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TRAVEL TRENDS USING THE PUGET SOUND PANEL SURVEY:
A GENERALIZED ESTIMATING EQUATIONS APPROACH
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Division of Statistics, University of California, Davis, CA 95616, U.S.A.

and

DEBBIE A. NIEMEIER*
Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, U.S.A.

( Received 17 June 1996; in revised form 21 April 1997)

Abstract—This paper examines longitudinal mode use trends using four waves of the Puget Sound Trans-
portation Panel. The analysis is conducted using generalized estimating equations for model estimation. In
addition to examining mode use frequencies over time, we also consider mode use trends conditioning on
household income and lifecycle stage. As expected, results indicate an overall increase in the number of
worktrips made between 1989 and 1993 and these trips were marked by increasing use of single occupancy
vehicles. The full parameters of the model were also to estimate the rate of increase in terms of percentage
increase and their confidence intervals. Results indicate that the mean number of worktrips made by driving
alone significantly increased from wave 1 to wave 4; with a 95% C.1. the rate of percent increase was esti-
mated between 8.2 and 24.5%. The ranges for rates of change in high occupancy vehicle modes and non-
motorized worktrip frequencies overlap with the range for single occupancy vehicle rate of change, and thus,
it cannot be said that rate of change for the high occupancy modes was significantly different from the single
occupancy rates of change. The rate of change in the mean frequency for the high occupancy-transit mode is
not only below the range for single occupancy vehicle trips but also suggests, with 95% confidence, the rate of
percent decrease was between 2.88 and 44.0%. © 1998 Elsevier Science Ltd

Keywords: quasi-likelihood, generalized linear model, generalized estimating equations.

1. INTRODUCTION

Recent summary statistics, based on the Nationwide Personal Transportation Study (NPTS),
suggest that single occupancy vehicle trips in the U.S. have increased in the past decade while
public transport trips have declined. In 1983, single occupancy vehicles accounted for 71.1% of all
journey to work trips, increasing to 83.0% in 1990. Concomitantly, between 1983 and 1990, public
transport journey to work trips decreased from 4.5 to 4.0% (Hu and Young, 1993). Likewise, U.S.
census data suggests that private vehicle use for the journey to work trip increased by approx. 27%
between 1960 and 1990 while public transit use declined by as much as 60% during the same per-
iod (Rossetti and Eversole, 1993).

Much of the mode use literature associated with trends analysis relies on cross-section data to
describe the various longitudinal travel patterns. The potential problems associated with travel
behavior analysis using cross-section data have been well documented (e.g. Kitamura, 1990) and
include, for example, lack of temporal insight and omitted and confounding variables (Golob,
1990). More recently, researchers have explored travel behavior with panel data, thus overcoming
some of the difficulties associated with cross-section data. However, much of this research has
been used to examine the effects of specific transportation policies on travel behavior.

For example, Kitamura er al. (1990) examined how travel patterns change when telecommuting
is considered using panel data. Others have examined the effects of staggered work hours on travel
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22 Julie L. Yee and Debbie A. Niemeier

behavior (Golob and Guiliano, 1989) and changes in mobility (van Wissen and Meurs, 1989) using
panel data. Perhaps the most notable panel data are the Dutch National Mobility Panel which
includes weekly travel diaries and household and personal demographic data. Golob (1990) used
the Dutch Panel to examine the relationship between travel time expenditures and car ownership
while Meurs (1990) examined the characteristics of trip generation.

Absent from the travel behavior literature is a U.S. based analysis of mode use trends using
panel survey data. The purpose of this paper is to examine mode use trends using four waves of
the Puget Sound Transportation Panel (PSTP). The analysis is conducted using generalized esti-
mating equations (GEE) for model estimation. In addition to examining mode use, we also con-
sider mode use trends conditioning on exogenous variables such as household income and lifecycle
stage.

The paper begins with a description of the PSTP data and the major estimation issues and
research questions. In Section 3, a theoretical model is presented; Section 4 describes the model
estimation. In Section 5, the results are described and finally, conclusions are presented.

