not have the same regenerative capacity that is observed 

in the peripheral nervous system (PNS). Compared with the PNS, not only is the regenerative 

capacity of CNS axons lower but it also decreases over time.25 

The inhibitory nature of CNS myelin, which is in contrast to PNS myelin, was first 

recognized in 1985.26 Myelin-associated proteins, including neurite outgrowth inhibitor A 

(Nogo A),27, 28 myelin-associated glycoprotein (MAG)29, 30 and oligodendrocyte-myelin 

glycoprotein (OMgp)31, bind Nogo receptors (NgR) that form co-receptor complexes with 

TNF receptor family proteins such as p75, TROY, and LIGO-1 to activate the GTPase Rho A. 

Rho-associated protein kinase (ROCK) is the effector of Rho A, which regulates further 



downstream effectors, and leads to growth cone collapse of regenerating axons and to neurite 

retraction. 

Hypertrophied astrocytes form a physical barrier called the glial scar, which walls 

off injured tissue from the healthy tissue.32 The astrocytes also form a chemical barrier by 

secreting a number of growth inhibitory chondroitin sulfate proteoglycans (CSPGs) including 

neurocan, versican, brevican, phosphacan and NG2.33 Fibroblasts also infiltrate the 

perilesional region and replace the extracellular matrix (ECM) with fibrous connective tissue. 

This is associated with the deposition of inhibitory ECM molecules which function as 

chemical barriers to axonal regeneration similar to myelin associated inhibitors (Figure 2).34 

 

Current Management 

 The current management of SCI largely follows the American Association of 

Neurological Surgeons (AANS) and Congress of Neurological Surgeons (CNS) joint section 

guideline series as well as an upcoming AOSpine 2016 guideline (Table 1)35. Initial care in 

the field prioritizes securing the airway, breathing, and circulation (ABCs) followed by early 

recognition of SCI and rapid referral to specialized centers in order to expedite delivery of 

time-sensitive interventions35. To limit further insult to the highly-vulnerable cord, spinal 

immobilization should be performed for all patients with suspected or confirmed injuries35. 

This typically involves a rigid cervical collar, backboard for transport, and spinal precautions 

for patient transfers (e.g. logroll maneuver with inline manual cervical stabilization and a 

transfer board). Systemic hypotension (SBP <90 mmHg), even for brief periods, should be 

avoided as it is associated with worse long-term neurological outcomes35. This can be 

particularly challenging as hypovolemia is common in polytrauma and interruption of spinal 

cord sympathetic fibers can induce a profound loss of vascular tone and bradycardia 

(neurogenic shock). Resuscitation with large-volume crystalloids is typical, however, alpha-



agonists (e.g. phenylephrine) or mixed alpha/beta-agonists (e.g. dopamine, norepinephrine) 

may also be required as adjuncts. Once resuscitated, an American Spinal Injury Association 

(ASIA) International Standards for Neurological Classification of SCI (ISNCSCI) 

examination should be documented to establish baseline function and the level of 

neurological injury (Table 1; Figure 3)35.   

 Early localization and classification of osseoligamentous and neurological injuries is 

critical to expediently provide the outcome-altering therapies discussed below4, 5, 36, 37. The 

management of particular fracture patterns is discussed in detail in ‘Spine Trauma’. CT 

imaging is recommended for all patients with suspected SCI as x-rays can miss up to 6% of 

injures38. When evaluating patients with high-energy mechanisms and confirmed cervical 

injuries, thoracolumbar imaging is recommended to rule out concomitant injuries that may 

not be clinically apparent39. The role of MRI in the initial workup of patients remains unclear, 

however, urgent MRI is strongly recommended by the senior authors in all cases with 

unexplained neurological deficits to rule out ongoing spinal cord compression due to occult 

ligamentous injuries, epidural hematomas, or critical disc herniations. The utility of MRI in 

prognostication is also becoming more apparent as validated prediction scores continue to be 

published40.  

 Concurrent with the diagnostic workup, patients should be transferred to a critical 

care unit providing continuous respiratory, cardiac, and hemodynamic monitoring35. 

