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�e importance of travel time reliability in tra	c management, control, and network design has received a lot of attention in the
past decade. In this paper, a network travel time distribution model based on the Johnson curve system is proposed. �e model is
applied to 
eld travel time data collected by Automated Number Plate Recognition (ANPR) cameras. We further investigate the
network-level travel time reliability by connecting the network reliabilitymeasures such as the weighted standard deviation of travel
time rate and the weighted skewness of travel time rate distributions with network tra	c characteristics (e.g., the network density).
�e weighting is done with respect to the number of signalized intersections on a trip. A clear linear relation between the weighted
average travel time rate and the weighted standard deviation of travel time rate can be observed for di�erent time periods with
time-varying demand. Furthermore, both the weighted average travel time rate and the weighted standard deviation of travel time
rate increase monotonically with network density.�e empirical 
ndings of the relation between network travel time reliability and
network tra	c characteristics can be possibly applied to assess tra	cmanagement and control measures to improve network travel
time reliability.

1. Introduction

Urban travel times are well recognized to be variable due to
time-varying demand, stochastic capacity, di�erent control
measures (e.g., signal control at intersections), and external
factors (e.g., weather conditions). �e most widely used
travel time uncertainty modelling philosophy is based on the
concept of probability. With the probability distributions, the
reliability analysis of link/route/network travel times can be
conducted. In the literature, travel time distribution estima-
tion methods in the urban context can be categorized into
three groups: analytical approach, statistical (or numerical)
approximation, and simulation.

For the analytical approach, Zheng et al. [1, 2] proposed
an analytical link and trip travel time distribution model for
urban signalized arterials. �e model explicitly accounts for
the in�uence of stochastic tra	c processes, variation of tra	c

demand, queue dynamics, and di�erent tra	c signal control
schemes (including cycle time, green time, and o�set) on
travel time variability. �e “spillback” phenomenon (queued
tra	c from one intersection a�ecting operations at adjacent
intersections) is also taken into account.�e advantage of the
analytical model lies in its transferability and applicability in
di�erent tra	c conditions. However, the main drawback is
the complexity of the modelling process for network-wide
travel time distribution estimation.

For the statistical (or numerical) methods, normal, log-
normal, truncated normal/lognormal, Gamma, and Weibull
distributions [3–5] are widely applied to describe travel time
reliability (variability). Due to the complexity of urban tra	c
conditions, a single distribution model could not well repre-
sent the travel time distribution of an urban road. A mixture
of statistical distribution models [6, 7] has been proposed
to capture multistate tra	c conditions and the in�uence of
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signal control at intersections for urban roads. Clark and
Watling [8] employed the method of moments to calculate
various travel time reliability measures (expected travel time,
variance, skewness, and kurtosis). �e values of these four
measures were then 
tted to a family of probability densities
called “Johnson” curves. In order to capture both the vehicle-
to-vehicle and day-to-day variability in travel time data, Kim
and Mahmassani [9] proposed a Gamma-Gamma mixture
distribution model. Based on their proposed model, the het-
erogeneity within these two variability types under di�erent
weather conditions can be described as well.

For the simulation method, Kim et al. [10] employed
tra	c simulation models to derive travel time distributions
under di�erent scenarios considering various demand and
supply uncertainty factors, such as weather, tra	c incidents,
work zones, and tra	c control. Chen and Zhou [11] proposed
a simulation approach to derive network travel times by
solving a tra	c equilibrium problem considering demand
uncertainty. �e network travel time samples were further
used to estimate the network travel time distribution and its
statistics.�emain advantage of the simulation approach lies
in its �exibility. However, intensive computation is required
to conduct the simulation.

