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Abstract Metropolises in emerging markets are facing serious urban transport challenges. Understanding 10 

people’s travel preferences is crucial for designing effective sustainable urban policies. Little attention has 11 

been paid to studying travel preferences in multimodal transport systems in these markets. This 12 

study estimates the travel preferences in the metropolitan area of Beijing, which is notoriously plagued with 13 

high degrees of congestion. We administered a series of interwoven stated preference experiments on travel 14 

behavior. A semi-random sample of 2652 respondents participated in the experiments. The data were 15 

pooled and a scaled mixed logit model was used for estimation. The results provide rich information on 16 

how trade-offs are made among the manipulated attributes regarding travel time, cost, convenience, and 17 

reliability. Many findings deviate from results obtained in developed countries. A contrast standing out is 18 

that travelers in Beijing place much less weight on possible delays caused by traffic congestion. 19 

Keywords choice experiment; multimodal transport; congestion; travel preference. 20 

21 

1. Introduction22 

The rise of so-called emerging markets is accompanied by grand urbanization processes. It results in a 23 

dramatic increase in urban population and changes in social and economic activities (Florida et al., 2008). 24 

The mismatch between the ever-increasing mobility demand and lagging supply induces serious urban 25 

issues such as congestion, air pollution, and excessive energy dependency (Wang, 2010; Çolak et al., 2016). 26 

Contrary to large-scale capacity expansion, better integration of the existing infrastructure and 27 

understanding people’s travel behavior are crucial for developing sustainable transport systems (Farr, 2008). 28 

Multimodality, the use of more than one transport mode during a trip or a specified period in a broad sense, 29 

has been considered as an essential mechanism for improving the accessibility of locations, reducing fossil 30 

fuel-based car-dependency, and accomplishing a fundamental shift to environmental-friendly modes (Nobis,  31 

2007; van Wee et al. 2014).  32 

Multimodal transport constitutes a complex system (Zhang et al., 2011; Domenico et al., 2015) in that 33 

diverse mode options are involved and the modes differ in various ways, including availability, speed, cost, 34 

density, and the most appropriate use. Modeling traveler behavior in multimodal transport systems has 35 

received increasing attention in behavioral research. The concept of supernetwork was introduced for 36 
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2 

modeling multimodal routing at the trip level (Sheffi, 1985). The seminal concept was extended to 1 

formulate mode and facility choice and further to complete multimodal multi-activity trip chains (Liao et 2 

al., 2010, 2011, 2012, 2013, 2014, 2017; Liao, 2016, 2019). However, those studies concentrated on 3 

modeling feasibility. The incorporation of travel preferences is a crucial step needed for applications.  4 

A number of studies investigated to what extent socio-demographics, travel habits and attitudes, and 5 

the built environment have effects on the adoption of multimodality during a specified period (Diana and 6 

Pirra, 2016). For example, Molin et al. (2016) applied a latent class cluster analysis to identify multimodal 7 

travelers as a function of attitudinal variables and found that solo car drivers have more negative attitudes 8 

to public transport and bicycle. Scheiner et al. (2016) studied the changes in multimodality over time and 9 

found that certain life course events are associated with changes in multimodality. Klinger (2017) analyzed 10 

the dependences between modal variability as a part of everyday mobility and found that people in a public 11 

transport or cycling-friendly city are more likely to become multimodal. Groth (2019) discussed the 12 

transition from unimodal to multimodal in relation to emerging mobility services and transport poverty in 13 

western society and suggested a change of perspective for mode choice shift.  14 

Other studies applied discrete choice modeling to estimate individuals’ travel preferences using 15 

revealed observations in reality or stated preferences (SP) in hypothetic situations. As reviewed in Kato et 16 

al., (2010) and Wardman et al., (2016), existing studies have mainly addressed particular aspects of travel 17 

behavior and only covered a subset of travel preferences. Few studies explicitly represented different trip 18 

stages and mode combinations (Bos et al., 2004; Bekhor and Shiftan, 2010). Schakenbos et al. 19 

(2016) quantified the experienced transfer disutility in multimodal public transport trips and found that the 20 

total disutility during the interchange depends on the total time, the distribution of the time expenditure, 21 

and headway. Likewise, Garcia-Martinez et al. (2018), Lois et al. (2018), and Cascajo et al. (2019), etc. 22 

have examined the preferences regarding transfer in mode chains. To explicitly capture the stage-wise 23 

intermodal choice in a trip chain (for this reason, intermodal is used instead of multimodal), de Freitas et 24 

al. (2019) developed a recursive logit model for estimation. Still, the level of detail of multimodal transport 25 

choice is rather limited. Comprehensive analysis of multimodal travel preferences across all relevant 26 

attributes is scarce. The first endeavor of modeling a large range of travel options in a multimodal system 27 

was conducted in the Dutch context (Arentze and Molin, 2013), in which extensive attributes of various 28 

trip stages were considered in a coherent set of SP experiments.  29 

Recently, there has been a growing interest in studying travel behavior in emerging markets and, 30 

particularly, the BRICS group (Kates, 2011). For example, Beijing (Wang et al., 2015, 2017; Viard and Fu, 31 

2015; Anderson et al., 2016; Mao et al., 2016; Zhan et al., 2016; Guo et al., 2018; Qin et al., 2019) and New 32 

Delhi (e.g., Menon and Mahanty, 2016) have been considered the study areas. These studies solely paid 33 

attention to certain transport modes or travel groups. Little is known to date about residents’ full spectrum 34 

of travel preferences in the commonly congested multimodal systems. Fragmentary analyses tend to bring 35 

inconsistent outcomes that do not facilitate mobility-related analyses in relation to sustainability. In fact, 36 

driven by the rapid economic growth and penetration of new technologies, mobility services are diverse 37 

and multimodal travel becomes a common phenomenon in those megacities. After the rapid expansion of 38 

the cities, limits are being reached for a substantial capacity increment of the infrastructure. Taking Beijing 39 

for example, it is afflicted with high degrees of crowdedness both on roads and in public transport (PT) 40 

vehicles. Half of the commuting time (approximately one hour on average) is accredited to traffic 41 



3 

 

congestion (Beijing Transport Annual Report, 2015). It is high on the local government’s policy agenda to 1 

design and implement effective strategies to ease congestion but still vitalize the urban regions.  2 

To investigate multimodal travel behavior in megacities of emerging markets, we conduct a large-scale 3 

stated choice experiment to estimate multi-faceted travel preferences in Beijing. We further developed the 4 

SP experiment decomposition method (Arentze and Molin, 2013) to reduce task complexity. Mode 5 

alternatives were grouped by trip distance depending on suitability. A group is further decomposed if there 6 

are more than three mode alternatives; a mode may appear in two subgroups serving as the reference. In 7 

total, six interrelated SP sub-experiments with respective efficient designs were created to include nine 8 

mode alternatives at three travel distance levels. The estimation results do not only provide information on 9 

how tradeoffs are made between various attributes, but also generate new knowledge on how people assess 10 

travel time, cost, convenience, and reliability. It is found that much of the travel behavior commonly 11 

recognized in developed countries appears to be different in this context.  12 

The remainder of this paper is organized as follows. Section 2 introduces the representative multimodal 13 

trips in Beijing. Section 3 explains the experimental designs and descriptions of the online survey. Section 14 

4 and 5 respectively discuss the data and the model specification. Section 6 presents the estimation results. 15 

Finally, the paper is completed with discussions and plans for future work.    16 

 17 

2. Representative multimodal trips 18 

Fig. 1 shows a map of the Beijing metropolitan area encircled by the 6th ring road (the outer ring), where 19 

more than 75% of the total population of Beijing is located. The highlighted route in red is the 4th ring road 20 

(approximately 20 km in length and width), inside which the population and facilities of services are un-21 

proportionally amassed, accommodating around 35% of the total population but more than 65% of the trip 22 

origins and/or destinations (Wang et al., 2015). This is one of the main reasons why severe road congestion 23 

and crowding in public transport (PT) vehicles are long-standing issues. Based on the Beijing Transport 24 

Annual Report (2015), the average trip distances of car and PT across all purposes are around 10 km and 25 

15 km respectively. In the experiments, we distinguish three trip distance levels in the Beijing metropolitan 26 

area, i.e., short: 5 km, medium: 20 km, and long: 45 km. 27 

Fig. 2 displays five representative trip categories, which cover a large range of mode varieties in 28 

Beijing according to the municipal report mentioned above. As shown, most trip categories include three 29 

stages labeled as access, main and egress. The main stage may consist of a combination of modes (e.g., car 30 

and metro). The access and egress stages represent accessing the main mode from an origin and egressing 31 

the main mode to the destination. In the figure, the trip stages are separated by filled dots, while the main 32 

mode combinations are divided by unfilled dots. The relevant attributes of a trip stage are listed below the 33 

stage label. As for the mode combinations in C4 and C5, the values of the attributes represent an aggregated 34 

value. Intentionally, the attributes are chosen to capture the most important dimensions of travel preferences 35 

without the necessity of enumerating the trip stages and attributes. The dimensions consist of travel time 36 

and cost, travel convenience (access, egress, transfer, and seat availability) and reliability (possible delay). 37 

