
 

  
Abstract—Travel time prediction is essential to the 

development of advanced traveler information systems. In this 
paper, we apply support vector regression (SVR) for travel-time 
predictions and compare its results to other baseline travel-time 
prediction methods using real highway traffic data. Since support 
vector machines have greater generalization ability and guarantee 
global minima for given training data, it is believed that support 
vector regression will perform well for time series analysis. 
Compared to other baseline predictors, our results show that the 
SVR predictor can reduce significantly both relative mean errors 
and root mean squared errors of predicted travel times. We 
demonstrate the feasibility of applying SVR in travel-time 
prediction and prove that SVR is applicable and performs well for 
traffic data analysis. 
 

Index Terms—support vector machines, support vector 
regression, time series analysis, travel time prediction, intelligent 
transportation systems 
 

I. INTRODUCTION 
Advanced Traveler Information Systems (ATIS) is a major 

application essential to intelligent transportation systems (ITS). 
As well, to various ITS applications, such as route guidance 
systems and ramp metering systems, accurate estimation of 
roadway-traffic conditions, especially travel times, are even 
more critical to the traffic flow management. With precise 
travel-time predictions, route guidance systems and ramp 
metering systems can assist travelers and traffic-control centers 
to better adjust traveler schedules and control traffic flow. 

Travel-time calculation depends on vehicle speed, traffic 
flow and occupancy, which are highly sensitive to weather 
conditions and traffic incidents. These features make 
travel-time predictions very complex and difficult to reach 
optimal accuracy. Nonetheless, daily, weekly and seasonal 
patterns can still be observed at a large scale. For instance, daily 
patterns distinguish rush hour and late night traffic, weekly 
patterns distinguish weekday and weekend traffic, while 
seasonal patterns distinguish winter and summer traffic. The 
time-varying feature germane to traffic behavior is the key to 
travel-time modeling. 

Since the creation of the SVM theory by V.Vapnik in 1995 at 
the AT&T Bell Laboratories [1], the application of SVM to 
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time-series forecasting has shown many breakthroughs and 
plausible performance. Moreover, the rapid development of 
support vector machines (SVM) in statistical learning theory 
encourages researchers actively focus on applying SVM to 
various research fields like document classifications and 
pattern recognitions. On the other hand, applications of Support 
Vector Regression (SVR) [2], such as forecasting of financial 
market [3], estimation of power consumption [4], 
reconstruction of chaotic systems [5] and prediction of highway 
traffic flow [6], are also under development. The time-varying 
properties of SVR applications resemble the time-dependency 
of traffic forecasting, combined with many successful results of 
SVR predictions encourage our research in using SVR for 
travel-time modeling. 

SVM possess great potential and superior performance as is 
appeared in many previous researches [4][7]. This is largely 
due to the structural risk minimization (SRM) principle in SVM 
that has greater generalization ability and is superior to the 
empirical risk minimization (ERM) principle as adopted in 
neural networks [8]. In SVM, the results guarantee global 
minima whereas ERM can only locate local minima. For 
example, the training process in neural networks, the results 
give out any number of local minima that are not promised to 
include global minima. Furthermore, SVM is adaptive to 
complex systems and robust in dealing with corrupted data. 
This feature offers SVM a greater generalization ability that is 
the bottleneck of its predecessor, the neural network approach 
[2]. 

The main idea of the traffic forecasting is based on the fact 
that traffic behaviors possess both partially deterministic and 
partially chaotic properties. Forecasting results can be obtained 
by reconstructing the deterministic traffic motion and 
predicting the random behaviors caused by unanticipated 
factors. Suppose that currently it is time t. Given the historical 
data f(t-1), f(t-2),…, and f(t-n)  at time t-1, t-2,…, t-n, we can 
predict the future value of f(t+1), f(t+2), … by analyzing 
historical data set. Hence, future values can be forecasted based 
on the correlation between the time-variant historical data set 
and its outcomes.  