Although the concept of travel time reliability is relatively
new in the 
eld of transportation compared to some other
engineering 
elds, various travel time reliability measures
have been proposed by researchers, for example, standard
deviation, statistical range [12], bu�er index [13], 90th or 95th
percentile [14], skewness-width [15], travel time budget or
total travel time budget [16], and mean-excess total travel
time [17]. �e choice of the most suitable reliability model
depends on the context and purpose for which reliability is
evaluated and on the characteristic of the travel time distri-
bution [15]. Skewness is sometimes a relevant characteristic
because the more extreme long travel times may deter
travelers to choose a certain route and the economic value of
extreme long travel times is important [18]. In cases for which
skewness in the travel time probability distribution is not an
issue, the variance of the travel time is a logical reliabilitymea-
sure. Total travel time budget (TTTB) and mean-excess total
travel time (METTT) are two risk measures proposed for
assessing transportation network performance under uncer-
tainty [11, 17]. TTTB is de
ned as the minimum travel time
threshold that satis
es a certain reliability requirement given
by decision-makers at certain con
dence level. Xu et al. [17]
de
ne the METT as the conditional expectation of travel
times exceeding the corresponding TTTB at a given con-

dence level. �e numerical example shows that applying
METTT in the network design problem under uncertainty
lowers the construction cost and reduces the unacceptable
risk in the distribution tail substantially while incurring a
minor TTTB increase.

Up to now, most research focuses on modelling or mea-
suring link/segment level or route level travel time reliability.
Research on network wide travel time reliability is rather
limited and mainly based on simulation. Mahmassani et al.
[19] used both simulated data and 
eld GPS trajectory data
to model travel time reliability. �eir investigation with 
eld
data is rather limited. Moreover, GPS data is only a sample of

the total tra	c on the network and no �ow data is available
in their study area.�e question is to what extent the derived
relationship between the travel time variability and the
network �ow or density deduced from GPS sample data can
represent the real situation.

�e network travel time reliability has been considered
as an important aspect in network management, control, and
design [20]. In [1, 2], the authors have developed an analytical
travel time distributionmodel for link and route levels.When
it comes to the network level, the previously developed “pure
analytical model” is unable to describe the travel time vari-
ability. �erefore, in this paper, a network travel time distri-
butionmodel based on �exible probability densities known as
Johnson curves is introduced in Section 2.Di�erent frompre-
vious research on travel time reliability modelling with John-
son curves estimated based on the method of moments, we
apply a percentile-point method to estimate Johnson curves.
�e capabilities of Johnson curves are demonstrated with

eld travel time data. In Section 3, we discuss the calculation
of travel time reliability measures for urban networks and
their connection with network tra	c characteristics (e.g.,
network tra	c density and �ow). An illustration of travel
time reliability based on empirical data for a real urban net-
work of a city in China using ANPR data is provided as well.
Finally, some discussion and conclusions are provided in the
last section.

2. Network Travel Time Distribution

2.1. Vehicle-to-Vehicle Travel Time Variability from Empirical
Observations. Travel times that vehicles experience in the
urban network can be in�uenced by many factors, such as
�uctuations in tra	c demand and supply, signal control at
intersections, turning vehicles from cross streets, bus maneu-
vers at bus stops, parking vehicles along the roadside, crossing
pedestrians and cyclists, and, of course, intermediate stops of
the vehicles themselves, for example, for certain activities of
the driver along the trip. As a result, urban travel times are
rather variable given known tra	c condition (tra	c �ow).
Figure 1(a) illustrates the empirical travel time-�ow relation-
ship derived from local 5min aggregated measurements of
time-mean �ow and median travel time for each 5min on an
urban arterial road “RenminRoad” inApril 2015 inChangsha
City, China.�e region “A” illustrates the low demand condi-
tion and region “B” shows the high demand condition. It can
be clearly seen in Figure 1(a) that there is no one-one corre-
spondence relationship between travel time and �ow over the
whole range of tra	c �ow. Even in the condition of low tra	c
volume (region “A”), for a certain tra	c �ow, there is a big
range of travel time corresponding to it. In the high demand
condition, a large variation of travel times can be observed.
Figure 1(b) illustrates travel times experienced by vehicles
departing within a short time period (e.g., 1min). �e di�er-
ence between the maximum travel time and minimum travel
time can be as large as 221 seconds even within a small depar-
ture time period of 1min.
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Figure 1: Variability of travel times from empirical data collected on an urban arterial road “Renmin Road” on 20 April 2015 (�ow and travel
time are both measured in 5min aggregation; the outliers in travel time have been 
ltered out) in Changsha City, China.