Several points are noteworthy in Fig. 2.  38 

 39 
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 1 

Fig. 1 Metropolitan area of Beijing (the 4th ring road is highlighted in red). 2 

 3 

First, if the main mode is a private vehicle (PV), an access stage is not taken into account (C1). This 4 

is based on the assumption that individuals usually have quick access to where the PV is parked (e.g., from 5 

home to garage) so that variation in access time has no significant influence on an individual’s preference. 6 

Although the range of PVs (e.g., ordinary bike and motorcycle) is broader, only car and e-bike (pedal-7 

assisted electric bike) are considered because they are the most frequently chosen PVs with distinctive 8 

characteristics. Especially, the e-bike is uniquely popular in China due to its affordability, easiness to use, 9 

and longer travel range compared to the ordinary bike (Cherry et al., 2009). E-bike is considered an emerged 10 

disruptive transportation mode in China (Ling et al., 2015). In the past decades, e-bike ownership in China 11 

has increased rapidly. For example, it is shown in Hurst and Wheelock (2010) and the National Bureau of 12 

Statistics (2016) that the number of electric bikes in China has increased from 58,000 to 466,000,000 from 13 

1998 to 2010, with an average increasing rate of 64.8% per year. In terms of travel range, speed, and cost, 14 

e-bike and car are primarily complementary transport modes, but they are also competing for a variety of 15 

trips. It was found in Campbell et al. (2016) that the capacity of an e-bike to travel relatively long distances 16 

makes it an alternative to public transport and private car in Chinese cities. 17 

Second, the egress stage of taking a taxi (C2) is not considered because in common situations taxi 18 

passengers are directly dropped at the destinations. Conventional taxi passengers may need to wander on 19 

the streets searching for vacant taxis in the access stage. Such a need has become unnecessary with the 20 

recent widely-used mobile applications for e-hailing, with which taxies nearby approach the departure 21 

points on-demand. Hence, only waiting time is the major factor in the access stage. Currently, the share of 22 

taxi is only around 5~7% of the trips (Beijing Transport Institute, 2018), but this share is expected to 23 

increase dramatically owing to the pervasive availability and quick adoption of the mobile applications, 24 

such as Didi and Uber. 25 
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Fig. 2 Representative multimodal trips. 2 

3 

Third, both access and egress stages are considered for taking PT (C3). Relevant PT modes are bus, 4 

metro, coach (mainly for long distance trips), and inner-city train (with limited coverage currently). 5 

Individuals need to access and egress PT stations/stops, and it is found that people generally have different 6 
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travel preferences for these two stages compared to the main stage (Abrantes and Wardman, 2011). In this 1 

trip category, the transfer is confined to change of vehicle within the same mode i.e., transfer to different 2 

PT lines. In the case of long distance travel, individuals may need to access and egress a few sparsely 3 

scattered transport hubs rather than neighboring PT stops. Thus, faster access and egress modes other than 4 

walking will be involved, such as shared ordinary bike or e-bike.  5 

Fourth, for medium distance trips, it is also common that people first take the bus for a relatively long 6 

distance and then transfer to metro at transport hubs (C4). The transfer is aimed at avoiding road congestion 7 

in busy commercial districts. This is a typical phenomenon in Beijing and other large cities in China because 8 

it is usually more expensive to take metro than bus, and it takes a longer time for accessing a metro station 9 

than a bus stop. This mode combination takes the merits of the bus for access convenience and the metro 10 

for reliability. In that sense, bus is not considered as the access mode but as a parallel mode. Thus, C4 is 11 

supplementary to C3. 12 

Fifth, C5 refers to the combination of car and PT, i.e., park and ride (P+R). The use of P+R at dedicated 13 

P+R facilities has not been as high as expected since the introduction of these facilities. To make good use 14 

of the metro system, which is known for the high coverage and travel time reliability, it has recently been 15 

the transport authorities’ intention to create more car parking spaces at metro stations near the 4th and 5th 16 

rings so that car drivers from the suburban area can transfer to metro for entering the city center. The modal 17 

share of C5 is expected to grow due to the license plate rationing policy inside the 5th ring and the 18 

prospective congestion charging policy inside the 3rd ring (Linn et al., 2016). C5 is supplementary to C1 19 

and C4. 20 

Taken together, the five trip categories cover a large spectrum of multimodal travel patterns in Beijing.  21 

 22 

3. Experiment specification 23 

The experiment specification is largely in line with (Arentze and Molin, 2013), but we further developed 24 

the experiment decomposition technique for handling a large number of mode alternatives. Including all 25 

the mode alternatives in a single choice experiment causes a problem of excessive task complexity, despite 26 

using the decomposition technique. Evidence on choice experimental research shows that alternative 27 

quantities have strong effects on respondents’ ability to choose, reflected in the estimated scale of error 28 

variance (Chung et al., 2011). There are also specific challenges in conducting SP experiments for 29 

developing countries where the surveyed population may not be accustomed to market research and cultural 30 

settings may interfere with responses (Mangham et al., 2009). To keep task complexity manageable, we 31 

decomposed a “one-includes-all” SP experiment into six interrelated sub-experiments (Table 1). Pooling 32 

together the choice data from the sub-experiments allows us to estimate all the travel preferences 33 

consistently. An implicit assumption is that one can deduce the preference to an un-included factor from 34 

the analysis outcomes. For example, car as a mode alternative is considered in the trip distances of 5 km 35 

and 20 km, but not of 45 km. The underlying consideration is that the preferences to car use for 5 km is 36 

expected to be significantly different from those for 20 km, while those for 20 km are not expected to be 37 

significantly different from those for 45 km. 38 

  39 



7 

Table 1 Setup of six interrelated sub-experiments 1 

Distance Exp. 
Main mode alternatives 

e-bike car taxi bus metro coach train BM CM 

Short 
1 √ √ - - √ - - - - 

2 √ - √ √ - - - - - 

Medium 

3 √ √ - √ - - - - - 

4 √ - √ - √ - - - - 

5 - √ - - - - - √ √ 

Long 6 - - - - √ √ √ - - 

(Exp.: experiment; √: the mode (combination) is included in the corresponding experiment; -: not relevant. 2 

BM: bus plus metro, CM: car plus metro) 3 

4 

The design of the trip stages and attributes follows the principle of capturing the most salient 5 

preferences. Attributes of choice alternatives are related to time, cost, convenience, and reliability. The 6 

attributes and levels of the mode alternatives are all set realistically with the annual reports issued by the 7 

Beijing Transport Institute (2015) as the major references. D-optimal designs (Kessels et al., 2006; Bliemer 8 

and Rose, 2010) were developed for the experiments based on priors that were estimated from a sample of 9 

300 respondents in a pilot study. To include variation in trip contexts, each respondent is confronted with 10 

three different trip contexts, so that he or she makes three choice tasks under one trip context. The attributes 11 

of the travel contexts were varied based on an orthogonal fractional factorial design involving 40 profiles. 12 

The contextual attributes include trip purpose, flexibility in arrival time, travel party, weather conditions, 13 

traffic conditions, and weight of carrying bags. Focusing on behavioral analysis, this study does not take 14 

control of the matching between socio-demographic background and travel contexts. Independent fractional 15 

factorial designs are used to create trip contexts and choice sets. Each respondent was randomly assigned 16 

to a trip distance level and three construed trip contexts. If they encountered an unfamiliar scenario, the 17 

respondents can quit and regenerate the trip contexts and choice sets, which had been stated in the remarks 18 

before the survey. For each context, the respondent was presented with three choice tasks and asked to 19 

choose the first and second best travel options. Hence, we obtain 18 (or 3×3×2) observations for each 20 

respondent.  21 

22 

3.1. Experimental designs 23 

The specifications of the six sub-experiments are described below. The attributes and attribute levels of the 24 

choice alternatives are shown in Tables 2-4. In the tables, time attributes are measured in minutes and 25 

monetary attributes in the Chinese currency, i.e., CNY (Chinese Yuan, 1 CNY ≈ 0.155 US dollar in 2015). 26 

If the numbers are not followed by “CNY”, the unit of measurement refers to time in minutes.  A zero level 27 

for an attribute means either “free of charge” or “not relevant” (e.g., zero for possible delay means no delay 28 

and for transfer time means no transfer). Unless stated otherwise, the access/egress stages to/from main 29 

modes are traveled by foot. To generate efficient designs (Bliemer and Rose, 2010), prior estimates of the 30 

effects of the attributes are used to increase the efficiency of the designs. The priors are based on a pilot 31 

study where orthogonal designs were used. 32 
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 1 

Exp. 1 (short distance trips). The choice alternatives of Exp. 1 are e-bike (C1), car (C1) and metro (C3). 2 

The first section of Table 2 displays the attributes and attribute levels. Similar to an ordinary bike, e-bike is 3 

assumed to be easily accessed at the origins and egressed at the destinations, and thus no walking is involved 4 

in the access and egress stages. As electricity-charging and parking an e-bike may incur costs, the travel 5 

cost attribute is taken as the total of the two types of costs. No cost represents a possible situation where 6 

the government would provide free quick-charging facilities to promote e-bike use. On the other hand, the 7 

egress stage of a car trip possibly involves parking search time, walking to the destination and parking costs. 8 

Free car parking is viewed as an option in the case of short parking duration or parking in non-busy areas. 9 