Numerous studies have focused on the accurate prediction of 
travel time of highways: time series analysis, Bayesian 
classification, Kalman filtering, ARIMA model, linear model, 
tree method, neural networks, and simulation models 
[8][9][10][11][12][13][14][15]. The simulation models, such 
as METANET, SIMRES, STM or Paramics, predict travel time 
using microscopic or macroscopic simulators. Most of the other 
models are data-driven models based on statistical analysis. A  
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travel-time prediction dataset can be characterized as:  
historical data, current data, or both historical and current data 
[16]. Typically, the input data for these methods are vehicle 
speed, travel time, traffic flow, density or occupancy. 

The way input and output data are manipulated before and 
after a chosen prediction algorithm differentiate the indirect 
and direct travel-time prediction methods [17]. Indirect 
methods input travel-time dependent variable, namely, speed, 
from the outcome of the prediction algorithm the variable is 
then converted to travel time. On the other hand, direct methods 
input travel time by preprocessing raw travel-time dependent 
variables.  

In this paper, we use support vector regression to predict the 
travel time of the highway and show that SVR is applicable to 
travel-time prediction and outperforms many previous methods. 
In Section II we introduce support vector regression briefly. In 
Section III we explain our experimental procedure. Then we 
present the methods and results of different travel time 
predictors in Section IV and Section V, respectively. Section 
VI concludes the paper. 

II. SUPPORT VECTOR REGRESSION 
Considering a set of training data {(x1, y1), …, (xl, yl)}, where 

each n
i Rx ⊂  denotes the input space of the sample and has a 

corresponding target value Ryi ⊂  for i=1,…, l where l 
corresponds to the size of the training data [17][18]. The idea of 
the regression problem is to determine a function that can 
approximate future values accurately.  

The generic SVR estimating function takes the form: 
 

bxwxf +Φ⋅= ))(()(                                                        (1) 
 
where nRw ⊂ , Rb ⊂ and Φ denotes a non-linear transformation 
from nR  to high dimensional space. Our goal is to find the 
value of w and b such that values of x can be determined by 
minimizing the regression risk: 
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where )(⋅Γ  is a cost function, C is a constant and vector w can 
be written in terms of data points as: 
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By substituting equation (3) into equation (1), the generic 

equation can be rewritten as: 
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In equation (4) the dot product can be replaced with function 

k(xi, x), known as the kernel function. Kernel functions enable 
dot product to be performed in high-dimensional feature space 
using low dimensional space data input without knowing the 
transformation Φ . All kernel functions must satisfy Mercer’s 
condition that corresponds to the inner product of some feature 
space. The radial basis function (RBF) is commonly used as the 
kernel for regression: 
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Some common kernels are shown in Table 1.  In our studies 

we have experimented with these three kernels. 
 

Kernels Functions 
Linear yx ⋅  

Polynomial ( )[ ]d
ixx 1+∗  

RBF { }2exp ixx −− γ  
Table 1.Common kernel functions 

 
Theε -insensitive loss function is the most widely used cost 

function [18]. The function is in the form: 
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By solving the quadratic optimization problem in (7), the 
regression risk in equation (2) and the ε -insensitive loss 
function (6) can be minimized: 
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The Lagrange multipliers, iα  and *

iα , represent solutions to 

the above quadratic problem that act as forces pushing 
predictions towards target value yi. Only the non-zero values of 
the Lagrange multipliers in equation (7) are useful in 
forecasting the regression line and are known as support 
vectors. For all points inside the ε -tube, the Lagrange 
multipliers equal to zero do not contribute to the regression 
function. Only if the requirement ε≥− yxf )(  (See Figure 1) 

is fulfilled, Lagrange multipliers may be non-zero values and 
used as support vectors. 