2.2. Modelling Network Travel Time Distribution Using John-
son Curves. Due to a lot of uncertainties in urban transporta-
tion systems, travel times on both the link level and the route
level are rather variable, which aggregately results in the vari-
ability of travel times for the network level. As shown in some
empirical studies, the travel time distribution is unlikely to
have a normal distribution but is heavily skewed with a long
fat tail [15, 21, 22]. In this case, �exible probability densities
known as Johnson curves [23] can be applied to model travel
time data. �e Johnson curves have been widely applied in
the 
eld of agriculture and environmental engineering and
proved to be a powerful tool to model nonnormal and multi-
modality data [24, 25]. One important property of Johnson
curves is that parameters in the model can be estimated
analytically or explicitly, which facilitate the generalization
to di�erent situations and data sets. In the following, the
Johnson curves approach is discussed.

Let � denote the variable of intersection-normalized
travel time which is de
ned as the travel time trip divided
by the number of intersections on the trip. Jones et al. [26]
andMahmassani et al. [19] suggested that the use of distance-
normalized travel time can help exclude the source of vari-
ability coming from trip distance and only captures variability
due to speed variation. �is is the case with trips without
intersections, when the variance of travel time depends only
on the variation in speed and congestion at bottlenecks. How-
ever, on urban arterials, a major part of travel time variance
comes from signalized intersections. �erefore, we propose
to normalize travel time on the number of intersections for
a certain trip and focus on investigating the intersection-
normalized travel time distribution for urban networks. �is
normalized travel time will be denoted by “travel time rate.”

In the Johnson system, three types of probability density
functions are used:

(1) �e unbounded system (or ��): � = �+� arcsinh((�−�)/	)
(2) �e bounded system (or ��): � = � + � ln((� − �)/(	 +� − �))
(3) �e lognormal system (or ��): � = � + � ln((� − �)/	)

where � is a standard normal variable and �, �, �, and 	
are parameters of the Johnson curves. In the �� curves, the
domain is the entire real line. By contrast, the domain of ��
curves is de
ned over the open interval between � and �+	. ��
curves can be further simpli
ed by eliminating the parameter	 as � = � + � ln(� − �). In the literature, Johnson curves
were usually estimated by the method of moments [8, 27, 28],
which requires calculating four moments (mean, standard
deviation, skewness, and kurtosis) of a distribution and
sometimes it is not straightforward to derive these moments.
Sli�er and Shapiro [24] proposed a method to estimate
parameters of Johnson curves based on percentiles. �eir
method has shown to be an easier and more reliable proce-
dure compared with methods based on moments [25]. �e
procedure to estimate parameters is as follows.

Step 1. Estimate the percentiles in the travel time data cor-
responding to the cumulative probabilities 
−3�, 
−�, 
�, and
3� associated with four numbers −3�, −�, �, and 3�. �e
value of � should be chosen such that the percentiles can
be reliably estimated. Sli�er and Shapiro [24] suggested a
choice of � = 0.524, which provides reliable estimates of four
percentiles and works well for a variety of data sets.
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Step 2. Estimate the percentile travel times at �−3�, �−�, ��,
and �3� based on the probabilities 
−3�, 
−�, 
�, and 
3� and
calculate the parameters�, �, and  as

� = �3� − ��,� = �−� − �−3�, = �� − �−�.
(1)

Sli�er and Shapiro [24] showed that the expression��/2 can be used to determine the appropriate Johnson

curve. �e Johnson �� corresponds to ��/2 > 1, the
Johnson �� corresponds to ��/2 < 1, and Johnson �� cor-
responds to ��/2 = 1. It should be noted that when using

the value of ��/2 to select among Johnson curve types, ��
and �� predominate since only in rare cases ��/2 will be
exactly equal to 1.

Step 3. Estimate the Johnson curve parameters �, �, �, and 	.
For the detailed calculation of these parameters, readers can
refer to literature [24, 25].

Based on the above estimated parameters, travel time
rate distributions using the Johnson curves can be derived
straightforwardly. It is worthwhile noting that the circum-

stances inwhich��/2 exactly equals 1 are rather rare.�ere-
fore, �� and �� are more frequently chosen when the value of��/2 is used to determine the type of Johnson curves.

However, ��/2 could be less than or larger than 1 when
samples are extracted from an �� distribution in some data
sets [29]. In this case, examination of the third (skewness) and
fourth (kurtosis) moments of data in relation to the moment
plane could help determine the proper type of Johnson curves

when��/2 is close to 1. For instance, as suggested by Mage
[29], if the (third and fourth) moments lie within the ��
region and ��/2 is larger than 1, the �� distribution is an
appropriate choice.