Immediate life- or limb-threatening injuries should be managed by the appropriate teams 

while maintaining strict spinal immobilization. Delivering effective care in SCI requires a 

collaborative multidisciplinary approach including fiberoptic intubation by anesthesia/critical 

care, modified intraoperative positions for general surgery/orthopedic procedures and early 

recognition of therapeutic windows which can positively alter long-term outcomes. 

 



Early Surgical Decompression 

After SCI, ongoing mechanical compression of the spinal cord can impair blood 

flow causing ischemia and an expanded zone of neural tissue injury. The goal of early 

surgical decompression after SCI is to relieve this compression thereby improving the 

vascular supply to the injured area and limiting the zone of secondary injury expansion. A 

sizable body of preclinical literature supports the positive effects of early surgical 

decompression on behavioral and pathological outcomes in animal SCI models41. 

With respect to clinical evidence on this topic, a number of comparative cohort 

studies have been published investigating the clinical impact of performing decompressive 

surgery prior to several thresholds. Notably, to investigate the efficacy of early 

decompression prior to a 24 hour threshold, The Surgical Treatment of Acute Spinal Cord 

Injury Study (STASCIS) prospectively enrolled 313 cervical SCI patients.37  Patients 

receiving early decompression (<24 hours after SCI) experienced 2.8 times greater odds of 

experiencing an AIS improvement of at least 2-grades at 6 months as compared with patients 

who underwent late decompression (≥24 hours after SCI). Although not statistically 

significant, there was a trend to a reduced incidence of acute in-hospital complications after 

early decompression. A prospective Canadian cohort study (including cervical, thoracic and 

lumbar SCI, n=84) confirmed the findings observed in STASCIS, reporting that in the 

adjusted analysis early decompression was associated with a statistically greater improvement 

in ASIA Motor Score recovery at the time of rehabilitation facility discharge.42 Moreover, an 

observational Canadian cohort study showed that AIS A (complete injury) and AIS B 

(complete motor injury with incomplete sensory injury) patients who received early 

decompression experienced shorter length of hospital stay, while AIS B, C and D incomplete 

injury patients decompressed in an early fashion demonstrated an additional 6.3 points in 

motor recovery as compared to those decompressed late.4 Taken together, these findings 

support the concept of ‘Time is Spine’, emphasizing the importance of early diagnosis and 



intervention to enhance long-term outcomes. 

Central cord injury is the most common form of incomplete SCI.  Historically, 

early decompression by durotomy and sectioning of the dentate ligaments has been avoided 

in cases of central cord injury due findings of poor outcomes after surgery.43 However, an 

analysis of prospective data performed by the Spine Trauma Study Group associated early 

decompression (<24 hours after SCI) with an additional 6.3 points of ASIA motor score 

recovery and 2.8 times odds of ASIA Impairment Scale grade improvement at 12-month 

follow-up as compared to late decompression (≥24 hours after SCI).44 In 2013, a randomized 

control trial Comparing Surgical Decompression Versus Conservative Treatment in 

Incomplete Spinal Cord Injury (COSMIC; NCT01367405; n=72) trial was initiated by 

Raboud University. The study will compare surgical decompression within 24 hours to 

normal conservative treatment without surgery and is currently recruiting participants. 

 

Steroids for SCI 

 Methylprednisolone (MPSS) is a potent synthetic glucocorticoid which upregulates 

anti-inflammatory cytokine release and reduces oxidative stress to enhance neural cell survival 

in preclinical models of traumatic SCI. The National Acute Spinal Cord Injury Study 

(NASCIS) trial series (199045, 199746) found an increase in the number of infection-related 

complication (e.g. severe sepsis, severe pneumonia) with the high-dose 48-hour protocol which 

outweighed the potential neurological benefits. However, a shorter 24-hour course of IV MPSS 

(30mg/kg bolus + 5.4mg/kg/hr x 23hrs) had a substantially lower complication rate and, when 

administered to a subgroup of patients within 8 hours of injury, was still found to improve 

neurological outcomes. These subgroup analyses and the purported methodology have been a 

source of controversy for the last three decades. To definitively address the debate, a 2012 

Cochrane Review meta-analysis pooling 6 key randomized trials and observational studies was 

completed. The study found that patients receiving MPSS within 8 hours of injury had a 4-



point greater ASIA motor score improvement47. This modest benefit can have tremendous 

functional implications for patients when those motor points are recovered in key myotomes 

such as grip and deltoid function. As a result, an upcoming AOSpine 2016 guideline developed 

by an international expert panel will suggest 24 hours of IV MPSS be administered within 8 

hours of injury to patients without significant medical contraindication. 