The constant C introduced in equation (2) determines 
penalties to estimation errors. A large C assigns higher 
penalties to errors so that the regression is trained to minimize 
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error with lower generalization while a small C assigns fewer 
penalties to errors; this allows the minimization of margin with 
errors, thus higher generalization ability. If C goes to infinitely 
large, SVR would not allow the occurrence of any error and 
result in a complex model, whereas when C goes to zero, the 
result would tolerate a large amount of errors and the model 
would be less complex.  
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Figure 1. Support vector regression to fit a tube with radius ε to the data and 
positive slack variables ζi measuring the points lying outside of the tube. 

 
Now, we have solved the value of w in terms of the Lagrange 

multipliers. For the variable b, it can be computed by applying 
Karush-Kuhn-Tucker (KKT) conditions which, in this case, 
implies that the product of the Lagrange multipliers and 
constrains has to equal zero: 
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where

iζ and *
iζ are slack variables used to measure errors 

outside the ε -tube. Since 0, * =ii αα  and 0* =iζ  for 

)C,0(* ∈iα , b can be computed as follows: 
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Putting it all together, we can use SVM and SVR without 

knowing the transformation. 
 

III. EXPERIMENTAL PROCEDURE 

A. Data Preparation 
The traffic data is provided by the Intelligent Transportation 

Web Service Project (ITWS) [19][20] at Academia Sinica, a 
governmental research center based in Taipei, Taiwan. The 

Taiwan Area National Freeway Bureau (TANFB) constantly 
collects vehicle speed information from loop detectors that are 
deployed at 1 km intervals along the Sun Yet-Sen Highway.  
The TANFB Web site provides the raw traffic information 
source, which is updated once every 3 minutes. The loop 
detector data is employed to derive travel time indirectly: the 
travel time information is computed from the variable speed 
and the known distance between detectors. 

Since traffic data may be missed or corrupted, we select a 
better portion of the dataset of the highway between February 
15 and March 21, 2003. During this five-week period there are 
no special holidays and the data loss rate is not over some 
threshold value; which could bias our results if not properly 
managed. We use data from the first 28 days as the training set 
and use the last 7 days as our testing set. We examine the travel 
times over three different distances: from Taipei to Chungli, 
Taichung and Kaohsiung, which cover 45-km, 178-km and 
350-km stretches, respectively. In addition, we examine the 
travel times of 45-km distance between 7am and 10am further 
since travel time of short distance in rush hour changes more 
dynamically. Figure 2 shows the travel-time distribution of the 
short distance on a daily and weekly basis, respectively. We can 
find the daily similarities and the instant dynamics from the 
daily and weekly patterns. 

 

 

Weekly Pattern

0

20

40

60

80

Tr
av

el
 T

im
e 

week 1 week 2 week 3 week 4 week 5

Sat.        Sun.        Mon.        Tue.        Wed.       Thu.        Fri.
 

 
Figure 2. Daily and weekly travel-time distributions traveling from Taipei to 
Chungli, 45-km stretch, during 7am to 10am for five Wednesdays and five 
weeks between February 15 and March 21, 2003. 
 

B. Prediction Methodology and Error Measurements 
Suppose the current time is t, we want to predict y(t+l) for 

the future time t+l with the knowledge of the value y(t-n), 
y(t-n+1),…, y(t) for past time  t-n, t-n+1, …, t, respectively.  



 

The prediction function is expressed as:  
 
y(t+l) = f(t, l, y(t), y(t-1), …, y(t-n)) 
 
We examine the travel times of different prediction methods 

for departing from 7am to 10am during the last week between 
March 15 and March 21, 2003. Relative Mean Errors (RME) 
and Root Mean Squared Errors (RMSE) are applied as 
performance indices. 
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where iY is the observation value and *
iY is the predicted value.  

IV. TRAVEL TIME PREDICTING METHODS 
To evaluate the applicability of travel-time prediction with 

support vector regression, some common baseline travel-time 
prediction methods are exploited for performance comparison. 