2.3. Illustration with Field ANPR Data

2.3.1. Study Area and Data Description. In order to inves-
tigate how the Johnson curve system performs in terms of
describing network travel time distribution (variability), we
selected a study network located in the CBD of Changsha
City, China. Figure 2 shows the selected network with 73
signalized intersections and 21 intersections with ANPR
cameras.�e data were collected for three days from 20 April
2015 to 22 April 2015. �e time period of analysis considered
in this study is between 7:00 a.m. and 7:00 p.m. Each day was
divided into 30min time intervals. OD travel times between
intersections with ANPR can be estimated from camera
records. Outliers such as double counting and mismatching
were eliminated from the data set. Apart from these outliers,
by comparing travel times between vehicles consecutively
passing the intersection, abnormal link travel times between
two adjacent cameras (e.g., parking along the road for a
co�ee) were identi
ed and eliminated aswell.�e process can
be described as follows.

Vehicles � − 1, �, � + 1, . . . , � sequentially pass intersections�, � + 1, . . . , �. Let us denote ��� as the time instant when

vehicle � passes the upstream intersection �, ���−1 as the time
instant when the immediate preceding vehicle � − 1 passes

the upstream intersection �, ���+1 as the time instant when
the immediate following vehicle � + 1 passes the upstream

intersection �, ��+1�−1 as the time instant when vehicle � − 1
passes the adjacent downstream intersection �+ 1, ��+1� as the
time instant when vehicle � passes the adjacent downstream
intersection �+1, and��+1�+1 as the time instantwhen vehicle �+1
passes the adjacent downstream intersection � + 1; then the
link travel time between intersections � and � + 1 for vehicles� − 1, �, and � + 1 can be calculated as

��→�+1�−1 = ��+1�−1 − ���−1,
��→�+1� = ��+1� − ��� ,
��→�+1�+1 = ��+1�+1 − ���+1.

(2)

�e link travel time di�erences between vehicle � − 1 and� and vehicle � and � + 1 are calculated as

Δ�− = ��→�+1� − ��→�+1�−1 ,
Δ�+ = ��→�+1� − ��→�+1�+1 . (3)

If Δ�− > � and Δ�+ > �, vehicle � is considered
as “abnormal” vehicle whose travel time is much longer
comparedwith “normal” preceding vehicle �−1 and following
vehicle �+1.�en the link travel time of vehicle � is eliminated,
where � is the prede
ned threshold (the average cycle time of
the intersections is about 3min; therefore, “3min” is chosen
in our case).

�e vehicle travel time rates were then calculated with
individual travel times divided by their travel distance.

2.3.2. Results. We calculated the value of parameters �, �, �,
and 	 in the Johnson curve system according to the steps

described in the previous subsection. �e value of ��/2 is
smaller than 1 for all cases, which indicates that the Johnson�� curves are appropriate to describe travel time rate distri-
butions for our selected network.

Figures 3(a)–3(c) illustrate the comparison between the
network travel time rate distributions estimated from ANPR
data and the Johnson 
tted and lognormal 
tted curves
during peak time period of 7:00–7:30 a.m. for three days.
�e Johnson curves show a better 
t to the ANPR travel
time data compared with the lognormal 
t. Similar results
can be identi
ed in Figures 3(d)–3(f), where ANPR travel
time rate distributions are presented along with Johnson
and lognormal 
tted probability curves during o�-peak
period of 10:00–10:30 a.m.We further applied the one-sample
Kolmogorov–Smirnov (KS) test with four time periods each
day (in total, 12 time periods). Table 1 presents the K-S test
results. FromTable 1, it can be concluded that the null hypoth-
esis that the travel time rates follow the Johnson curve (SB)
distribution cannot be rejected for most of the time periods
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(a) Changsha CBD area (b) Intersections with ANPR cameras

Figure 2: �e selected network in Changsha City, China.
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Figure 3:Network travel time rate distribution fromANPRdata and 
tted density curves atmorning peak-hour period ((a)−(c)) andmorning
o�-peak period ((d)−(f)).
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Table 1: 
 value of Kolmogorov–Smirnov (KS) test with signi
cance level of 0.05.


