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   Abstract — A sudden traffic surge immediately after
special events (e.g., conventions, concerts) can create 
substantial traffic congestion in the area where the events are
held. It is desired that the special events related traffic 
performance can be measured so that the traffic flow can be
improved via some existing methods such as a temporary
traffic signal timing adjustment. This paper focuses on the
study of the arterial travel time prediction using the Kalman 
filtering and estimation technique, and a graduation ceremony
is chosen as our case study. The Global Positioning System
(GPS) test vehicle technique is used to collect after events
travel time data. Based on the real-time data collected, a
discrete-time Kalman filter is then applied to predict travel 
time exiting the area under study. An assessment of the
performance and its effectiveness at the test site are
investigated. The approaches to further improve the accuracy
of the prediction error are also discussed.

I. INTRODUCTION

TRAFFIC congestion continues to be one of the major
problems in various transportation systems. Congestion
may be alleviated by providing timely and accurate

traffic information so that motorists can avoid congested
routes by using alternative routes or changing their
departure times. In general, the public tends to think more
in terms of travel time rather than volume in evaluating the
quality of their trips. Travel times have always been of
interest to traveler information researchers, planners, and 
public agencies as a key measure in performance measure
of traffic systems. For example, travel time information is 
needed to identify and assess operational problems along
highway facilities, and it is also necessary in traffic signal 
timing control coordination, as input to traffic assignment
algorithms, and in economic studies, etc. Travel time
estimation and prediction has been an important research 
topic for decades. Many previous studies have been 
focused on predicting travel times using various methods,
such as the time-series models [1], the artificial neural
network models [2], the non-parametric regression method
[3], the weighted moving average and cross correlation
methods [4], the adaptive filtering techniques [5], etc. 

Some prediction models were developed using historic
traffic data while others rely on real-time traffic 
information. Probe vehicles and geographic information
system (GIS) technology were also reported to estimate the
travel time (e.g., [6], [7]). Development of efficient
methodologies for real-time measurement and estimation of
travel time has been recognized as an important component
of Intelligent Transportation Systems (ITS) and it has also
been identified by the Minnesota Department of
Transportation (Mn/DOT) as one of the important issues
for improving the safety and operational efficiencies of the
traffic systems in the state of Minnesota. 

This paper presents a case study of the arterial travel time
prediction by focusing on the Duluth Entertainment and 
Convention Center (DECC) special events traffic flow
study. Following special events (e.g., conventions,
concerts, graduation ceremonies) at the DECC, high
volumes of exiting traffic create substantial congestion at
adjacent intersections. It is desired to know how easy it is
to exit the area? and how much does that “ease of 
movement” vary after the special events? We use the
Global Positioning System (GPS) test vehicle technique
[8]-[10] to collect after events travel time data. The data
received from the test vehicles are converted into a proper 
form and then processed by the Kalman filter. The
prediction results are presented and discussed.  In addition,
the methods to further improve the error performance are
also explored.  We believe that the results from this study
should help Mn/DOT and the City of Duluth Traffic
Service Center in the performance monitoring, evaluation,
planning, and management of the special events traffic flow
more efficiently.

II.  SPECIAL EVENTS TRAVEL TIME DATA

Travel time is considered to be the total elapsed time of
travel, including stops and delay, necessary for a vehicle to
travel from one point to another over a specified route
under existing traffic conditions. In this paper, travel time
is used as a performance measure due to the following 
reasons: (1) it is the most common way that users measure
the quality of their trip; (2) it is a variable that can be
directly measured; and (3) it is a simple measure to use for 
traffic monitoring. Currently, several methods (e.g., passive
ITS probe vehicle method, license plate matching method,
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active test vehicle method) are available to measure travel 
time data [8]. Since travel time data collection with a GPS 
unit has many advantages such as reduction in staff 
requirements as compared to the manual method, reduction 
in human error, no vehicle calibration necessary, relatively 
low operating cost after initial installation, etc., we use the 
active GPS test vehicle method to collect special events 
travel time data.  

Travel time prediction is potentially more challenging for 
arterials than for freeways because vehicles traveling on 
arterials are not only subject to queuing delay but also to 
traffic signal delay. Based on field observations at the 
DECC after special events, we identified the arterials 
having more impact on the alleviation of traffic surge in 
that area. We mainly focus on the arterial exiting the DECC 
on Railroad Street to the intersection of Interstate I-35 and 
Lake Avenue North. In addition to measuring the total path 
travel time, the link travel times (i.e., the time it takes to 
travel from one intersection to the next intersection) were 
also measured. The signalized intersections are used as our 
checkpoints with their coordinates (i.e., longitude, latitude) 
set by the GPS.  