 

Blood Pressure Augmentation 

 Vascular injury and localized edema contribute to ongoing ischemia in the 

perilesional region. Blood pressure augmentation has emerged as a viable strategy to 

neuroprotect at-risk tissue by enhancing perfusion. Current AANS/CNS guidelines 

recommend maintenance of mean arterial pressure (MAP) ≥ 85-90mmHg for 7 days post-

injury as this has been found to enhance long-term AIS grade outcomes for patients5. In 

application, this most often necessitates invasive blood pressure monitoring, IV fluid therapy 

and central venous access for continuous infusion of vasopressors. These substantial requires 

have prompted a non-inferiority trial entitled Mean Arterial blood Pressure Treatment for 

Acute Spinal Cord Injury (MAPS; NCT02232165) comparing MAP ≥ 85mmHg vs MAP ≥ 

65mmHg with results expected by 20173. 

 These requirements can also be a significant hindrance to early mobilization, an 

important component of cardiorespiratory and dermatologic complication prevention. A 

collaborative interdisciplinary approach utilizing adjunctive measures such as prophylactic 

vasopressors, abdominal binding, and assistive devices is often required to safely elevate 

patients. The precise timing of mobilization is dictated by the patient’s hemodynamic status 

and the expertise of the treating team. 

Key Trials in Neuroprotection 

 In addition to early decompression, MAP augmentation and IV MPSS; several other 



neuroprotective strategies targeting key components of the secondary injury cascade have 

emerged in preclinical research. The most promising therapies currently being translated are 

discussed in this section.  

 

Pharmacological Therapies 

Riluzole 

 Riluzole is a benzothiazole sodium channel blocker currently approved by the FDA, 

EMA, and Health Canada for the treatment of amyotrophic lateral sclerosis (ALS) 48, 49. It 

protects against excitotoxic cell death by blocking sodium influx in injured neurons and 

restricting the pre-synaptic release of glutamate 50. Animal studies in SCI have demonstrated 

its ability to reduce neuronal loss and cavity size while improving sensorimotor and 

electrophysiological outcomes 51-54. A collaborative effort to study Riluzole for SCI is being 

led by the senior author (MGF) and includes the North American Clinical Trials Network 

(NACTN), AOSpine, the Ontario Neurotrauma Foundation (ONF) and the Rick Hansen 

Institute. This Phase II/III RCT (N=351) entitled “Riluzole in Spinal Cord Injury Study” 

(RISCIS; NCT01597518) is currently recruiting patients with acute C4-8 ASIA grade A/B/C 

injuries and will assess multiple outcomes including the ASIA Impairment Scale (AIS), Brief 

Pain Inventory (BPI), and Spinal Cord Independence Measure (SCIM) 3. The study is 

expected to conclude in 2018. 

 

Magnesium 

Magnesium can act as an NMDA receptor antagonist to decrease excitotoxicity and 

also functions as an anti-inflammatory agent. Stable CSF levels can be generated by 

delivering magnesium with an excipient such as polyethylene glycol (PEG)55-57. In animal 

models, the Mg-PEG combination has been shown to enhance tissue sparing and lead to 



behavioral recovery58, 59. A Phase I trial (N=15; NCT01750684) of a Mg-PEG combination 

(AC105) led by Acorda Therapeutics Inc. concluded in February 2015 with results pending 

report3. 

 

Minocycline 

Minocycline is a second-generation bacteriostatic tetracycline antibiotic that has 

demonstrated neuroprotective properties in preclinical models of CNS disorders including 

Huntington’s disease and multiple sclerosis60, 61. This stems in part from its significant anti-

inflammatory effect mediated by inhibition of microglial activation, interleukin-1β (IL-1β), 

tumour-necrosis factor-a (TNF-α), cyclooxygenase-2 (COX-2), and matrix 

metalloproteinases62-65. In animal studies, minocycline treatment after acute SCI has been 

shown to reduce lesion size and promote tissue sparing 66, 67. A Phase II trial demonstrated 

that patients with acute incomplete cervical SCI (N=25) may benefit from early minocycline 

administration as they found a 14-point ASIA motor score improvement compared to placebo 

(p=0.05)68. This exciting result led to the development of a Phase III trial (N=248) entitled 

‘Minocycline in Acute Spinal Cord Injury’ (MASC, NCT01828203) which will assess IV 

minocycline for 7 days versus placebo and is expected to report by 20183. 