 value

Fitted distributions Time period Day 1 Day 2 Day 3

Johnson curve

7:00 a.m.–7:30 a.m. 0.456 0.334 0.284

10:00 a.m.–10:30 a.m. 0.312 0.265 0.202

3:00 p.m.– 3:30 p.m. 0.258 0.168 0.126

5:00 PM–5:30 p.m. 0.359 0.032 0.243

Lognormal 
t

7:00 a.m.–7:30 a.m. 0.392 0.036 0.122

10:00 a.m.–10:30 a.m. 0.087 0.032 0.071

3:00 p.m.– 3:30 p.m. 0.036 0.073 0.048

5:00 p.m.–5:30 p.m. 0.033 0.059 0.076

Day 1: 2015-04-20; day 2: 2015-04-21; day 3: 2015-04-22.

Table 2: AIC values for the Lognormal model and the Johnson-curve model.

AIC value

Fitted distributions Time period Day 1 Day 2 Day 3

Johnson curve
7:00 a.m.–7:30 a.m. 15823 16988 17154

10:00 a.m.–10:30 a.m. 16343 16772 16952

Lognormal
7:00 a.m.–7:30 a.m. 16128 18214 17993

10:00 a.m.–10:30 a.m. 16766 17525 17629

(except time periods 5:00 p.m.–5:30 p.m. on day 2015-04-
21) at the signi
cance level of 5% since the 
 value is larger
than 0.05.�ebetter 
tting performance of the Johnson curve
model is due to the fact that the Johnson system allows
describing a wide spectrum of tra	c conditions as usually
existing in the urban tra	c system. �e Johnson model can
�exibly adapt its shape to the observed travel time data. We
calculated the Akaike information criterion (AIC) for both
the Johnson curve model and the lognormal model as well.
AIC is a measure of the relative quality of statistical models
for a given set of data. It is de
ned as

AIC = 2 ∗ � − 2 ln (�) , (4)

where � is the number of parameters in the model; � is the
maximized value of the likelihood function for the model.
From (4), it can be seen that AIC rewards goodness of 
t
(as assessed by the likelihood function), but it also includes
a penalty that is an increasing function of the number of
estimated parameters.

Given a set of candidatemodels for the data, the preferred
model is the one with the minimum AIC value. For more
detailed information about AIC, readers can refer to Akaike’s
work [30]. Table 2 shows the AIC values for both models in
di�erent time periods. �e lower AIC values of the Johnson
curve model further con
rm that the Johnson curve model
outperforms the lognormal distribution model.

Besides, as can be seen from Figure 3, network travel
time distributions are wide and skewed with a long fat right
tail during di�erent time periods, which suggest that the
network travel time rate is rather variable (unreliable). In the
following section, we will look at network travel time relia-
bility measures and how these measures vary under di�erent
tra	c conditions.

3. Network Travel Time Reliability
Metrics and Their Connection with
Network Traffic Characteristics

3.1. Network Travel Time Reliability Measures. Based on
travel time distributions as proposed in the previous section,
any travel time reliability metrics (e.g., standard deviation,
percentiles, skewness, and bu�er index) can be derived. In the
past decades, travel time reliability metrics are commonly
used to quantify link or route travel time reliability, whereas
very little research has been dedicated to investigate the
network travel time reliability. In this section, we investigate
the network travel time reliability (in terms of intersection-
weighted standard deviation and intersection-weighted
skewness of travel time rate) and its connection with network
tra	c characteristics under di�erent tra	c conditions.

A method that is frequently used in literature to charac-
terize tra	c states in a network is themacroscopic fundamen-
tal diagram (MFD) [31–33]. In the MFD, the tra	c state is
characterized by production (sum of distance-weighted traf-

c �ow) and accumulation (sum of distance-weighted tra	c
density). Let us denote the length of a link � by ��, the out�ow
of link � by ��, the tra	c density (vehicles per length of the
road) of link � by ��, and the total number of links in the
network by �. �en, the weighted average network density
during time interval Δ� is de
ned as

� (Δ�) = ∑	�=1 ���� (Δ�)∑	�=1 �� . (5)

Since we use ANPR data, the tra	c density cannot be
derived directly.We calculate the tra	c density from the total
vehicle travel time on link � and the link length ��. We use the
methodology proposed by Edie [34] applied on single links,
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Figure 4: Trajectories at the boundary of the time frame.

based on trajectory analysis [35]. �e average tra	c density
of link � �� during time interval Δ� is estimated as the total
time spent on the link during the time interval.