1. The GPS Test Vehicle Technique 

The test vehicle technique has been used for travel time 
data collection since the late 1920s.  Traditionally, this 
technique has involved the use of a data collection vehicle 
within which an observer records cumulative travel time at 
predefined checkpoints along a travel route. This 
information is then converted to travel time, speed, and 
delay for each segment along the survey route. There are 
several different methods for performing this type of data 
collection, depending on the instrumentation used in the 
vehicle and the driving instructions given to the driver. 
Since these vehicles are instrumented and then sent into the 
field for travel time data collection, they are sometimes 
referred to as “active” test vehicles. Conversely, “passive” 
ITS probe vehicles are vehicles that are already in the 
traffic stream for purposes other than data collection. 
Historically, the manual method has been the most 
commonly used travel time data collection technique. This 
method requires a driver and a passenger to be in the test 
vehicle. The driver operates the test vehicle while the 
passenger records time information at predefined 
checkpoints. GPS has become the most recent technology 
to be used for travel time data collection (e.g., [9], [10]). 
Using this technique, a GPS receiver is connected to a 
portable computer and collects the latitude and longitude 
information that enables tracking of the test vehicle. In our 
study, both the manual and GPS test vehicle methods are 
used to collect travel time data, and the data collected by 
these two methods are cross verified in order to improve 
the data reliability and robustness. 

2.  Implementation 

Depending on the size of special events, the duration time 
over which data were collected lasted about 30 to 45 
minutes. Each test vehicle is equipped with a transmitter 
module, which includes a GPS receiver, a radio transmitter, 
and a high gain antenna. In every second, the transmitter 
module on each test vehicle sends the data stream including 
“TracID” back to the base station, which enables multiple 
devices to submit information across a wide-spread, 
dispersed network without collision, and keeps very 
accurate synchronization among all units. The base station, 
housing a receiver unit with an antenna, is connected to a 
laptop computer. The receiver base station is used to pick 
up the signals and display the results on a laptop in real-
time. In addition to data conversion, the laptop processes 
incoming data and then computes and generates predicted 
travel time via the implemented Kalman filter model. 

3. Sample Travel Time Data 

Using the GPS test vehicle technique, the total and section 
travel times were collected for a selected special event, i.e., 
the University of Minnesota Duluth (UMD) graduation 
ceremony. Three test vehicles were used to report travel 
time data. These vehicles were sent to the field and 
followed the pre-specified path, running on three- or five-
minute headway. That is, each test vehicle left the DECC 
three or five minutes later than the previous vehicle. After 
completed the journey, each vehicle returned back to the 
original point and re-joined the current traffic to start over 
again. The entire process continued until the traffic near the 
DECC was back to normal. Note that the departure time 
interval is actually the time step used for the Kalman filter 
to predict the next travel time. The sample travel time data 
for this special event is shown in Fig. 1, where the curve 
labeled “Total” represents the total path travel time. In this 
figure, the travel times associated with the road segments 1, 
2, and 3 (i.e., the link travel times) are also shown. The 
travel time is the averaged time measured by the three test 
vehicles. The traffic following this particular event lasted 
about 45 minutes.  

III. THE KALMAN FILTERING

The Kalman filter has been used extensively in many areas 
with practical applications reported in the literature (e.g., 
[11], [12]). Its basic function is to provide estimates of the 
current state of the system. But it also serves as the basis 
for predicting future values of prescribed variables or for 
improving estimates of variables at earlier times. The 
problem is formulated as a recursive procedure using the 
results of the current step to obtain the results for the next 
step. In this section, we briefly summarize the results used 
in our travel time prediction. Assume that our prediction 
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process can be modeled as 

                               xk+1 = k xk+ wk  (1)

which minimizes the mean-square estimation error. In 
addition, the relationship between Pk and  can be 
further expressed as

kP

where the state variable xk is the travel time to be predicted
at time k, k is the state transition parameter relating xk to
xk+1, and wk is a zero mean Gaussian noise sequence with
covariance Qk. That is, E[wiwj

T] = Qi (i-j), where (i-j) is
the  function which equals to 1 for i = j and 0 for i  j, the 
superscript T means the transpose (when xk and wk are in 
vector form) and the symbol E[·] represents the expected 
value.  In this application, xk and wk are scalar, and historic
data are used to obtain k, which describes the time
dependent relationship between the travel times in any two
consecutive time intervals. In our study, since no additional
traffic parameter other than travel time is involved, the
measurement/observation equation associated with the state 
variable xk is assumed to be

 zk =  xk + k  (2)        Set k = 0 and let  and 00 ˆ][ xxE 0
2
0 ][ PeE

T

)

where zk represents the observation, i.e., the average of the
travel times reported by the test vehicles at time k. The 
measurement noise {vk} is a Gaussian sequence with zero 
mean and covariance Rk. In addition, {wk} and {vk} are 
uncorrelated (i.e., E[wi j