  

GM-1 Ganglioside 

Monosialotetrahexosylganglioside (GM-1) is a glycosphingolipid found in cell 

membranes with the ability to activate receptor tyrosine kinases to enhance neural plasticity 

and regeneration. It has been successfully used for neuroprotection in animal models of SCI 

where it enhanced tissue sparing.69 A successful Phase II trial (N=37) found improved 1-year 

ASIA motor scores for those receiving daily GM-1 for 18 to 32 days post-injury70. 

Unfortunately, a follow-up Phase III RCT (N=797) found no statistically significant 



improvement with treatment71. No further studies have been registered. 

 

Fibroblast Growth Factor 

Fibroblast growth factor (FGF) is a heparin-binding protein found to be 

neuroprotective against excitotoxicity while also reducing oxygen free radical generation72. 

In animal models, it has been shown to reduce motor neuron loss and improve respiratory 

deficits73, 74. A Phase I/II trial (N=62; NCT01502631) of the FGF-analogue, SUN13837 

(Asubio Pharmaceuticals Inc.), completed in 2015 with results pending publication3.  

 

G-CSF 

Granulocyte colony-stimulating factor (G-CSF; CSF 3) is a cytokine glycoprotein 

found in numerous tissues throughout the body. It is capable of promoting cell proliferation, 

survival, and mobilization. In the CNS, it has been shown to facilitate survival of ischemic cells 

and reduce inflammatory cytokine expression (e.g. TNF-α, IL-1β) 75-77. A recent pair of non-

randomized Phase I/IIa trials showed no increase in serious adverse events with G-CSF 

administration while also demonstrating improvement in AIS outcomes 78, 79. Additional well-

designed RCTs will be required to establish the efficacy of G-CSF for SCI. 

 

Hepatocyte Growth Factor 

Hepatocyte growth factor (HGF) is a pro-survival, pro-motility c-Met receptor 

ligand. In small animal SCI models, HGF increases neuron survival and decreases 

oligodendrocyte apoptosis resulting in improved behavioral outcomes80-82. More recently, 

HGF has been shown to promote angiogenesis and enhance upper limb recovery in a primate 

model of cervical SCI81. A Phase I/II randomized trial (N=48; NCT02193334) of KP-100IT 

(HGF; Kringle Pharma Inc.) is now underway with results expected in 20173. 



 

Non-Pharmacologic Therapies 

Therapeutic Hypothermia 

 Therapeutic hypothermia (TH; 32-34°C) significantly reduces the basal metabolic rate 

of the CNS and decreases inflammatory cell activation83. It has been successfully applied in 

neonatal hypoxic-ischemic encephalopathy and after in-hospital cardiac arrest84-86. In 

preclinical SCI models, it has been shown to enhance tissue sparing and promote behavioral 

recovery prompting a pilot study (N=14) of early systemic TH for patient with AIS A injuries 

which found no increase in complication rates and a trend towards increased neurologic 

recovery (43% vs 21%)87, 88. A Phase II/III trial entitled Acute Rapid Cooling Therapy for 

Injuries of the Spinal Cord (ARCTIC) has been planned to definitively assess efficacy. 

 

CSF Drainage 

 CSF drainage attempts to prevent cord hypoperfusion in the critical post-injury 

period by relieving pressure analogous to EVD drainage for raised ICP. A Phase I/II trial 

(N=22) completed in 2009 found no significant improvement outcomes with drainage, 

however, the study was not sufficiently powered to demonstrate efficacy89. Recent large-

animal trials have found CSF drainage acts synergistically with MAP augmentation to 

improve cord blood flow90. Based on these key results, a Phase IIB trial (N=60; 

NCT02495545) of MAP elevation with CSF drainage has been launched with results 

expected by December 20173. 