�ere is a methodological problem in the choice of the
frame in space and time for the de
nition of the tra	cdensity.
�e time the vehicle � spent on the link � ��� for the 
rst few
vehicles passing the end of the link a�er �1 is not entirely spent
during the time period Δ� as shown in Figure 4.�e situation
is represented in a rather extreme way to show the problem.
�e 
rst four vehicles registered by the camera have a travel
time which has not been spent completely in the time frameΔ�. �e next four vehicles are not registered in time frame Δ�
although they spend a part of the time in the space-time frameΔ� ⋅ Δ�. Although the detailed trajectories are not known, we
can apply the �ree-Dimensional Trajectory method (Saberi
et al. [35]). To be accurate we have to correct the travel time
of the 
rst vehicles passing in Δ�, that is, the vehicles for
which the travel time is longer than the time in Δ� at which
they are registered. Similarly, we have to add at the end of
the timeframe the times spend by the vehicles that enteredΔ� but did not reach the end of the road section within the
timeframe.

�e travel time of vehicle � on link � is given by the
di�erence in passing time at the stop line of the link � �
�� and
the link � − 1 ���� as ���� = ���� − �
��. �e part of the travel time

that should be allocated to the time interval Δ� is calculated
as

����� = min {����, �
�� − �1} , �1 ≤ �
�� ≤ �2. (6)

In an analogue way, the vehicles that are not counted at
the end of the time frame can be detected in the next time
frame and partly allocated to Δ�. �e travel time that has to
be added to the time spent in the period Δ� is calculated as

����� = �2 − ����, for ���� < �2, �
�� > �2. (7)

In practice, if the time intervalsΔ� are chosen longer than
the travel time on the link the boundary problem gives only
a marginal in�uence of the calculation of the time spent.

Furthermore,Δ� is chosen long enough to have little in�uence
of the signal cycle time (which was not a common cycle
time for all intersections).�is avoids the time-space window
problems as discussed by Courbon and Leclercq [36]

�� (Δ�) = ∑�=1 (�����/��)Δ� (Δ� = �2 − �1) , (8)

where ����� is the corrected travel time of vehicle � on link �
passing the stop line at the end of link � between �1 and �2;� is the total number of vehicles leaving link � during time
interval Δ� united with the vehicles that entered the link � inΔ�; � is the total number of links in the network; �1 and �2 are
the start and end of the time interval.

�eweighted (average) network �ow during time intervalΔ� is de
ned as

� (Δ�) = ∑	�=1 ���� (Δ�)∑	�=1 �� , (9)

where ��(Δ�) is determined as the number of vehicles
passing the end of link � during Δ�. Apart from the
network �ow and density, three reliability related quanti-
ties which are intersection-weighted mean travel time rate,
intersection-weighted standard deviation of travel time rate,
and intersection-weighted skewness of travel time rate distri-
butions are used in this study.

As we proposed in the previous section, the travel time
rate of trip � can be calculated as the trip travel time �� divided
by the number of intersections �� during this trip:

�� = ���� . (10)

�e intersection-weighted mean travel time rate during
time interval Δ� is de
ned as

# (Δ�) = ∑��=1 ���� (Δ�)∑��=1 �� , (11)

where �� is the number of intersections during trip �, �� is the
travel time rate of trip �, and $ is the total number of trips
observed in the network during time period Δ�.

�e intersection-weighted standard deviation of travel
time rate during time interval Δ� is de
ned as

% (Δ�) = √∑��=1 �� (�� (Δ�) − # (Δ�))2
∑��=1 �� . (12)

Skewness is ameasure of the asymmetry of the probability
distribution of a random variable about its mean. In terms
of reliability, the more skewed the travel time distribution is,
the less reliable travel times become. If the value of skewness
is zero, the travel time is normally distributed. If the value
of skewness is larger than zero, the travel time distribution
is right-skewed with a longer tail to the right. Otherwise, the
travel time distribution is le�-skewed with a longer tail to the
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Figure 5: Network �ow-density diagram for the study area in Changsha City (7:00 a.m.−7:00 p.m.).