Even for short distance trips, car may face a delay. In total, Exp. 1 includes twelve 3-level attributes. An 10 

efficient design of 27 choice situations is created.  11 

 12 

Exp. 2 (short distance trips). The choice alternatives of Exp. 2 are e-bike (C1), taxi (C2) and bus (C3). The 13 

second section of Table 2 shows the attributes and attribute levels. The settings of e-bike in Exp. 1 and Exp. 14 

2 are the same; thus, e-bike is the reference mode for Exp. 1 and Exp. 2. The settings of the attribute levels 15 

of bus and metro reflect the fact that it usually takes less time to access or egress bus stops than metro 16 

stations and that the bus speed is in general slower than that of metro. Walking for access or egress is not a 17 

forced component for taking taxi, but the taxi fare is substantially higher than other modes. Bus and taxi 18 

may also encounter delays. For that reason, waiting time for taxi is included. In total, Exp. 2 includes twelve 19 

3-level attributes. An efficient design of 36 choice situations is created.  20 

 21 

Exp. 3 (medium distance trips). The choice alternatives of Exp. 3 include e-bike (C1), car (C1) and bus 22 

(C3). To enable comparisons among the modes, we switch bus with metro compared to Exp. 1. The first 23 

section of Table 3 displays the attributes and attribute levels. For medium distance trips, e-bike is still a 24 

relevant option. Moreover, an explanation to the respondents is added, rephrased as “the e-bike is pedal-25 

assisted in case of electricity exhaustion”. Compared to short distance trips, the attribute levels for travel 26 

times, travel costs, and possible delays are scaled up. Also, the level of parking cost is enlarged to take into 27 

account the fact that people travel further to pursue activities of longer durations. In addition, it is more 28 

likely that accessing and egressing PT stops take a longer time because it is more demanding to find the PT 29 

stops in case of longer distance connections. In this trip category, seat availability (including three levels: 30 

no seat, a chance of no seat, or seat always available) and transfer time are considered as factors representing 31 

the quality of service. Parking search time and egress time after using car are set as at an average of 5 32 

minutes. In sum, Exp. 3 includes thirteen 3-level attributes. An efficient design of 36 choice sets is created.  33 

 34 

Exp. 4 (medium distance trips). The fourth sub-experiment includes the choice alternatives of e-bike (C1), 35 

taxi (C2) and metro (C3), by switching metro with bus in Exp. 2. The second section of Table 3 displays 36 

the attributes and attribute levels. The settings of e-bike in Exp. 3 and Exp. 4 are the same; thus, e-bike is a 37 

reference mode for Exp. 3 and Exp. 4. Likewise, the levels of travel time and costs attributes are scaled up 38 

to reflect the longer distance compared to Exp. 1 and Exp. 2. The waiting time for taking taxi is also 39 

increased because there is a possibility that some taxi drivers may not respond to passengers for trips of 40 

such a distance level. The possible delay levels for taxi and bus are set the same as car. Even though metro 41 
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vehicles guarantee punctuality, metro passengers may still suffer delays resulting from the difficulty of 1 

boarding. It is because the frequency and number of direct metro lines between two locations on such a 2 

distance level are relatively less for economic considerations. Nevertheless, the delays are smaller compared 3 

to other modes due to the high frequency and large vehicle capacity. In total, the choice sets include thirteen 4 

3-level attributes. An efficient design of 36 choice sets is created.  5 

 6 

Exp. 5 (medium distance trips). The choice alternatives consist of car (C1), the combination of bus and 7 

metro (BM, C4) and the combination of car and metro (CM, C5). The third section of Table 3 displays the 8 

attributes and attribute levels. The settings of car in Exp. 3 and Exp. 5 are the same; thus, car is a reference 9 

mode for Exp. 3 and Exp. 5. As mentioned above, metro stations facilitating parking are generally 10 

distributed near the 4-5th rings; thus, we assume that search time for parking is not involved for taking CM. 11 

Also, both CM and BM logically involve a transfer. Search time for parking, the access time for BM, and 12 

egress time for both BM and CM are set to fixed values. In this sub-experiment, the choice sets include 13 

thirteen 3-level attributes. An efficient design of 36 choice sets is created.  14 

 15 

Exp. 6 (long distance trips). The last sub-experiment considers long distance trips. The choice alternatives 16 

include coach (C3), inner-city train (TR, C3) and metro (C3). E-bike is no longer a relevant mode option. 17 

Table 4 shows the attributes and attribute levels. Coach and TR mainly connect transport hubs in the urban 18 

area and district centers in the suburban areas. They use the same vehicles as bus and metro respectively, 19 

but seat availability is assumed to be guaranteed. While taking metro for such a distance involves many 20 

stops and several transfers, coach and TR only pick-up and drop-off passengers at limited stops. As these 21 

three modes follow given time schedules, we set fixed main travel times to avoid the choice tasks becoming 22 

too complex. Furthermore, we assume that travelers’ preferences for in-vehicle time of coach and TR are 23 

the same as those of bus and metro in Exp. 3 and Exp. 4. It is assumed that preferences of using car for long 24 

distance trips are similar to those for medium distance trips (negligible effect difference). Unlike metro 25 

stations, stations for coach and TR are sparsely scattered. Thus, faster access and egress modes rather than 26 

walking are involved in taking coach and TR. Relevant modes are e-bike, taxi, bus, and shared public bike 27 

(PT-bike hereafter). To maintain the manageability of the experiment, we alternately included them in either 28 

access or egress modes. The costs of taking bus, PT-bike, and taxi are not included in the main travel costs 29 

to avoid high task complexity. Instead, we add notes, phrased as “2 CNY for taking bus; 2 CNY for using 30 

PT-bike for 2 hours; 14 CNY for taking taxi”. An implicit assumption is that the access and egress (monetary) 31 

costs are not significantly different from those in the main stage. In sum, the choice sets include eleven 3-32 

level attributes and five 2-level attributes. An efficient design of 36 choice sets is created. 33 

 34 

3.2. Online survey description 35 

Based on the experimental designs, an online survey accommodating the six sub-experiments was 36 

developed in Chinese. A respondent is requested to participate in only one sub-experiment with a randomly 37 

assigned trip distance. The three contexts and nine choice sets are randomly drawn without replacement 38 

from the respective designs and then randomly paired. Fig. 3 shows an example of a choice task of Exp. 3 39 

where the choice set consists of e-bike, car, and bus for a trip around 20 km (the contents are translated 40 
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from Chinese). The upper part of the display specifies the trip context and the lower part displays the choice 1 

alternatives. To enlarge the number of observations, we asked the respondents to indicate also the second-2 

best travel option (e.g., car and bus are the first and second choices respectively). For the other sub-3 

experiments, the same method of presentation was used. 4 

To instruct the respondent sufficiently, special attention has been paid to rephrasing the descriptions 5 

of two attributes. First, door-to-door travel time is represented as the total deterministic travel time. The 6 

time components include all the time attributes of a choice alternative excluding possible delay. The travel 7 

time of the main stage is not shown since that time can be calculated as the difference between the door-to-8 

door travel time and the shown components. Note that this is a matter of presentation of the trip but not the 9 

experimental design. This way of presenting the information allows respondents in an intuitive way to trade-10 

off the total travel time against those elements that cause inconveniences, such as walking time, parking 11 

time, and transfer time. Second, “possible delay” is explained to the respondents as extra travel time that 12 

occurs with 30% probability, rephrased as “if you travel 10 times on the same trip, you will encounter delay 13 

3 times”. The length of the delay is varied, where the value of zero means no delay. 14 

 15 

Table 2 Short distance trips (around 5 km) 16 

Attribute Attribute level 

Exp. 1  

Main mode E-bike Car Metro 

Main mode travel time (16, 23, 30)  (5, 10, 15)  (6,10,14) 

Access time   (5, 10, 15) 

Egress time (W)  (0, 5, 10) (5, 10, 15) 

Parking search time  (0, 5, 10)  

Parking cost  (0, 10, 20) CNY  

Travel cost (0, 1, 2) CNY (2, 6, 10) CNY (1, 4, 7) CNY  

Possible delay  (0, 10, 20)  

Exp. 2    

Main mode E-bike Bus Taxi 

Main mode travel time (16, 23, 30)  (6, 11, 16) (5, 10, 15) 

Access time  (W)  (1, 6, 11)  

Egress time (W)  (1, 6, 11)  

Waiting time  (1, 6, 11) (0, 5, 10) 

Parking cost    

Travel cost  (0, 1, 2) CNY (1, 3, 5) CNY (14, 22, 30) CNY  

Possible delay  (0, 10, 20) (0, 10, 20) 

      (Time attributes are measured in minutes; cost attributes are measured using Chinese currency.) 17 
18 
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Table 3 Medium distance trips (around 20 km) 1 

Attribute Attribute level 

Exp. 3  

Main mode E-bike Car Bus 

Main mode travel time (50, 70, 90) (20, 30, 40) (20, 35, 50) 

Access time  (W)   (5, 10, 15) 

Egress time (W)  (5) (5, 10, 15) 

Parking search time  (5)  

Parking cost  (0, 15, 30) CNY  

Travel cost  (1, 2, 3) CNY (10, 20, 30) CNY  (2, 6, 10) CNY 

Seat availability   (never, unsure, always) 