 

Key Trials in Neuroregeneration 

While timely neuroprotective interventions can have tremendous benefits in the acute 

injury period, the majority of our patients are in the chronic phase of their injuries where further 



recovery is limited. This section discusses emerging neuroregenerative therapies in clinical trial 

or on the cusp of translation (illustrated in Figure 4). 

 

Pharmacological Therapies 

Rho-Rock Inhibitor   

Components of the injured adult CNS including CSPGs, myelin-associated 

glycoproteins (MAG), and neurite outgrowth inhibitor (NOGO) potently inhibit axon 

outgrowth and attempts at regeneration via the Rho-ROCK signaling pathway. Cethrin/VX-

210 (Vertex Pharmaceuticals) is a direct Rho inhibitor applied intraoperatively within a fibrin 

glue sealant to the epidural space91. A mixed open-label Phase I/IIa trial (N=48; 

NCT00500812) of patients with cervical or thoracic injures found no increase in serious 

adverse events and a significant improvement in long-term motor scores (18.5 ASIA points) 

for cervical patients92. These very exciting results have led to a Phase III trial in patients with 

acute cervical SCI planned to begin in 2016. 

 

Anti-NOGO antibody 

Anti-NOGO is a monoclonal antibody against NOGO-A, a major inhibitor component 

of adult CNS myelin. Anti-NOGO treatment delivered by intrathecal injection has been shown 

to promote axonal sprouting and functional recovery in animal models by clearing the source 

of this inhibitory signaling93. A Phase I trial (N=51; NCT004060160) of humanized anti-

NOGO antibody (ATI-355; Novartis) has been completed in Europe with results pending 

dissemination3. 

 

Cell Therapies 

 Cell-based regenerative therapies are an exciting field as transplanted cells are capable 



of filling many roles including providing trophic support, modulating the inflammatory 

response, regenerating lost neural circuits, and remyelinating denuded axons94-96. Early 

research utilized embryonic stem cells (ESCs), however, ethical concerns and limited supplies 

have driven the field towards induced pluripotent stem cell (iPSCs) which can be derived from 

any somatic cell, including autologous sources97. While unanticipated challenges have arisen, 

including early senescence and retained epigenetic memory, iPSCs remain a key therapeutic 

approach moving forward. Numerous animal studies over the last three decades have 

demonstrated the beneficial effects of a range of transplanted cell types. The most clinically-

relevant approaches are discussed here. 

 

Neural stem/precursor cells 

 Neural precursor cells are capable of differentiating to CNS-specific neurons, 

oligodendrocytes and astrocytes making them a particularly promising strategy. In animal 

studies, they are capable of integrating with host circuits to enhance behavioral recovery over 

several weeks98, 99. A pair of phase II trials by Stem Cells Inc. of human CNS stem cell 

transplants for cervical (N=31; NCT02163876) and thoracic (N=12; NCT01321333) injury 

were terminated in 2016 prior to completion. While results regarding sensorimotor outcomes 

are pending dissemination, preliminary data suggest no increase in complications rates related 

to the treatments3. This provides confirmation of existing safety data that intraparenchymal 

stem cell transplants are feasible and suggests further optimization of the cells and/or their 

environment is required to produce meaningful changes in functional recovery. 

 

Mesenchymal stem cells 

 Mesenchymal stem cells (MSCs) are multipotent cells capable of repairing connective 

tissues by differentiating to myocytes, osteoblasts, chondrocytes and adipocytes100. They can 



also modulate local and systemic inflammation which has been exploited in animal models of 

SCI where MSC treatment led to a decrease in peripheral inflammatory cell infiltration and an 

increase in parenchymal tissue volume101-105. A Phase II/III RCT (N=32; NCT01676441) by 

Pharmicell Co. studying intraparenchymal and intrathecal MSC treatment for patients with 

acute AIS B injuries is ongoing with results expected in 20163.  

 

Schwann cells 

 The robust regeneration seen in the PNS is thought to be mediated in large part by 

Schwann cells (SCs). In animal models of SCI, peripheral SCs transplanted into the CNS were 

found to remyelinate axons, reduce cystic cavitation and enhance recovery106. An open-label 

Phase I trial (N=10; NCT02354625) by the Miami Project to Cure Paralysis is now 

investigating SCs in the treatment of patients with chronic AIS A, B, and C cervical or thoracic 

injuries with results expected by 20183. The group is also conducted a Phase I trial (N=10; 

NCT01739023) of autologous SCs for the treatment of subacute thoracic AIS A injuries with 

results expected by 20163. 