2. THE PSTP

The PSTP is a longitudinal data that consists of four waves of travel data collected during the
years 1989-1993 (see Murakami and Watterson, 1990). Each wave is organized into three data
files: one each containing household, person, and trip diary information for every household
member of driving age. Each household is represented by a single record in the household files
indexed by a household identification number and carrying attribute information such as house-
hold income and lifecycle. Similarly, each person is represented by a single record in the person file
and is indexed by a household and person identification number. The person files contain profiles
of the individual participants with information such as age, sex and occupation. Finally, the trip
diary file includes trip attributes for every trip taken during the two day travel period. Each indi-
vidual trip is described in terms of the trip purpose, mode, and other related attributes; this file is
indexed by the household and person identification and trip number.

Using the trip diary files for each wave, trip modes can be categorized into four mutually
exclusive categories:

(a) Single occupant vehicle;

(b) HOV-pool (high occupancy vehicles that include carpool, vanpool, and taxi);
(¢) HOV-transit (high occupancy modes that include bus and paratransit); and
(d) non-motor (walk and bike).

Eight additional modes represented in the data were excluded from this analysis. These include
motorcycle, school bus, ferry/car, ferry/foot, monorail, boat, train, and airplane and constitute
only a small portion of the sample.

We are particularly interested in analyzing mode use over time on the subset of respondents
participating in all four waves. Additionally, we restrict the data to work-related trips for those
individuals with work trip information in all four waves and only those individuals with reported
income and household information in all four waves. The first two waves contained a few house-
holds whose incomes were categorized under an alternate scheme indicating only whether they
made less than or greater than $30,000 as opposed to the $35,000 cutoff point used in cur cate-
gorizing scheme. These subjects represented a small proportion of the sample and were also
omitted from the analysis.

Under these conditions, we have a by-wave sample size of 519 subjects, each with 16 observa-
tions (four modes and four waves), for a total of 8304 observations. There are 222 records in
which the subject is associated with the same household as another subject. We will assume that
individuals from the same household behave independently of one another. Table 1 presents basic
trip summary statistics for each wave.

Table 2 presents the basic demographic features associated with continuing participants in each
wave. As others have noted (Goulias and Ma, 1996), the proportion of higher income groups
increased over time. Approximately 65.9% of the respondents made greater than $35,000 in wave
1, compared to 82.5% in wave 4. The proportion of lifecycle types also changed over time. Life-
cycle groups 1, 3, and 6 increased over time while groups 4 and 7 declined in number.
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Table 1.
Wave 1 Wave 2 Wave 3 Wave 4

Mean no. of trips (SE)

Sov 1.92 (0.05) 2.34 (0.10) 2.22 (0.08) 2.33 (0.08)

HOV-pool 0.34 (0.03) 0.37 (0.04) 0.37 (0.04) 0.41 (0.05)

HOV-transit 0.23 (0.03) 0.22 (0.03) 0.16 (0.02) 0.18 (0.03)

Non-motor 0.12 (0.02) 0.17 (0.03) 0.12 (0.02) 0.15 (0.03)
Percent of total trips

SOV 73.8 75.5 77.2 75.8

HOV-pool 12.9 12.0 12.9 13.5

HOV-transit 8.6 7.0 5.7 5.8

Non-motor 4.7 5.5 4.2 4.9

The analysis of longitudinal count data such as we have defined requires specific statistical
techniques (e.g. Kitamura, 1990; Maddala, 1987). If, for each of k subjects, the kth set of observed
counts, Yy, is defined to have expected value p, then the standard linear model uy = X 8 is lim-
ited in two basic respects. First, the range of u; is not restricted; this hinders practical use in
modeling, for example, count data or proportions. Second, the standard linear model assumes
independent normally distributed errors with error variances independent of u,. Each individual &
contributes correlated observations to the full likelihood of the panel data. Without understanding
the nature of the correlation between these observations, the contribution to the likelihood by each
subject cannot be known, much less used to computationally fit a model.

3. GENERALIZED ESTIMATING EQUATIONS

Generalized linear models (GLM) addresses the limitations of the traditional modeling
approach by specifying a monotone differential link function g(u) that is equated to X; B, where
X is a vector of covariate measures and 8 is a vector of coefficients relating X to g(u«). A general
discussion of the model foundation may be found in McCullagh and Nelder (1989). Y, is assumed
to have a known distribution in the exponential family with a variance that is a known function of
ux. For example, proportions may be modeled as a logit model with link function,
g(uk) = log(£-) = B, thus restricting each component of 4 to the range [0,1].