Transfer time   (0, 10, 20)  

Possible delay  (0, 30, 60) (0, 30, 60)  

Exp. 4    

Main mode E-bike Taxi Metro 

Main mode travel time (50, 70, 90) (20, 30, 40) (20, 30, 40) 

Access time  (W)   (5, 12, 19) 

Egress time (W)   (5, 12, 19) 

Waiting time  (0, 15, 30)  

Travel cost  (1, 2, 3) Y (40, 60, 80) CNY (2, 7, 12) CNY 

Seat availability   (never, unsure, always) 

Transfer time   (0, 10, 20) 

Possible delay  (0, 30, 60) (0, 10, 20) 

Exp. 5    

Main mode Car Bus + metro (BM) Car + metro (CM) 

Travel time (20, 30, 40) (20, 35, 50) (20, 30, 40) 

Access time  (W)  (5)  

Egress time (W) (5) (10) (10) 

Parking search time (5)   

Parking cost (0, 15, 30) CNY  (0, 10, 20) 

Travel cost  (10, 20, 30) CNY (2, 7, 12) CNY (5, 10, 15) CNY 

Transfer time   (4, 12, 20) (4, 12, 20) 

Possible delay (0, 30, 60) (0, 15, 30) (0, 15, 30) 

 2 

Table 4 Long distance trip (around 45 km) 3 

Attribute Attribute level 

Exp. 6  

Main mode Coach  Inner-city train (TR) Metro 

Main mode travel time 45 30 65 

Travel cost (main) (5, 20, 35) CNY (5, 20, 35) CNY (2, 10, 18) CNY 

Access mode (bus, e-bike) (taxi, e-bike) (e-bike, walk) 

Access time  (10, 20, 30) (10 or 20) a (5 or 15)a 

Waiting time for PT (5, 15, 25) (5, 15, 25) (0, 5,10) 

Transfer time   (0, 10, 20) 

Egress mode (bus, PT-bike) (bus, PT-bike) (walking) 

Egress time (10) (10) (10) 

Possible delay (0, 30 ,60) (0, 15, 30) (0, 15, 30) 

     (a: access times correspond to the above access modes respectively.) 4 
 5 
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Imagine you are going to make a medium distance trip around 20 km in the following context: 

• You are on a business trip 

• You have to arrive on time 

• You are carrying a small bag 

• You travel alone 

• You are traveling in non-peak time 

• It is raining     

Please make choices on your first and second travel options. 

Route attributes Option 1 Option 2 Option 3 

You are traveling by the main mode E-bike Car Bus 

Door-to-door travel time 70 min 40 min 50 min 

including:     

        Access to main mode - - 10 min 

        Transfer time - - 5 min 

        Parking time - 5 min - 

        Egress to the destination - 5 min 5 min 

Possible delay - 60 min 30 min 

Seat availability - - unsure 

Travel cost 2 CNY 15 CNY 6 CNY 

Parking cost - 10 CNY - 

Your first choice    

Your second choice    

Fig. 3 An example of a choice task of Exp. 3. 1 

 2 

4. Data 3 

Respondents were recruited from an existing large panel from an online survey service in Beijing. A pilot 4 

study involving a sample of 300 respondents has been conducted to establish the priors for generating 5 

efficient experimental designs. The main survey was administered in the form of an online questionnaire. 6 

A random sample was drawn from this panel except that controls on the characteristics of the respondents 7 

were implemented to obtain a representative sample. The following controls were implemented. First, the 8 

characteristics of the respondents are constrained to be more or less in line with the basic socio-9 

demographics regarding gender, age, and education level. Second, since Exp. 1, Exp. 3, and Exp. 5 include 10 

car as a choice alternative of the main mode, we only allow those respondents who own cars and have 11 

driving licenses to enter these three sub-experiments. This is to ensure that the respondents have experience 12 

with using a car. For other background information, for example, whether the respondents have long 13 

distance travel experiences, we could not verify it due to the lack of personal information. Therefore, we 14 

assume that the respondents continue with the choice tasks only if they are familiar with the contexts, 15 



13 

otherwise they would quit the choice tasks. Third, all respondents are allowed to enter Exp. 2, Exp. 4, and 1 

Exp. 6, whereby the ratio of car and driving license owners against the rest is kept at around 1:2, 2 

approximating the current situation in Beijing. Fig. 4 depicts the flow of respondents in the survey. 3 

These control measures were taken due to poor internet penetration in China. People aged over 50 4 

have limited access to the internet and are also inactive in participating in online surveys. To implement 5 

these controls, respondents owning car and driving license are first randomly assigned to one of the six sub-6 

experiments. The other respondents are randomly assigned to one of the experiments that do not involve a 7 

car (Exp. 2, Exp. 4, and Exp. 6). As the experimentation progressed, respondents with certain characteristics 8 

were not qualified for some of the sub-experiments. In total 2652 respondents participated in the main 9 

survey and were included in the analysis. The numbers per sub-experiment are 293 (Exp. 1), 602 (Exp. 2), 10 

316 (Exp. 3), 557 (Exp. 4), 330 (Exp. 5) and 554 (Exp. 6) respectively. Due to these specific controls, we 11 

claim that the sample is semi-random. Table 5 shows the composition of the sample regarding several key 12 

socio-demographic variables. For comparison, the distributions of several characteristics from the Chinese 13 

National Bureau of Statistics (2016) are shown. Travelers in the age group of 30 to 50 years, working in 14 

state-owned enterprises, and with Bachelor degree were oversampled. It is because travelers owning car 15 

and driving license were intentionally recruited to participate in Exp. 1, Exp. 3 and Exp. 5, who generally 16 

belong to the oversampled categories. Overall, the sample is near-representative of the travelers in Beijing. 17 

As specified above, each respondent was presented with three trip contexts and three choice tasks per 18 

trip context and asked to make two choices per choice task. Thus, the total number of observations is 47,736 19 

(or 18 × 2652).  20 

21 

Fig. 4 Flow of respondents in the survey. 22 
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 1 

Table 5 Characteristics of the respondents  2 

Attribute Level Percentage (%) 
Beijing municipal 

statistics (2016) (%) 

Gender  Male 52.2 51.6 

 Female 47.8 48.4 

Age [18, 30] 34.4 35.3 

[30, 50] 50.6 39.0 

>= 51 15.0 25.7 

Education level  No higher education 32.0 62 

Bachelor level 49.8 31.5 

Master or higher 18.2 6.5 

Driving license & car 

ownership 
None 33.4 - 

One of two 14.3 - 

Both 52.2 - 

Work status & employer type State-owned enterprise 28.3 8.5 

Foreign or private company, self-employed 62.2 73.5 

Students 5.7 5.5 

Part-time, unemployed, retired 3.8 12.5 

Family income (monthly) <= 10,000 CNY 26.7 - 

[10,000, 20,000] CNY 46.9 - 

>= 20,000 CNY 26.4 - 

Possibility of reimbursement Never 24.6 - 

Only for business trips 64.3 - 

Always  11.1 - 

 3 

5. Model specification 4 

The data collected through the online survey allow the estimation of travelers’ preferences related to the 5 

manipulated attributes of different stages of multimodal trips. The data of all sub-experiments are pooled. 6 

Data from the sub-experiments with the same trip distance levels are assumed to have the same scales of 7 

error term because of the existence of reference modes and thus are put in the same assortment. Moreover, 8 

the data contain repeated choice observations of the same respondents and hence have a panel structure. To 9 

account for these properties, we use a scaled mixed-logit model framework to estimate the parameters. All 10 

parameters (i.e., travel preferences to all trip attributes covered in the experiments) are estimated in an 11 

integrated model. Interaction effects with contextual and socio-demographic characteristics were not 12 

included in the current study, and thus the estimated effects of manipulated attributes hold for the average 13 

background. The utility 𝑈𝑎𝑛𝑖𝜏  that traveler 𝑛  associates with alternative 𝑖  on choice occasion 𝜏  in data 14 

assortment 𝑎 (distance category) is specified as: 15 

𝑈𝑎𝑛𝑖𝜏 = 𝜇𝑎 ∙ (𝛽𝑎𝑖0
′ + ∑ 𝛽𝑎𝑖𝑘 ∙ 𝑋𝑎𝑛𝑖𝑘𝜏

𝑘

) + ∑ 𝜑𝑖𝑗 ∙ 𝜂𝑎𝑛𝑖𝑗

𝑗

+ 𝜀𝑎𝑛𝑖𝜏                                                            (1) 16 

where the notations are defined as follows, 17 

𝑎  a data assortment 𝑎 ∈ {𝑆, 𝑀, 𝐿}, corresponding to distance level {short, medium, long} 18 

𝑛  a traveler  19 
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𝑖, 𝑗 an alternative 1 

𝜏  a choice occasion 2 

𝑘  an attribute, 𝑘 = 1,2, … 3 

𝜇𝑎 scaling factor for assortment 𝑎 4 

𝛽𝑎𝑖0
′  coefficient for constant assumed to be normally distributed, 𝛽𝑎𝑛𝑖0

′ ~𝑁(𝛽𝑎𝑖0, 𝜎𝑎𝑖0
2 ) 5 

𝛽𝑎𝑖𝑘  coefficient for attribute 𝑘 6 

𝑋𝑎𝑛𝑖𝑘𝜏 value of attribute 𝑘 7 

𝜂𝑎𝑛𝑖𝑗 shared error term by 𝑖 and 𝑗, assumed to be normally distributed with a mean of zero  8 