le�. �e weighted skewness of travel time rate for a network
during time interval Δ� is de
ned as

� (Δ�) = '[∑��=1 �� ((�� (Δ�) − - (Δ�)) /% (Δ�))3∑��=1 �� ] , (13)

where -(Δ�) is the mean travel time rate during time intervalΔ�; %(Δ�) is the standard deviation of travel time rate during
time interval Δ�.
3.2. Case Study with Field ANPR Data. �e selected study
area consisting of 54 links is shown in Figure 2 in the previous
section. Again we use the three-day (between 7:00 a.m. and
7:00 p.m. from 20 April until 22 April 2015) ANPR data from
Changsha City, China.�e tra	c �ow can be derived directly
since each ANPR camera records the plates number of all
vehicles on lanes for straight-on and le� turning movements
passing the stop line. �e tra	c density however cannot be
obtained directly from ANPR data. We apply (6) to estimate
tra	c density for each link. Figure 5 illustrates the macro-
scopic fundamental diagram for the selected CBD network
based on three days’ observations with time intervals of 5min
(Figure 5(a)) and 15min (Figure 5(b)), respectively. �is
macroscopic fundamental diagram reveals that the observed
maximum weighted tra	c volume in this network is around
400 veh/h/lane for the weighted tra	c density around
30 veh/km/lane. No gridlock happened in this region from
the observed data.�at does notmean that the network oper-
ates below capacity, but it is an indication that the tra	cpolice
actively takes measures to reduce in�ow and increase out�ow
on links at the moment that spillback threatens to occur.

Of course, this form of active tra	c management has an
in�uence on travel times and travel time reliability.

Figure 6 illustrates the relation between the weighted
average travel time rate and the weighted standard deviation
of travel time rate for every 5min. Figures 6(a)–6(c) are
intersection-weighted travel times and Figures 6(d)–6(f) are
distance-weighted travel times. A clear linear trend can be
observed with both intersection-normalized and distance-
normalized approaches, though the travel time data appear to
be more scattered with a slightly lower correlation coe	cient

(72 = 0.7167 and 0.5938) on 21 April. Higher correlations can
be observed with intersection-weighted approach compared
with the distance-weighted method for all three days’ travel
times. �e magnitude of the slope which re�ects how much
the weighted standard deviation will increase when the
weighted average travel time rate increases is between 0.46
and 0.65 for intersection-weighted approach and between
0.35 and 0.62 for distance-weighted approach within these
three days’ observations. �e larger this value is, the more
vulnerable to congestion induced reliability deterioration the
network becomes.

Figure 7 shows the relation between the weighted average
travel time rate and the network density, where the upper
three 
gures (Figures 7(a)–7(c)) are intersection-weighted
travel time rates and the lower three ones (Figures 7(d)–7(f))
are distance-weighted travel time rates. A relatively strong
positive correlation exists between the weighted average
travel time rate and the network density for all three days with72 > 0.55 for intersection-weighted method and 72 > 0.48
for distance-weighted approach.�e comparison between the
intersection-weighted method and the distance-normalized
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Figure 6: Weighted average travel time rate versus weighted standard deviation of travel time rate.

method illustrates that closer correlations can be observed
with the former than the later. Lower correlation coe	cients
can be observed for the weighted standard deviation versus
the network density as shown in Figure 8. Nevertheless, the
positive linear trend still exists, which indicates that the travel
time variability increases when the network density increases.
�is is consistent with the argument in literature that the
network travel time variability has a linear relation with the
network density with simulated data [37].

Apart from investigating network travel time variability
in terms of the standard deviation, the intersection-weighted
skewness of ANPR travel time data is calculated as well
according to (15). Figure 9 shows the relation between the
weighted skewness and the network density. �ere is no
strong correlation between the network density and skew-
ness, though a weak trend, indicating that the skewness
decreases with the increase of network density, can be
observed. Nevertheless, we can observe that most of the
values of skewness between 7:00 a.m. and 7:00 p.m. are larger
than zero, which indicates that the travel time distribution is
right-skewed with a longer right tail. �is is consistent with
travel time distributions derived in Section 2 with Johnson
curves.