 

Olfactory ensheathing cells 

 Olfactory ensheathing cells (OECs) protect olfactory neurons exposed to the harsh 

conditions of the nasal mucosa. They rapidly phagocytose debris and microbes while also 

providing trophic support through growth factor signaling, and physical axonal guidance 

through guidance cues 107-110. OECs harvested from the nasal mucosa and transplanted into the 

cord have been shown to improve neurite outgrowth and endogenous remyelination resulting 

in impressive behavioral recovery in animal models111. Numerous clinical trials of OECs for 

chronic SCI have been completed worldwide and analyzed in a meta-analysis (cumulative 

N=1193) which found no significant increase in complication rates related to the transplant112. 



However, human OECs have not been well characterized, and transplants invariably consist of 

mixtures of cells from the olfactory mucosa or bulb. More data is required regarding human 

cells, which are not as easy to culture in large numbers from patients compared to animal 

models. Moving forward, higher quality studies will be required to definitively establish the 

efficacy of OEC therapy. 

 

Biomaterials 

 Regeneration is often hindered by the presence of a substantial post-injury cystic 

cavity which lacks the substrate to support cell migration and axon growth. Biomaterials have 

emerged as an exciting strategy to fill cavitation defects and reproduce the complex structural 

architecture of the extracellular matrix113-117. Many of these materials can be engineered to 

biodegrade over time, release growth factors, and can even be seeded with stem cells to enhance 

engraftment97,98. Several biomaterials have been shown to be effective in animal models of SCI 

from the acute to chronic phases (e.g. HAMC114, QL6118, 119, fibrinogen120, etc.) As the 

technology evolves, more niche-specific biomaterials are expected to emerge with extended 

drug-release and cell support capabilities. Currently, a Phase III trial (N=20; NCT02138110) 

of InVivo Therapeutics’ Neuro-Spinal Scaffold is now recruiting patients with acute AIS A 

thoracic injuries3. Results are expected in 2017. 

Future Directions 

 The next substantial changes in the management of patients with SCI are likely to be 

translated from research which adapts to the heterogeneity of SCI. Modified trial designs 

which specifically target SCI subpopulations are likely to have the greatest impacts on long-

term functional recovery. Stratifying patients in this way will require a combination of 

existing metrics (e.g. clinical exam, radiography) and novel assessment techniques (e.g. 

advanced imaging, biochemical biomarkers). 



 While many novel treatments show promise in animal models of SCI, these 

experimental paradigms typically involve very controlled injury and recovery conditions after 

biomechanically precise injuries in animals matched for age, weight, gender, species, and, in 

some cases, genetic background.  This obviously pales in comparison to the natural 

variability that occurs in the acute human SCI setting.  The appreciation of the heterogeneity 

of human SCI is partly the result of the challenges that have been experienced in the 

execution of clinical trials of novel therapies, particularly in the acute setting.  Variability in 

neurologic recovery requires that many patients be recruited to complete such acute clinical 

trials in order to be sufficiently powered.  Difficulties in achieving such recruitment has 

plagued the conduct of virtually all acute clinical studies, and the failure to enroll sufficiently 

large patient cohorts within realistic time frames has resulted in the premature cessation of 

numerous clinical trial programs.  New approaches to overcome this will be needed in the 

future to facilitate the conduct of such clinical trials and enhance the speed with which novel 

treatments for SCI can be validated.  Such approaches include narrowing the inclusion 

window to be more specific in the types and severities of cord injuries being studied, and 

establishing objective biomarkers for the stratification of injury severity and more precise 

prediction of neurologic outcome. 