A. Support Vector Regression Prediction Method 
As discussed previously, there are many parameters that 

must be set for travel-time prediction with support vector 
regression. We have tried several combinations, and finally 
chose a linear function as the kernel for performance 
comparison with ε=0.01 and C=1000. In our experiences, 
however, Radial Basis Function (RBF) kernel also performed 
as well as linear kernel in many cases. The SVR experiments 
were done by running mySVM software kit with training 
window size equal to five [21]. 

B. Current Travel Time Prediction Method 
This method computes travel time from the data available at 

the instant when prediction is performed [13]. The travel time is 
defined by: 
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where ∆ is the data delay, L is the number of sections, (xi+1-x) 
denotes the distance of a section of a highway, and v(xi, t-∆) is 
the speed at the start of the highway section. 

C. Historical Mean Prediction Method 
It is the travel time obtained from the average travel time of 

the historical traffic data at the same time of day and day of 
week: 
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where w is the number of weeks trained and T(i, t) is the past 
travel time at time t of historical week i. 

V. RESULTS 
The experiment results of travel time prediction over short 

distance in rush hour are shown in Figure 3. As expected, the 
historical-mean predictor cannot reflect the traffic patterns that 
are quite different from the past average, and the current-time 
predictor is usually slow to reflect the changes of traffic 
patterns. Since SVR can converge rapidly and avoid local 
minimum, the SVR predictor performs very well in our 
experiments. 
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Figure 3. Comparisons of predicted travel times using different predicting 
methods. 

 
The results in Table 2 show the relative mean errors (RME) 

and root mean squared errors (RMSE) of different predictors 
for different travel distances over all the data points of the 
testing set. They show that the SVR predictor reduces both 
RME and RMSE to less than half of those achieved by the 
current-time predictor and historical-mean predictor for all 
different distances. 

In our experiments, as the traveling distance increases, the 
number of free sections increases more than the number of busy 
sections, such that the travel time of long distance is dominated 
by the time to travel free sections more than the time to travel 
busy sections. So it is not surprising that all the three predictors 
predict well for long distance, 350 km, but this makes it 



 

difficult to compare the performances of the three predictors. 
For this reason, we specifically examine the testing data points 
where the predicted error of any predictor is larger than or equal 
to 5%. As shown in Table 3, the SVR predictor improves not 
only the overall performance, but also significantly reduces the 
prediction errors for the cases where there are worse prediction 
errors in any one of the predictors. 
 

RME Current-time 
Predictor 

Historical-mean 
Predictor 

SVR 
Predictor 

45 km 9.29% 12.52% 3.91%
161 km 3.88% 5.01% 1.71%
350 km 2.85% 2.56% 0.96%
    

RMSE Current-time 
Predictor 

Historical-mean 
Predictor 

SVR 
Predictor 

45 km 28.75% 16.20% 6.79%
161 km 9.98% 6.66% 2.57%
350 km 5.49% 3.42% 1.33%

 
Table 2. Prediction results in RME and RMSE of different predictors for 
traveling different distances (all testing data points). 
 

RME Current-time 
Predictor 

Historical-mean 
Predictor 

SVR 
Predictor 

45 km 10.53% 14.31% 4.42%
161 km 5.85% 7.81% 2.38%
350 km 6.13% 4.90% 1.21%
    

RMSE Current-time 
Predictor 

Historical-mean 
Predictor 

SVR 
Predictor 

45 km 31.19% 17.55% 7.35%
161 km 13.81% 9.00% 3.26%
350 km 10.29% 5.66% 1.63%

 
Table 3. Prediction results for the testing data points that have greater prediction 
errors (>= 5%) in any one of the predictors. 
 

VI. CONCLUSION 
Support vector machine and support vector regression have 

demonstrated their success in time-series analysis and 
statistical learning. However, little work has been done for 
traffic data analysis. In this paper we examine the feasibility of 
applying support vector regression in travel-time prediction. 
After numerous experiments, we propose a set of SVR 
parameters that can predict travel times very well. The results 
show that the SVR predictor significantly outperforms the other 
baseline predictors. This evidences the applicability of support 
vector regression in traffic data analysis. 
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