𝜑𝑖𝑗 indicator of the existence of shared error term, 𝜑𝑖𝑗 ∈ {0,1} 9 

𝜀𝑎𝑛𝑖𝜏 i.i.d. extreme value 10 

 11 

This model specification allows all main effects to be estimated mode-specific at different trip 12 

distance levels. The effects of attributes of trip contexts and socio-demographics are not included in the 13 

present model. Thus, the effects estimated hold for average contextual situations and socio-demographic 14 

background. The main effects are estimated across different experiments and Eqn. (2) shows the used 15 

parameterization. 𝑏 denotes another data assortment and ∆𝛽𝑏𝑖𝑘 represents the coefficient value difference 16 

between the 𝑖-th and 𝑗-th choice alternative of assortment 𝑎 and 𝑏 respectively on the same attribute 𝑘. 𝑖 =17 

𝑗 or 𝑎 = 𝑏 may occur, but they are mutually exclusive. By setting ∆𝛽𝑏𝑗𝑘 equal to zero, we have 𝛽𝑏𝑖𝑘 = 𝛽𝑎𝑖𝑘 18 

and thus only a common parameter will be estimated; otherwise,  ∆𝛽𝑏𝑗𝑘 will be estimated in addition to 19 

𝛽𝑏𝑖𝑘, with which we can find out whether 𝛽𝑏𝑖𝑘 is significantly different from 𝛽𝑎𝑖𝑘. As the suggested model 20 

specification does not have a closed-form and cannot be solved analytically, the simulated maximum 𝑙𝑜𝑔-21 

likelihood method with Halton draws (Train, 2009) is applied to estimate the model. For the estimation, we 22 

used 500 Halton draws for the random parameters. The simulated 𝑙𝑜𝑔-likelihood is calculated based on 23 

Eqn. (3-6).  24 

𝛽𝑎𝑖𝑘 = 𝛽𝑏𝑗𝑘 + ∆𝛽𝑎𝑖𝑗𝑘                                                                                                                                          (2) 25 

𝑃𝑎𝑛𝜏(𝑖) =
exp (𝑉𝑎𝑛𝑖𝜏)

∑ exp (𝑉𝑎𝑛𝑗𝜏)
𝑗

                                                                                                                                (3) 26 

𝑆𝑎𝑛(𝜷𝑎𝑛) = ∏ ∏(𝑃𝑎𝑛𝜏(𝑖))
𝛿𝑎𝑛𝑖𝜏

𝜏𝑖

                                                                                                                 (4) 27 

𝐿𝑎 = ∏ 𝑆𝑎𝑛(𝜷𝑎𝑛)

𝑛

                                                                                                                                             (5) 28 

𝑆𝐿𝐿 = ∑ ∑ ln {
1

𝑅
∑ 𝑆𝑎𝑛(𝜷𝑎𝑛

𝑟 )

𝑟

}

𝑛𝑎

                                                                                                                  (6) 29 

where the definitions of the notations are the following, 30 

𝑉𝑎𝑛𝑖𝜏  utility component of 𝑈𝑎𝑛𝑖𝜏 excluding the term 𝜀𝑎𝑛𝑖𝜏 31 

𝑃𝑎𝑛𝜏(𝑖) probability that 𝑖 is chosen by 𝑛 at 𝜏 in 𝑎 32 

𝑆𝑎𝑛(𝜷𝑎𝑛) likelihood of 𝑛 in 𝑎 in a function of coefficient vector 𝜷𝑎𝑛 33 
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𝛿𝑎𝑛𝜏𝑖 an indicator, being 1 if 𝑛 chooses 𝑖 at 𝜏 in 𝑎; otherwise, 0 1 

𝐿𝑎 likelihood of a 2 

𝑆𝐿𝐿 overall simulated 𝑙𝑜𝑔-likelihood 3 

𝑅 number of Halton draws 4 

𝜷𝑎𝑛
𝑟 the 𝑟-th Halton draw of 𝜷𝑎𝑛5 

6 

Error terms may be correlated due to similarities between the transport modes. The correlations are 7 

taken into account by an error-component specification (𝜂𝑎𝑛𝑖𝑗 ). For sake of parsimony, only the most8 

important sources of correlation are of interest. Table 6 shows the shared error components (causing mode 9 

correlations) included in the present study (the 𝜑𝑖𝑗 terms).  10 

11 

Table 6 Specification of 𝜑𝑖𝑗 (symmetrical)12 

e-bike car metro bus taxi BM CM coach TR 

e-bike - 

Car 1 - 

metro 0 0 - 

Bus 0 0 1 - 

Taxi 0 1 0 0 - 

BM 0 0 1 1 0 - 

CM 0 1 1 0 0 1 - 

coach 0 0 0 0 0 0 0 - 

TR 0 0 1 0 0 0 0 1 - 

   (BM: bus + metro, CM: car + metro, TR: inner-city train) 13 

14 

6. Results15 

100 parameters, including 26 random parameters, were estimated in a scaled mixed logit framework (see 16 

Section 5). Most estimates show significant effects. An adjusted rho-square of 0.208 was obtained, 17 

indicating a satisfactory goodness-of-fit of the model. Travel time valuations were estimated for different 18 

distance levels to account for possible non-linearity. Travel time and cost were expressed respectively in 19 

minutes and CNY. Effect coding was used for categorical attributes. For convenience of expression, the 20 

nine main modes (combinations) are abbreviated and used at appropriate places as e-bike (EB, pedal-21 

assisted electric bike), car (CA), taxi (TX), bus (BU), metro (ME), coach (CO, for long-distance trips), 22 

inner-city train (TR), bus plus metro (BM), and car plus metro (CM). Although this study adopts a similar 23 

(not the same) experiment design and estimation framework with Arentze and Molin (2013), it is advisable 24 

to compare the estimates only based on relative differences rather than absolute values.   25 

Table 7 shows the estimates of scaling parameters that are used to convert all experiments to the same 26 

scale of error variance. Observations related to the same distance levels were put in the same data 27 

assortments. The medium distance was arbitrarily considered as the scale reference, i.e., 𝜇𝑀 =1. Scale28 

parameters for the other assortments (𝜇𝑆  and 𝜇𝐿 ) are significant and larger than 1, implying that the29 

observations have smaller error variances than the reference. 𝜇𝐿 has the highest value, indicating that error30 

variance is the smallest for long distance trips. This may be caused by the fact that fewer choice alternatives 31 

are involved in the long distance assortment. All results reported below concern values after re-scaling.  32 

33 
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Table 7 Scale parameters of scaled mixed-logit model 1 

Coefficient Note Estimate t-value Sig. 

    𝜇𝑆  scale of level short distance 1.417 5.41 *** 

    𝜇𝑀  scale reference 1 n/a n/a 

    𝜇𝐿  scale of level long distance 1.699 2.40 ** 

   (Sig.: significance level; **: Significance at 5% level; ***: Significance at 1% level) 2 

 3 

Fig. 5. Base preferences for different transport modes in the cases of short, medium and long 4 

distance trips (all estimates are significant at 1% level). 5 

 6 

Base preference. Fig.5 shows the estimates of the base preferences, i.e., the intrinsic utilities assigned to 7 

mode alternatives. The modes of different trip distance categories are directly linked with specific designs 8 

discussed in section 3.1. All estimated values are significant at 1% level. The constants are dummy-coded 9 

arbitrarily considering taxi as the base for travel in the main stage for short and medium distance trips. It 10 

appears that for short and medium distance, car has the highest base preference, despite being vulnerable 11 

to congestion in Beijing. For short distance, e-bike has a higher base preference compared to bus and metro 12 

probably due to its convenience; furthermore, the base preference for bus is slightly higher than that for 13 

metro. For medium distance, the base preference for e-bike drops considerably. This may be caused by the 14 

travel range limitation of the e-bike. It also appears that combinations (bus plus metro and car plus metro) 15 

are favored more than bus or metro as a single mode possibly because they remedy the disadvantages of a 16 

single PT mode (Section 2), which is contrary to the findings in the Dutch context. It should be noted that 17 

this finding only refers to the base preference in the context of medium-distance trips. It does not necessarily 18 

mean that “people don′t see transfers as sufficiently negative”. In fact, according to the results in Table 9 19 

below, it is found that people see transfers sufficiently negative, indicated by the coefficient of “ED: transfer 20 

time in a BM trip”. For long-distance trips, metro has the lowest and coach has the highest base preference, 21 

suggesting that coach is predominantly perceived as a mode for long trips. These findings indicate that the 22 

base preferences vary across trip distances. Moreover, estimates of the standard deviation of random 23 

components show that significant differences exist among travelers in the base preferences for e-bike and 24 

metro.  25 

 26 

In-vehicle time. The effects of in-vehicle time (IVT) for travel preference are estimated for short and 27 
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medium distance trips under uncongested conditions (Fig. 6). It is assumed that the values of IVT for long 1 

distance are not significantly different from those for medium distance, i.e., linear effects. IVT of e-bike 2 

and bus have stronger negative effects than those of car or metro in short distance trips. Furthermore, non-3 

linear effects of IVT appear to exist in the cases of e-bike and taxi where the marginal value of time is lower 4 

for medium distance trips. However, the diminishing effect does not occur in the case of car, bus or metro. 5 