Seminal large-scale clinical trials for SCI have typically used broad inclusion criteria 

to bolster recruitment across participating centers. However, post hoc subgroups analyses 

have now demonstrated that patient characteristics, presentations, and the underlying 

pathophysiology in SCI can be highly heterogeneous which can influence the relationship 

between treatments and outcomes45-47, 121, 122. As a result, more recent studies are recruiting 

carefully defined populations which we feel is key to success. The upcoming Riluzole in 

Acute Spinal Cord Injury (RISCIS; NCT01597518) trial is an example where recruitment is 

limited to patients with C4-8 injuries and ASIA grades A, B, or C3, 54. Other clinical 

initiatives have similarly restricted inclusion both with regards to the level of injury (cervical 



vs thoracic), severity of injury (AIS grade A, B, or C), and timing of intervention. While 

logistically demanding, this careful selection will allow a more valid assessment of the drug’s 

efficacy.  

The next generation of trials will also need to further define subpopulations based on 

quantifiable imaging and biochemical biomarkers. MRI is a key imaging modality for most 

CNS pathologies, however, its adoption in SCI has been slow. This is likely because the most 

common sequences (T1- and T2-weighted) rely on gross measurements of hemorrhage and 

compression providing only modest utility in predicting outcomes. Future MR imaging will 

need to quantify the cord microstructure to better estimate damage and recovery potential. 

Emerging techniques for this include diffusion tensor imaging (DTI; axon integrity), myelin 

water fraction (MWF; myelination), MR spectroscopy (MRS; gliosis or ischemia), and 

functional MRI (fMRI; connectivity)123, 124.  

Biochemical biomarkers are also being extensively explored. The Canadian 

Multicentre CSF Monitoring and Biomarker Study (CAMPER; NCT01279811) is testing 

CSF over 5 days for inflammatory cell proteins, interleukins, and other cytokines3. Specific 

proteins such as IL-6, S100, and tau within the cerebrospinal fluid of acute SCI patients 

have been shown to be able to objectively stratify injury severity and predict AIS grade and 

motor score improvement125, 126. An additional class of biomarkers currently under study 

through the Rick Hansen Institute is micro RNAs (miRNA) which are short non-coding RNA 

segments that can regulate post-transcriptional gene expression. miRNAs are specifically up 

or down regulated with varying grades of SCI and may hold important prognostic 

information as they are further understood 127. Together these biomarkers will yield important 

data to help identify subgroups within the heterogeneous SCI population, and when combined 

with clinical examination, will allow patients to be stratified by their specific 

pathophysiologic niche into targeted trials.  



The breadth of therapeutic approaches discussed within this review and the rapidly-

evolving management of a patient with SCI highlight the excitement and progress continuing 

to be made in the field by thousands of collaborating physicians, scientists, and allied health 

workers worldwide. 
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Table 1: “Current best practices for the diagnosis and management of SCI. The table 

displays several key recommendations, many of which are from the 2013 updated guidelines 

from the Joint Section on Disorders of the Spine and Peripheral Nerves of the American 

Association of Neurological Surgeons and the Congress of Neurological Surgeons.” 
Reprinted with permission from Martin AR, Aleksanderek I, Fehlings MG. Diagnosis and 

acute management of spinal cord injury: current best practices and emerging therapies. 

Current Trauma Reports. 2015;1(3):169-181128. 

Topic Level of 

AANS/CNS 

Recommendation 

Guideline/Recommendation 

Hypotension Level III Correction of hypotension to systolic blood pressure > 90 

mm Hg) as soon as possible  

Level III Maintenance of mean arterial blood pressure between 85 

and 90 mm Hg for 7 days 

Hypoxia None Hypoxia (PaO2 < 60 mm Hg or O2 saturation < 90%) 

should be avoided [3] 

ICU Monitoring Level III SCI patients should be managed in an ICU setting with 

cardiac, hemodynamic, and respiratory monitoring to 

detect cardiovascular dysfunction and respiratory 

insufficiency 

Immobilization Level II Patients with SCI or suspected SCI (except in penetrating 

injury) should be immobilized  

Level III Spinal immobilization should be performed with rigid 

cervical collar and supportive blocks on a backboard with 

straps 

Specialized 

Centers 

Level III SCI patients should be transferred expediently to 

specialized centers of SCI care 

Examination Level II The ASIA ISNCSCI examination should be performed and 

documented 

Imaging Level I No cervical imaging is required in awake trauma patients 

that have no neck pain/tenderness, normal neurological 

examination, normal range of motion, and no distracting 

injuries 

Level I CT is recommended in favour of cervical x-rays 

Level I CT angiography is recommended in patients that meet the 

modified Denver screening criteria [9] 

Neuroprotection Level I Methylprednisolone is not recommended * 



Spinal Cord 

Decompression 

None Surgical decompression prior to 24 hours after SCI can be 

performed safely and is associated with improved 

neurological outcome [10] 

Level III Early closed reduction of fracture/dislocation in awake 

patients without a rostral injury is recommended, and pre-

reduction MRI does not appear to influence outcome 

* The authors do not agree with this guideline. 