T] = 0 for all i and j). Assume that
we have an initial estimate of the process at time k, and that
this estimate is based on what is known about the process 
prior to k. This prior estimate will be denoted as  where 
“hat” denotes estimate and the superscript “-” is a reminder
that this is the best estimate prior to assimilating the
measurement at k. Now, define the prediction error 

 and let P

kx̂

kkk xxe ˆ k
- be the error covariance at time k,

i.e.,

          (3) ˆ ˆ[ ] [( )( ) ]T
k k k k k k kP E e e E x x x x

Then, a linear blending of the noisy measurement and prior
estimate is chosen to be

ˆ ˆ ˆ(k k k k kx x K z x

)

k

ˆ
k

(4)

                         (6) ( )k kP I K P
Since

1ˆ
k kx x                              (7)

we can further rewrite the expression for  as1kP

1
T

k k k kP P kQ                            (8)

Therefore, our travel time prediction, based on the
minimization Pk, can be summarized as follows: 

Step 1: Initialization

Step 2: Extrapolation
       State estimate extrapolation: 1ˆ ˆ

k k kx x

       Error covariance extrapolation: 1
T

k k k kP P kQ

Step 3: Kalman gain calculation 

1( )k k k kK P P R
Step 4: Update
        State estimate update: ˆ ˆ ˆ( )k k k k kx x K z x

        Error covariance update: ( )k kP I K Pk

Step 5: Let k = k + 1 and go to Step 2 until the preset time
period ends. 

Based on the above implementation, a computer program
was developed for recognizing TracID binary data stream
and implementing Kalman filtering online. The input of the 
program is historic (average) travel time and TracID binary
data stream. The output generated by the program is the
synchronously predicted travel time and the program runs 
recursively until the traffic congestion is over.

where is the updated estimate and Kkx̂ k is the blending
factor. Note that the justification of the above special form
can be found in [13]. The optimal estimation problem is to
find a particular Kk to minimize the performance criterion, 
chosen to be the diagonal elements of the error covariance
matrix Pk (to be given below). Note that these diagonal
terms represent the estimation error variances for the 
elements of xk being estimated. There are several ways to 
solve this optimization problem (e.g., [11]-[13]). The 
optimal solution  Kk, called the Kalman gain, is found to

IV.  RESULTS ANALYSIS

The comparison of the predicted and measured path travel
times is shown in Fig. 2, where the predicted travel time at 
each time instant is compared with the corresponding
observed travel time. The predicted travel time at current 
time instant is basically determined by both the observed
and predicted travel times at the previous time instants. A                         (5) 1(k k k kK P P R
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larger prediction error occurred if there is a sudden
dramatic change (increase or decrease) of actual travel 
time. Overall, the predicted travel time follows the
observed one. We found that the average error would be
smaller if the duration time of traffic congestion lasts
longer. To quantify the prediction error, a mean absolute
relative error (MARE) is used as our performance criterion, 
which is defines as

1

ˆ
| |

100%

n
i i

i i

x x

x

n
MARE                  (9) 

where ix  is the actual value and ˆix  represents the 
predicted value. The prediction time interval (T) is set to be
three minutes and the number of intervals (N) for this
particular event is 15. That is, the departure time among the
three test vehicles exiting the DECC is three minutes apart 
and, thus, the computer program predicts the travel time
every three minutes. The traffic event lasted about 45
minutes and, thus, there are 15 iterations over the entire
time period we studied. The prediction error, expressed in
MARE, is about 17.61 %; acceptable by the city’s traffic 
engineers given the fact of many uncertainties (e.g.,
weather, traffic condition, signal timing) associated with
such an event. The MARE gives us an indication of how 
close the predicted travel time to the actual one. Note that
the GPS signals are received from the test vehicles every 
second while the travel time prediction is performed every
three minutes. For a given special event, to reduce the 
prediction time interval we need to increase the number of
test vehicles.

The prediction error comparison for the three road sections 
studied was also conducted, and the MARE found for
segment 1, 2, and 3 is 24.98 %, 25.17 %, and 21.25 %, 
respectively. Of the three road segments, the segment 3 
generates a relatively small error. This is due to the smaller
variance of the link travel time observed in segment 3. 
Overall, the MARE of all three segments is roughly within
the same range.

1. Effect of Prediction Time Interval on Error 

The prediction time interval T is a time step within which
data is collected for predicting travel time in the next time
step. The entire duration time for a prediction process 
depends on the level of traffic congestion and the number
of test vehicles used over time. Both three-minute and five-
minute intervals were used to evaluate the performance for 
the April 25 and May 22, 2004 concerts. We found that for 
(T, N) = (5, 6), MARE = 33.44 %, and if T is chosen to be
three minutes (i.e., (T, N) = (3, 9)), then MARE = 21.20 %. 
Apparently the prediction using a three-minute interval
performs better with the error reduced from the original 
33.44 % to 21.20 %. Since the duration time of traffic

congestion for similar events is about the same, reducing
the prediction time interval (T) means increasing the
number of intervals (N) and, thus, the number of iterations.
In general, the shorter T is, the better the prediction result
will be.