This results in an unforeseen effect that the marginal values of IVT of e-bike (−0.024, or −0.058+0.034) 6 

and taxi (−0.018, or −0.033+0.015) are less negative than that of car (−0.026) for medium distance. A 7 

possible explanation is that the e-bike is not affected by traffic congestion and taxi passengers may make 8 

use of the time while traveling. Finally, we find that the marginal values of IVT do not differ significantly 9 

between metro, bus plus metro, and car plus metro.  10 

11 

12 

Fig. 6. Effects of IVT on preferences for modes in short and medium trip distance. ED stands for 13 

effect difference based on effects of short distance. (**: Significance at 5% level; ***: Significance at 14 

1% level; non-filled bars indicate no significance.) 15 

16 

Access and egress time. It is commonly found that access and egress times by walking are weighed more 17 

negatively than IVT in the main stage of a trip (Kato et al., 2011; Arentze and Molin, 2013; Wardman et al., 18 

2016). As seen in Fig. 7, we find this as well for short trips by car and metro. In the case of car, the effect 19 

of egress time is more than two times that of IVT. As for metro, the effect of access time is much stronger 20 

than that of egress time. This can be explained by the fact that the access stage often involves traveling on 21 

the road, whereas the egress stage often takes place inside buildings (facilities of services are usually 22 

agglomerated at the metro stations in China). Surprisingly, we find that bus egress time has a little higher 23 

marginal value than IVT and the effect of access time is even weaker. This finding may reflect a general 24 

public impression that in-bus service is poor. As in the case of IVT, the effect of distance on the marginal 25 

values of access and egress time for car, bus and metro trips are insignificant. In addition, we find that no 26 

significant differences in base preferences for bus, e-bike and PT-bike (or shared-bike) as access mode. The 27 

base preference for taxi as the access mode, however, is lower. Meanwhile, travelers prefer e-bike and PT-28 

bike over walking to access and egress stations.  29 
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Travel cost. Table 8 shows the estimated effects of travel costs of different types. Travelers are not sensitive 1 

to the electricity costs of e-bikes. The marginal values of ticket costs for parking car and taking bus or metro 2 

are less negative compared to car fuel costs. This is opposite to common findings in developed countries. 3 

A reason may be that the PT fare and parking costs are undercharged in Beijing due to the intensive subsidies 4 

from the government and ill parking management. As the fares for long distance modes (coach and train) 5 

are more market-driven and higher, the negative effect is much stronger. The marginal value of taxi costs is 6 

relatively small. A possible explanation is that the costs can be shared by other taxi passengers or paid by 7 

third parties since more than 70% of the respondents reported that travel costs could somehow be 8 

reimbursed (Table 5). 9 

10 

Fig. 7. Effects of access and egress time by walking for short distance trips (all estimates are 11 

significant at 1% level). 12 

13 

Table 8 Marginal effects of travel costs 14 

Coefficient Estimate t-value Sig. 

Electricity cost for charging e-bike -0.030 -1.63 

Fuel cost for car -0.026 -17.15 *** 

Parking cost for car -0.021 -20.86 *** 

Ticket cost for taking taxi -0.009 -5.09 *** 

Ticket cost for taking bus and metro -0.020 -5.06 *** 

Ticket cost for taking coach and train -0.038 -4.04 *** 

15 

Convenience. Table 9 shows the preference values related to parking, waiting, transfer, and seat availability. 16 

Nearly all the coefficients are significant, indicating that travelers are sensitive to these factors. In 17 

accordance with common findings, car parking search time is valued more negatively than IVT of car (Fig. 18 

2). Waiting time for bus is weighed less negatively than IVT in the case of short trips, and slightly more 19 

negatively than access time by walking. Waiting times for taxi and metro (only for long trips) are weighed 20 

approximately the same as IVT. As expected, transfer times during the main stages have strong negative 21 

effects. Transfer time in-between buses has the least effect (−0.021), and transfer time between bus and 22 

metro has the strongest effect (− 0.047, or − 0.027− 0.02). A possible explanation is that walking stairs 23 

underground are often involved. The effect is smaller for long trips by metro (−0.017, or −0.027+0.01). 24 
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Lastly, having a seat has positive effects on the value of bus or metro. The effect is stronger for bus, implying 1 

that travelers attach larger value to find a seat in bus than in metro. Other levels of seat availability do not 2 

show significant effects. 3 

4 

Table 9 Estimates related to travel convenience 5 

Coefficient   Estimate t-value Sig. 

Search time for car parking  -0.054 -6.80 *** 

Waiting time for bus -0.034 -6.15 *** 

Waiting time for taxi -0.026 -3.98 *** 

Waiting time in a long metro trip -0.026 -7.73 *** 

Transfer time in a bus trip -0.021 -4.61 *** 

Transfer time in a metro trip  -0.027 -6.65 *** 

ED: transfer time in a BM trip -0.020 -3.02 *** 

ED: transfer time in a CM trip -0.018 -2.70 *** 

ED: transfer time in a long metro trip 0.010 2.00 ** 

SA in bus = always 0.332 5.30 *** 

SA in bus = unsure  -0.037 -0.64 

SA in bus = never (base) -0.295 n/a 

SA in metro = always 0.151 5.51 *** 

SA in metro = unsure  0.105 1.93 

SA in metro = never (base) -0.256 n/a 

(ED: effect difference from the above last coefficient without ED; SA: seat availability) 6 

7 

Table 10 Estimates related to possible delay time 8 

Coefficient Estimate t-value Sig. 

Possible delay by car in S trip -0.029 -8.55 *** 

ED: possible delay by car in M trip 0.018 3.49 *** 

Possible delay by taxi in S trip -0.009 -2.73 *** 

ED: possible delay by taxi in M trip 0.006 0.83 

Possible delay by bus in S trip -0.008 -2.55 ** 

ED: possible delay by bus in M trip 0.002 0.49 

Possible delay by metro in M trip -0.008 -1.98 ** 

ED: possible delay by BM in M trip -0.008 -1.54 

ED: possible delay by CM in M trip -0.009 -1.90 

ED: possible delay by metro in L trip -0.002 -0.44 

Possible delay by coach in L trip -0.008 -4.68 *** 

Possible delay by train in L trip -0.002 -0.77 

(Coefficients ending with S, M and L refer to short, medium and long distance trips respectively. If a 9 

coefficient with “ED” in its note is not significant, the effect is taken as the same as the above last coefficient 10 

without “ED”.) 11 

12 
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Possible delay time. Table 10 displays the preference values related to possible delay time on the basis of 1 

a probability of 30% that delay may occur on a trip. The estimates convey the evaluation of travel time 2 

reliability. Compared to the effect of IVT (−0.026) by car, the possible delay time has a strong negative 3 

impact (−0.029) in the case of short trips. However, for medium trips, the impact is considerably smaller 4 

(plus 0.018 units). Apart from a distance effect, a possible explanation is that travelers are more accustomed 5 

to delays for longer trips. The effects of possible delay time by taxi (for short distance), bus (short), metro 6 

(medium) or coach (long) are rather weak compared to the IVT by the same mode. In sum, the results 7 

suggest that travelers in Beijing place less weight on possible delays than those in western countries 8 

(Wardman et al., 2016).  9 

 10 

Remarks on value of time. The ratios between the marginal values of time and cost provide estimates of the 11 

value of time (VOT), which indicates the willingness-to-pay for time-saving (Hensher, 2006). VOT analysis 12 

plays a central role in transport project appraisals and allows intuitive comparisons between different time 13 

periods and geographic areas. Since time and cost components are estimated stage and mode-specific (Fig. 14 

5-7, Table 8-10), the ratios are also calculated stage and mode-specific. The ratios indicate that the mean 15 

VOT for IVT of car, bus, metro, and taxi for short distance are 0.16, 0.33, 0.19 and 0.57 USD/minute 16 

respectively. For medium distance trips, the same VOTs apply to car, bus, and metro, since there are no 17 

significant differences in estimated values from the short distance level. VOT for IVT of taxi decreases to 18 

0.31 USD/minute in the case of medium distance trips. Several meaningful comparisons are as follows.  19 

First, IVT of car is valued 1.5 times the average income rate in Beijing (1098 USD/month in 2015), 20 

which is in line with the result reported in another study (Anderson et al., 2016). However, this ratio is 21 

around 2 to 3 times the counterparts in developed countries (Small, 2012).  22 

Second, the results confirm the common finding that VOT for IVT of car is less than those of other 23 

modes due to a general preference for car travel. Similar to the findings in (Arentze and Molin, 2013), VOT 24 

for walking (access and egress), waiting and transfer (except in long metro trips) is in the range of 1.2 to 25 

2.2 times those for IVT. Remarkably, however, the IVT of bus is valued around 100% higher than that of 26 

car; parking search time is valued more than 150% higher than IVT of car; VOT for accessing bus is only 27 

50% of VOT for IVT. These deviations also reflect inadequate in-bus and parking services.  28 