Suppose the interest lies in evaluating how Yy, the total frequency of trips made during a spe-
cified wave j and of mode type i, changes over time, where i = 1, ..., Tand j = 1, ..., J. We begin by
specifying a distribution for the Yjs. If we assume a Poisson distribution, the canonical link is the
natural log function with mean and variance exp(X;;8). A general wave-mode GLM may now be
formulated as:

I I
log(uy) = Bo + Brwave;+ Y _ Ba s =i} + ) _ B3 swave; = I{s = i} (1)
s=2 =2
Table 2.
Wave 1 Wave 2 Wave 3 Wave 4

Income (%)

< $35,000 34.1 237 18.7 17.5

> $35,000 65.9 76.3 81.3 82.5
Lifecycle type (%)

(1) Any child, <6 yr old 18.1 17.1 13.9 12.7

(2) All children, 6-17 yr 29.3 31.6 30.6 29.7

(3) I adult, <35 yr 23 2.1 1.7 1.3

(4) 1 adult, 35-64 yr 7.1 7.7 8.9 10.2

(5) 1 adult, 265 yr 0.4 0.6 0.8 0.8

(6) 2+ adults, <35 yr 3.9 34 13 1.2

(7) 2+ aduits, 3564 yr 37.2 35.8 399 40.8

(8) 2+ adults, >65 yr 1.7 1.5 2.9 33
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where p;; is the mean of Yj; and 1{-} is the mode indicator function. The summation in the latter
two terms does not include s = 1 since the baseline model is already set at mode type 1. The mean
i measures the propensity of subjects in the population to take a trip in wave j by mode i. It is
assumed that u; > 0, that is, there is always some propensity among the population to travel by
mode 7 and in wave j, no matter how small. A small value of iy would be associated with many
observations of Y equaling zero. The GLM estimate for the vector 8 can be obtained by using the
estimating equation,

DHY(Y-u)=0 2

where u = g~ !(X'8), D represents the matrix %‘i and, assuming independence between observa-
tions, H is a diagonal covariance matrix. With a panel data model specified as in eqn (1), and
assuming / modes and J waves, there are 1/ correlated observations and, without modifications,
the standard GLM should not be applied.

Liang and Zeger (1986) and Zeger and Liang (1986) extend the GLM estimating equations to
account for correlated measurements using quasi-likelihood. The approach, known as Generalized
Estimating Equations (GEE), allows the distribution of Y to be known only to the extent that the
mean can be reasonably expressed by puy = g~! (X.B) with the variance expressed as a function of
the mean, H(ux)/¢, where ¢ is a scale parameter. Further, in the GEE approach, an empirica)
variance function is estimated so that model parameters and their variances are consistently esti-
mated even if the correlation structure is misspecified.

The basic form of the quasi-likelihood estimating functions for a correlated response vector is
defined for the ZJ/-vector Y measured from a single individual. The coefficients may be estimated by
implementing the score function given by,

U(B) =D'gH™'(Y — ) 3

where D is a IJ x p matrix where the (s, 7)th element is given by du;/38,, i.e. the partial derivative
of the sth component of the I/-dimensional vector u with respect to the th component of the
p-dimensional vector 8. The function U has properties which are similar to the derivative of the
log-likelihood function. For this reason, the estimating equations,

U(B) =0

are known as quasi-likelihood estimating equations. The covariance matrix for U is

()

which is analogous to the Fisher information derived for the usual ordinary likelihood functions.
The covariance matrix for the estimates 8 is given by the inverse

=DH'D¢

B

Cov(B) =iz' = (D'H'D)"'/9.