  



Table 2. Summary of International Standards for Neurological Classification of Spinal 

Cord Injury 

Parameter Definition 

Motor Score  Score out of 100 points representing motor 

power in 5 key myotomes (each grade out of 

5) in each limb 

Sensory Score Score out of 224 points representing light 

touch and pin prick sensation in 28 

dermatomes bilaterally 

AIS grade  Cumulative measure of injury severity 

ranging from AIS grade A (most severe 

motor sensory complete lesion) to AIS grade 

E (least severe no neurological deficit) 

AIS grade A No motor or sensory preservation below the 

neurological level of injury (including the 

distal sacral segments) 

AIS grade B Sensory, but no motor, preservation below 

the neurological level of injury (including the 

distal sacral segments) 

AIS grade C Motor preservation below the neurological 

level of injury (including the distal segments) 

with less than half of key muscles below the 

neurological level graded antigravity or 

better 

AIS grade D Motor preservation below the neurological 

level of injury (including the distal segments) 

with at least  half of key muscles below the 

neurological level graded antigravity or 

better 

AIS grade E Neurological normal in a patients who 

previously had deficit 

Neurological Level of Injury The lowest segment where motor and 

sensory function is normal on both sides 

Zone of Partial Preservation In AIS grade A patient, lowest dermatome or 

myotome with partial innervation 

Modified from Kirshblum et al. J Spinal Cord Med. 2011;34(6):535-546.129 

 

  



 

 

Figure 1. Annual incidence of spinal cord injury across reported countries, states/provinces, 

and regions. Reprinted with permission from Singh A, et al. Clin Epidemiol. 2014;6:309-

331.130 

  



 

Figure 2. Pathophysiological evolution of spinal cord injury. In the acute injury period (0-

48hrs) hemorrhage, edema, and pro-apoptotic factors (e.g. cytokines, K+, DNA, necrotic 

debris, etc.) contribute to ongoing cell death. Neurons and oligodendrocytes are injured 

resulting in further loss of function beyond the initial traumatic insult. Astrocytes rapidly 

activate, proliferate, and infiltrate the site of injury while depositing chondroitin sulfate 

proteoglycans (CSPGs) into the microenvironment and release additional pro-inflammatory 

factors which propagate the injury cascade. Demylinated and injured axons begin to dieback 

from the inflamed and ischemic perilesional region. In the late subacute and intermediate 

phases, continued apoptotic and necrotic cell death leave microcystic cavities which 

eventually coalesce to form formidable barriers to regeneration in the chronic phase (>6 

months). The final chronic phase scar is a dynamic entity consisting of a tightly-woven 

network of astrocytic processes with a dense fibrous deposit of CSPG acting as a physical 

and biochemical barrier to neurite outgrowth and regenerative cell migration.



 

Figure 3. International Standards for Neurological Classification of Spinal Cord Injury 

clinical examination form. The standardized assessment and calculation of motor and sensory 

scores is demonstrated on this template.  

Reprint of the 2015 American Spinal Injury Association and International Spinal Cord Society 

ISNCSCI assessment form retrieved from http://www.asia-

spinalinjury.org/elearning/International%20Stds%20Diagram%20Worksheet%2011.2015%20

opt.pdf. 

 



 

Figure 4 Neuroregenerative strategies for spinal cord injury. Schematic of a traumatic 

spinal cord injury with demyelination and loss of axons. Regenerative therapies actively 

being translated are shown including Anti-NOGO-A antibody treatment (e.g. ATI355), Rho-

ROCK inhibition (e.g. Cethrin), cell transplants (e.g. iPSC-NPC, ES-NPC, OEC, SC, BMC, 

MSC), implantation of biomaterials, and mobilization of endogenous cell pools (e.g. 

Metformin). 

 