Third, possible delay times (on a 30% possibility basis) are valued between 1/3 and 1/2 of the IVTs 29 

except for short car trips. In comparison, schedule delay for being late is generally valued twice the IVT in 30 

western countries (Wardman et al., 2016).   31 

Lastly, it is interesting to compare VOT to findings in other countries. VOT for IVT of car is the most 32 

studied aspect in travel behavior research. The average VOT across trip purposes in Japan (Kato et al., 2011) 33 

(data of 2005), the Netherland (Arentze and Molin, 2013) (data of 2012), UK (Department for Transport of 34 

UK, 2014) (data of 2010 to 2012), and USA (USDOT, 2015) (data of 2015) are roughly 0.22, 0.19, 0.37, 35 

and 0.26 in USD/minute, respectively. In China, the number of studies reporting VOT of car travel is still 36 

limited but increasing. Compared to the value in Beijing (0.16 USD/minute) found in this study, we see 37 

that after three decades of rapid development, the VOT in Beijing, supposedly one of the highest in China, 38 

is still lower than the averages in developed countries.  39 

 40 
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7. Discussions and future work 1 

The emerging markets have experienced profound social transformations during the globalization and 2 

urbanization process. The mobility sector is also experiencing enormous changes due to the influx of 3 

increasing mobility demand and new modality advancements, while daily travel has ceased to grow in 4 

developed countries because of saturation of demand (Metz, 2013). This study extended the SP experiment 5 

decomposition method to analyze travel preferences in the multimodal transport system in Beijing. The 6 

estimation results provide quantitative insights into travelers’ choice behavior to attributes of mode 7 

alternatives. The effects of some attributes related to route/mode components turn out to be quite different 8 

from those in developed countries. Although the estimates may not be applied directly to metropolises in 9 

other emerging markets due to institutional differences, this study adds to the evidence base and benchmark 10 

for further comparisons. 11 

The findings shed light on the transport regulations and policies that are currently under debate in 12 

Beijing. First, we find that e-bike has a high base preference for short distance trips and is considered 13 

preferable to walking to access metro stations. It implies that bike-sharing programs (Wang et al., 2017), 14 

which have received much attention in large cities in China since 2016, have the potential to address the 15 

“first/last mile” transport problem. In other words, bike-sharing potentially increases the use of metro and 16 

facilitates multimodality. As an ingredient of shared economy, bike-sharing should be encouraged by 17 

adapting the motorization-oriented infrastructure more bike-friendly.  18 

Second, the marginal value of IVT of bus suggests a strong negative evaluation of in-bus services. One 19 

possible solution is to raise the bus ticket price to eliminate some flexible demand and reduce in-bus 20 

crowdedness. However, it may increase the crowdedness on the road and, moreover, it may cause an issue 21 

of social exclusion. Increasing the frequency of bus services, regardless of financial issues, may be a 22 

plausible solution; however, this may not immediately contribute to improvement with the presence of 23 

congestion on the road surface; conversely, it may result in the phenomenon of bus bunching. If road surface 24 

congestion is removed by, for example, bus priority strategies, we believe that increasing bus frequency 25 

will reduce in-vehicle crowding and improve seat availability. That is also why it is more often to see the 26 

frequency of metro services is increased from time to time. Thus, it is recommended that bus operators 27 

improve bus services by applying resilient bus scheduling timetables and strong priority enforcements to 28 

ensure seat availability and reliability.  29 

Third, this study found that travelers in Beijing take into account parking costs at the destinations of 30 

car trips, despite not as strongly as in developed countries. We suggest implementing parking pricing 31 

policies in the city center since the alternative of free curbside parking is one of the main causes of 32 

congestion in Beijing. Although parking pricing alone still cannot prevent cars from entering the city center 33 

especially with the arrival of self-driving cars (Bonnefon et al., 2016), it does restrain the traffic and other 34 

externalities resulting from cruising for parking. On the other hand, it is likely to contribute to transforming 35 

the car ownership of residents living in the city center.  36 

Finally, we find that travelers are not necessarily against multimodality as indicated by the high base 37 

preferences for BM and CM. The real obstacle lies in the transfer burden. Hence, seamless connections 38 

between different modes are crucial. If this is achieved, we are optimistic about the effects of introducing 39 

congestion charging and park & ride strategies in combination with the above interventions, which may, 40 
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otherwise, not work alone. Under such policy combinations, multimodality is most strongly supported, and 1 

congestion is hopefully alleviated without the compromise of reducing travel satisfaction. 2 

Several issues are worth future investigating. First, on the modeling side, heterogeneity caused by 3 

contextual conditions, social-demographic background, and other symbolic and attitudinal variables (e.g., 4 

privacy, status, and environmental concerns) were not taken into account in the current study. Including 5 

these effects will not only increase the model fit but also provide additional information for designing target-6 

driven travel demand management policies.  Second, as the city of Beijing is comparatively well-developed, 7 

the travel preferences may also be different from those in less-developed areas. It would be interesting to 8 

apply the comprehensive experiment system in different economic and geographical settings. Such 9 

extensions allow us to draw a complete picture of travel behavior by systematic comparison or meta-10 

analysis of travel preferences across cities in emerging and developed markets. Third, due to poor internet 11 

penetration and low interest in survey research, the sample is not very representative of the population in 12 

Beijing and this may cause bias in the results. Special attention should be paid to the applications and 13 

comparisons of the reported results. Fourth, with the fast-paced technological developments, emerging 14 

modalities, such as car-sharing and autonomous vehicles, are assumed to enforce disruptions to the mobility 15 

industry. Therefore, incorporating them into the experiment system is a worthwhile extension. All in all, 16 

this study provides a starting point for future research along these lines.  17 

18 

Acknowledgements 19 

This research is jointly supported by the National Key Research and Development Program of China 20 

(2018YFB1600900), National Natural Science Foundation of China (No. 71890971/71890970, 21 

71961137001), and the Netherlands Organization for Scientific Research (NWO) (project no. 438-18-401). 22 

These supports are gratefully acknowledged. 23 

24 

References 25 

26 

Abrantes, P., Wardman, M., 2011. Meta-analysis of UK values of travel time: an update. Transport Res A-27 

Pol 45, 1-17. 28 

Anderson, M.L., Lu, F., Zhang, Y., Yang, J., Qin, P., 2016. Superstitions, street traffic, and subjective well-29 

being. J Public Econ 142, 1-10. 30 

Arentze, T.A., Molin, E.J.E., 2013. Travelers’ preferences in multimodal networks: Design and results of a 31 

comprehensive series of choice experiments. Transport Res A-Pol 58, 15-28. 32 

Beijing Transport Annual Report, 2015. http://www.bjtrc.org.cn/List/index/cid/7.html (accessed on 33 

20/12/2019)  34 

Bekhor, S., Shiftan, Y., 2010. Specification and estimation of mode choice model capturing similarity 35 

between mixed auto and transit alternatives. J Choice Model 3, 29-49. 36 

Bliemer, M.C.J., Rose, J.M., 2010. Construction of experimental designs for mixed-logit models allowing 37 

for correlation across choice observations. Transport Res B-Meth 44, 720-734. 38 

Bonnefon, J.F., Shariff, A., Rahwan, I., 2016. The social dilemma of autonomous vehicles. Science 352, 39 

1573-1576. 40 

Bos, I.D.M., van der Heijden, R.E.C.M., Molin, E.J.E., Timmermans, H.J.P., 2004. The choice of park and 41 

ride facilities: an analysis using a context-dependent hierarchical choice experiment. Environ Plann A 42 

36, 1673-1686. 43 

http://www.bjtrc.org.cn/List/index/cid/7.html


24 

Campbell, A.A., Cherry, C.R., Ryerson, M.S., Yang, X., 2016. Factors influencing the choice of shared 1 

bicycles and shared electric bikes in Beijing. Transpor Res C 67, 399–414.  2 

Cascajo, R., Lopez, E., Herrero, F., Monzon, A., 2019. User perception of transfers in multimodal urban 3 

trips: A qualitative study. Int J Sustain Transp 13, 393-406. 4 

Cherry, C.R., Weinert, J.X., Yang, X., 2009. Comparative environmental impacts of electric bikes in China. 5 

Transportation Res D-TRE 14, 281-290. 6 

Chung, C., Boyer, T., Han, S., 2011. How many choice sets and alternatives are optimal? Consistency in 7 

choice experiments. Agribusiness 27, 114–125.  8 

Çolak, S., Lima, A., González, M.C., 2016. Understanding congested travel in urban areas. Nat Commun 9 

7, 10793. 10 

Department for Transport of UK, 2016. Understanding and valuing impacts of transport investment: values 11 

of travel time savings. https://www.gov.uk/government/publications/transport-appraisal-in-investment-12 

decisions-understanding-and-valuing-the-impacts-of-transport-investment (accessed on 20/12/2019) 13 

Diana, M., Pirra, M., 2016. A comparative assessment of synthetic indices to measure multimodality 14 

behaviours. Transportmetrica A 12, 771-793. 15 

de Freitas, L. M., Becker, H., Zimmermann, M., & Axhausen, K. W. (2019). Modelling intermodal travel 16 

in Switzerland: A recursive logit approach. Transport Res A-Pol 119, 200-213. 17 

Domenico, M.D., Lima, A., Gonzalez, M.C., Arenas, A., 2015. Personalized routing for multitudes in smart 18 

cities. EPJ Data Sci 4, 1–11. 19 

Farr, D., 2008. Sustainable Urbanism: Urban Design with Nature. Wiley, New York. 20 