2. Data Interpolation

Since the number of test vehicles is fixed, to improve the
error we can increase N by using a data interpolation
technique. That is, we artificially create a data point 
between any two existing consecutive data points by
averaging. In other words, the values of interpolated data
points are calculated by averaging the values of 
consecutive data points between which data points are
interpolated. Besides the “one-point” data interpolation, the
interpolation with two new data points generated between
any two consecutive ones is also studied. The results by 
interpolating one- and two-data points are given as follows:
(a) Original (T, N) = (3.0, 15), MARE = 17.61%, (b) One-
point data interpolation (T, N) = (1.5, 29), MARE = 7.68
%, and (c) Two-point data interpolation (T, N) = (1.0, 43),
MARE = 4.40 %. Apparently, the prediction error 
improves dramatically after the interpolation is used. With
the increased number of data points, the prediction is less
likely to be affected by the sudden increase or decrease of
the actual travel time. Obviously, the more data points are 
used, the better the error performance will be. Implicitly,
this further implies that the travel time prediction results
can be improved if more test vehicles are used. Of course,
this will also increase the entire operation cost (equipment,
staff, etc.) in the data collection work. With Fig. 2 as our
base line, Fig. 3 shows the prediction results using two-
point data interpolation over the 45-minute time period.
Comparing these two figures, it is clear that the predicted 
travel time is improved as the interpolation method is used, 
and it has a much better match to the observed travel time
(the blue curve) when the two-point interpolation is used.

3. Effect of Using Historic Data on Prediction Error 

Since the prediction error is mostly caused by sudden 
increase and decrease of travel time, the predicted travel
time generated by the Kalman filter can be modified by
incorporating the available information, i.e., the rate of
change of historic data. Let hn be the historic travel time
observed at time n, xn be the predicted travel time generated
by the Kalman filter, and yn be the predicted travel time
adjusted using the historic data, then the adjusted yn can be 
calculated as . This 
method was tested on several occasions. However, we 
found that the results can be improved only when the actual
travel time data are similar to the historic data. The effect
of using this information for the April 25 concert event was 
studied, and as expected we found that the discrepancy
between the actual and predicted travel times is reduced 

1 1[ ( )] /n n n n ny x y h h 2
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after the above adjustment was made. Additionally, a 
combined method of using both the interpola  technique 
and historic data is summarized in Table 1, where SA, SA 
+ I (1), and SA + I (2) mean the slope adjusted, the slope 
adjusted plus one-point interpolation, and the slope 
adjusted plus two-point interpolation, respectively. 
Apparently, using the two-point data interpolation with the 
slope information included, the prediction error is reduced 
to 17.11 % as compared with the original 33.44 %. 

tion[1

4. Effect of Noise Variance on Prediction Error 

The effect of varying the parameters Qk (i.e., the variance 
of the process noise) and Rk (i.e., the variance of the 
measurement noise) on the prediction error is also studied. 
Different values of Qk and Rk are used to compare the 
MARE index. Generally speaking, the MARE drops when 
the measurement error variance Rk decreases and the 
process noise variance Qk increases. Note that in our study, 
the measurement error variance used is the averaged 
variance of the historic travel time, which is 21,394 and the 
noise sequence variance Qk we choose is 10,000. 

V.  CONCLUSION

Following special events at the DECC, high volumes of 
traffic exiting the DECC create substantial congestion at 
adjacent intersections. This paper focuses on the mobility 
study and travel time prediction on the arterials in the 
adjacent area near the DECC. Based on the historic and 
real-time data, a recursive, discrete-time Kalman filter is 
used. The predicted travel time at current time instant is 
determined by the observed and predicted travel times at 
the previous time instants and the entire process is 
recursively performed in discrete time. The results are 
analyzed and various approaches to further improve the 
accuracy of our prediction error is also explored and 
discussed. The results from this study should be helpful in 
the performance monitoring, evaluation, planning, and 
management of special events related traffic flow more 
efficiently.
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Table 1 Error performance comparisons with historic data 
and interpolated data points. 

Methods T (min.) N MARE 
(%)

Original 5.0 6 33.44
SA 5.0 6 27.57

SA + I (1) 2.5 11 24.08
SA + I (2) 1.67 16 17.11

Lists of figures: 

Fig. 1   Measured travel times over the three road segments. 
Fig. 2  Comparison of the predicted and observed travel 
            time. 
Fig. 3   Prediction results with data interpolations. 
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