�e relations between travel time reliability and network
�ow are illustrated in Figure 10. It is observed that the rela-
tionship between travel time reliability (e.g., the intersection-
weighted standard deviation of travel time rate) and net-
work �ow rate is not monotonic anymore. �e intersection-
weighted standard deviation of travel time rate increases with
network �ow rate in low tra	c demand condition until the
maximum �ow rate, beyond which the network �ow rate
drops while the standard deviation continues to increase.�e
results shown in Figure 10 are quite consistent with those
derived from simulated data in [37].

4. Discussion and Conclusions

�is paper proposes a network-level travel time distribution
model by applying a �exible system of Johnson curves. �e
proposed model is able to describe a variety of travel time
distributions with properly estimating model parameters
based on the observed percentiles in the travel time data. We
validate the performance of the proposedmodel using ANPR
data collected in the CBD area of Changsha City, China.
�e results indicate that the travel time data can be better
modelled with the proposed model than the widely used log-
normal model in the transportation 
eld. �e reason behind
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Figure 7: Weighted average travel time rate versus network density.
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Figure 8: Weighted standard deviation of travel time rate versus network density.
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Figure 9: Intersection-weighted skewness versus network density.

2015-04-20 (7:00 a.m.–7:00 p.m.)

0

20

40

60

80

100

120

140

In
te

rs
ec

ti
o

n
-w

ei
gh

te
d

 S
td

. o
f 

tr
av

el
 t

im
e 

ra
te

 (
s/

tr
ip

/i
n

te
rs

ec
ti

o
n

)

200 400 6000

Network �ow (veh/h/lane)

(a)

2015-04-21 (7:00 a.m.–7:00 p.m.)

In
te

rs
ec

ti
o

n
-w

ei
gh

te
d

 S
td

. o
f 

0

20

40

60

80

100

120

tr
av

el
 t

im
e 

ra
te

 (
s/

tr
ip

/i
n

te
rs

ec
ti

o
n

)

100 200 300 400 5000

Network �ow (veh/h/lane)

(b)

2015-04-22 (7:00 a.m.–7:00 p.m.)

In
te

rs
ec

ti
o

n
-w

ei
gh

te
d

 S
td

. o
f 

100 200 300 400 5000

Network �ow (veh/h/lane)

0

20

40

60

80

100

120

tr
av

el
 t

im
e 

ra
te

 (
s/

tr
ip

/i
n

te
rs

ec
ti

o
n

)

(c)

Figure 10: Intersection-weighted standard deviation of travel time rate versus network �ow.

is that the Johnson curve model is able to better capture the
skewness in the data set with parameters describing the tail of
the distribution (e.g., with the third and fourth moments or
four percentile points), while in the lognormal distribution,
only the mean and standard deviation of the logarithm are
used to characterize the distribution of the data set.

We further investigated the network travel time reliability
measures and their connection with network tra	c char-
acteristics in terms of network density and network �ow,
which are known as the macroscopic fundamental diagram.
�ree network travel time reliability measures which are the
weighted average travel time rate, theweighted standard devi-
ation of travel time rate, and the weighted skewness of travel
time distributions are discussed, and the relation between
these reliability measures and the network density is illus-
trated using the 
eld ANPR data. �e weighting is done with
respect to both the number of intersections on a trip and the
trip distance. Results show that the weighted average travel
time rate has a positive linear relation with the weighted stan-
dard deviation of travel time rate for di�erent time periods
under time-varying demand. A positive linear trend can be
clearly observed between the weighted standard deviation
(or the weighted average travel time rate) and the network
density. �e correlations between reliability measures and

network states are higher with the intersection-weighted
approach than those using the distance-weighted approach.
�e investigation of the relation between the weighted skew-
ness and the network density shows that there is a weak
negative correlation between the former and the latter based
on the available ANPR data. �e value of skewness is larger
than 0 for most observation periods between 7:00 a.m. and
7:00 p.m., which indicates that travel time distributions are
right-skewed with a longer tail to the right.

�e 
ndings in this paper provide some insights into the
network travel time reliability.�e empirical relation between
the network travel time reliability and network tra	c char-
acteristics (e.g., network density) can be possibly applied to
assess the tra	c management and control measures for
reliability purposes; for example, by applying the relations
betweennetwork �owandnetwork density, aswell as network
reliability (network standard deviation) and network density,
network control strategies can be optimized to improve net-
work reliabilitywhilemaintaining required network through-
put.
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