Florida, R., Gulden, T., Mellander, C., 2008. The rise of the mega-region. Cambridge J Regions Econ Soc 21 

1, 459-476. 22 

Garcia-Martinez, A., Cascajo, R., Jara-Diaz, S.R., Chowdhury, S., Monzon, A., 2018. Transfer penalties in 23 

multimodal public transport networks. Transport Res A-Pol 114, 52-66. 24 

Groth, S., 2019. Multimodal divide: Reproduction of transport poverty in smart mobility trends. Transport 25 

Res A-Pol 25, 56-71. 26 

Guo, Y., Wang, J., Peeta, S., Anastasopoulos, P.C., 2018. Impacts of internal migration, household 27 

registration system, and family planning policy on travel mode choice in China. Travel Behav Soc 13, 28 

128-143. 29 

Hensher, D.A., 2006. Revealing differences in willingness to pay due to the dimensionality of stated choice 30 

designs: An Initial assessment. Environ Resour Econ 34, 7–44. 31 

Hurst D, Wheelock C., 2010. Electric Two-Wheel Vehicles—Electric Bicycles, Mopeds, Scooters, and 32 

Motorcycles: Market Analysis and Forecasts. Boulder, CO: Pike Research. 33 

Impacts of internal migration, household registration system, and family planning policy on travel mode 34 

choice in China 35 

Jamerson, F.E., Benjamin, E., 2013. Electric Bikes Worldwide Reports—Light Electric Vehicles/EV 36 

Technology. Electric Battery Bicycle Company, Naples, Florida. 37 

Kates R.W., 2011. What kind of a science is sustainability science? Proc Natl Acad Sci USA 108(49), 38 

19449–19450.  39 

Kato, H., Sakashita, A., Tsuchiya, T., Oda, T., Tanishita, M., 2011. Estimation of road user’s value of travel 40 

time savings using large-scale household survey data from Japan. Transport Res Rec 2231, 85–92. 41 

Kessels, R., Goos, P., Vandebroek, M., 2006. A comparison of criteria to design efficient choice experiments. 42 

J Marketing Res 43, 409–419. 43 

Klinger, T., 2017. Moving from monomodality to multimodality? Changes in mode choice of new residents. 44 

Transport Res A-Pol 104, 221-237. 45 

Liao, F., 2016. Modeling duration choice in space–time multi-state supernetworks for individual activity-46 

travel scheduling. Transpor Res C 69, 16-35. 47 

Liao, F., 2019. Joint travel problem in space–time multi-state supernetworks. Transportation 46(4), 1319–48 

https://www.gov.uk/government/publications/transport-appraisal-in-investment-decisions-understanding-and-valuing-the-impacts-of-transport-investment
https://www.gov.uk/government/publications/transport-appraisal-in-investment-decisions-understanding-and-valuing-the-impacts-of-transport-investment


25 

1343. 1 

Liao, F., Arentze, T.A., Molin, E.J.E, Bothe, W., Timmermans, H.J.P., 2017. Effects of integrated land-use 2 

transport scenarios on travel patterns: a multi-state supernetwork application. Transportation 44, 1-25. 3 

Liao, F., Arentze, T.A., Timmermans, H.J.P., 2010. Supernetwork approach for multi-modal and multi-4 

activity travel planning. Transport Res Rec 2175, 38-46. 5 

Liao, F., Arentze, T.A., Timmermans, H.J.P., 2011. Constructing personalized transportation network in 6 

multi-state supernetworks: A heuristic approach. Int J Geogr Inf Sci 25(11), 1885-1903.  7 

Liao, F., Arentze, T.A., Timmermans, H.J.P., 2012. Supernetwork approach for modeling traveler response 8 

to park-and-ride. Transport Res Rec 2323, 10-17. 9 

Liao, F., Arentze, T.A., Timmermans, H.J.P., 2013. Incorporating space–time constraints and activity-travel 10 

time profiles in a multi-state supernetwork approach to individual activity-travel scheduling. Transport 11 

Res B-Meth 55, 41-58. 12 

Liao, F., Rasouli, S., Timmermans, H., 2014. Incorporating activity-travel time uncertainty and stochastic 13 

space–time prisms in multistate supernetworks for activity-travel scheduling. Int J Geogr Inf Sci 28(5), 14 

928-945. 15 

Linn, J., Wang, Z., Xie, L., 2016. Who will be affected by a congestion pricing scheme in Beijing? Transport 16 

Pol 47, 34-40. 17 

Lois, D., Monzón, A., Hernández, S., 2018. Analysis of satisfaction factors at urban transport interchanges: 18 

Measuring travellers' attitudes to information, security and waiting. Transport Pol 67, 49-56. 19 

Mangham, L.J., Hanson, K., McPake, B., 2009. How to do (or not to do) … Designing a discrete choice 20 

experiment for application in a low-income country. Health Policy Plan 24, 151–158. 21 

Mao, Z., Ettema, D., into, M., 2016. Commuting trip satisfaction in Beijing: Exploring the influence of 22 

multimodal behavior and modal flexibility. Transport Res A-Pol 94, 592-603. 23 

Menon, B.G., Mahanty, B., 2016. Modeling Indian four-wheeler commuters’ travel behavior concerning 24 

fuel efficiency improvement policy. Travel Behav Soc 4, 11-21. 25 

Metz, D., 2013. Peak car and beyond: the fourth era of travel. Transport Rev 33, 255-270. 26 

Molin, E., Mokhtarian, P., Kroesen, M., 2016. Multimodal travel groups and attitudes: A latent class cluster 27 

analysis of Dutch travelers. Transport Res A-Pol 83, 14-29. 28 

National Bureau of Statistics, 2016. China statistical yearbook. Beijing, China: China Statistics Press. 29 

Parker, 30 

Nobis, C., 2007. Multimodality: facets and causes of sustainable mobility behavior. Transport Res Rec 2010, 31 

35–44. 32 

Qin, H., Gao, J., Wu, Y.J., Yan, H., 2019. Analysis on context change and repetitive travel mode choices 33 

based on a dynamic, computational model. Transport Pol 79, 155-164. 34 

Schakenbos, R., Paix, L.L., Nijenstein, S., Geurs, K.T., 2016. Valuation of a transfer in a multimodal public 35 

transport trip. Transport Pol 46, 72-81. 36 

Scheiner, J., Chatterjee, K., Heinen, E, 2016. Key events and multimodality: A life course approach. 37 

Transport Res A-Pol 91, 148-165. 38 

Sheffi, Y., 1985. Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming 39 

Methods. Prentice Hall, New Jersey. 40 

Small, K., 2012. Valuation of travel time. Econ Transport 1, 2-14. 41 

Tian, Q., Huang, H.J., Lam, W.H.K., 2009. How do transit commuters make trade-offs between schedule 42 

delay penalty and congestion cost?: Empirical Study in Beijing. Transport Res Rec 2134, 164-170. 43 

Train, K.E., 2009. Discrete Choice Methods with Simulation, 2nd edition. Cambridge University Press, 44 

New York. 45 

USDOT, 2015. https://www.transportation.gov/administrations/office-policy/2015-value-travel-time-46 

guidance (accessed on 20/12/2019) 47 

van Wee, B., Bohte, W., Molin, E., Arentze, T., Liao, F., 2014. Policies for synchronization in the transport–48 

https://www.transportation.gov/administrations/office-policy/2015-value-travel-time-guidance
https://www.transportation.gov/administrations/office-policy/2015-value-travel-time-guidance


26 

land-use system. Transp. Policy 31, 1–9. 1 

Viard, V.B., Fu, S., 2015. The effect of Beijing's driving restrictions on pollution and economic activity. J 2 

Public Econ 125, 98–115. 3 

Wang, H., Zhang, X., Wu, L., 2015. Beijing passenger car travel survey: implications for alternative fuel 4 

vehicle deployment. Mitig Adapt Strategies Glob Chang 20, 817-835. 5 

Wang, R, 2010. Shaping urban transport policies in China: will copying foreign policies work? Transport 6 

Pol 17, 147–152. 7 

Wang, Y., Sperling, D., Tal, G., Fang, H., 2017. China's electric car surge. Energy Policy 102, 486-490. 8 

Wardman, M., Chintakayala, V.P.K., de Jong, G., 2016. Values of travel time in Europe: Review and meta-9 

analysis. Transport Res A-Pol 94, 93-111. 10 

Wu, W.J., Wang, M., Zhang, F., 2019. Commuting Behavior and Congestion Satisfaction: Evidence from 11 

Beijing, China. Transport Res D 67, 553–64.  12 

Zhang, J., Liao, F., Arentze, T.A., Timmermans, H.J.P., 2011. A multimodal transport network model for 13 

advanced traveler information systems. Procedia Comput Sci 5, 912-919. 14 

Zhan, G., Yan, X., Zhu, S., Wang, Y., 2016. Using hierarchical tree-based regression model to examine 15 

university student travel frequency and mode choice patterns in China. Transport Pol 45, 55-65.16 