The quasi-likelihood can be extended to a /K dimensional model vector encompassing the mea-
surements from K individuals. Assuming that respondents are independent, then eqn (3) represents
the contribution of each individual to the quasi-likelihood. The estimating equations are then,

K
UB) =) _ DydH; ' (Ve — i) = 0 4
k=1

with solution denoted by B. The corresponding covariance matrix for ﬁ is

0] - (En) o

\k=1

8
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The computational solution of the GEE, eqn (4), requires iteration using an initial estimate of 8°
and the recursive assignment,

~ ~ K Al a—]a B K‘ Al a—1 ~
Bl =8+ l:z D, H, D, ZDka (Ve — i) |,
k=1 k=1

where Dk, Hk, and ji; are functlons of ﬂ and updated at every iteration usmg the current estimator
B If B0 is sufficiently close to ﬂ, then the sequence of B’ converges to B, and is a sensible starting
value for ﬂ The estimated covariance matrix for ,3 is given by

-1

a -1 K Al a~1a A

izl = [—E(a§ U)] lis = (2 D.H, Dk) " ©)
/ k=1

where ¢ is the estimate for the scale parameter and defined by

. A P . S
= D D Mo e

k=1 i=1 j=1 ik

where X? is the generalized Pearson statistic (McCullagh and Nelder, 1989).

In specifying the covariance matrix functional H, the generalized estimating equations (GEE)
can be used to treat longitudinal data where H is not only a function of u but also of an additional
set of parameters. Specifying H in the form suggested by Liang and Zeger (1986) leads to

H. = AIRAL/¢

where R is a suitable correlation matrix for the outcomes, Yk, and Ay is the IJ x IJ diagonal
matrix with diagonal elements ¢Var(Yix), 1 <i</, 1<j<J. Using eqn (5) to estimate the varian-
ces of the parameters implies that the correlation matrix R has been correctly specified. In practice,
it is difficult to ascertain that the true correlation has in fact been specified. Liang and Zeger pro-
pose a ‘working’ robust empirical estimate of the correlation structure to protect against misspe-
cification. The alternate covariance matrix estimator is of the form:

-1

K -tk K
= (Z DLH;‘m) (Z DzH;‘Cov(Yk)H;‘Dk) (ZD;H;‘Dk) ¢. 6)
k=1 k=1

k=1

Liang and Zeger also noted that, under mild regularity conditions, 8 and V provide consistent
estimates even when H is misspecified. Furthermore, it can be shown that

(B~ Bk W~ Normal(0, lim V).

This justifies the construction of ¢-ratios, which for large sample sizes, may be referred to a normal
probability table. With data from a finite sample, Cov(Y;) need only be replaced by the 1J-
dimensional square matrix (Y, — fx)(Ye — i)’ In this framework, Hy(ux)/¢ is known as the
‘working’ covariance matrix. Although Y is believed to contain correlated elements, Hy can still
be specified as if the structure was entirely independent. This would correspond to an independent
working correlation matrix and is similar to the solution by ordinary quasi-likelihood with the
exception that V differs from the covariance estimator in eqn (5) by a correction factor,

-1
A~ a
(Z D1, Cov(Yo)H, D,,) (Z DA, D,,) ,

k=1 1

that makes it robust to departures from the assumption that H is correctly specified. With the
PSTP data, this is advantageous in that it relaxes the necessity of understanding the nature of
correlation of any two frequencies observed for the same person.
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4. MODEL SPECIFICATION
The model given by eqn (1) may be specified for the PSRC panel data in the following form:

log(uy) = Bo + B + B2 l{i = 2} + Basl{i = 3} + Busl{i = 4}

T Bglli = 2} + Byyilli = 3} + Bl (i = 4) @)

This model reflects the four modes and four waves represented in the panel data and results in a
16K x 9 data matrix, where the rows are made up of the 16 responses from each of the K indivi-
duals. The columns contain the response Y, seven covariates and one identifying variable used to
match rows of information corresponding to the same individual. The number of parameters is
P = 8§, but only seven covariates need to be specified since the usual intercept term, By, in the
design matrix is automatically included.

Using the mode-wave model specified in (1), the response vector is multivariate
Y =(Yy,...Yx), where Yi= (Y, V126> Y13k, Yiak, Y1k, oo Yoak, .. Yaqx),  with  mean
i = E(Y) = exp(X} B) where Bis a 8 x 1 vector of coefficients to be estimated and X, is a 16 x 8
matrix and each row of X; is given as

Xpe=(, j, Hi=2), Wi=3}, i=4}, ji{i=2}, ji{i=23}, jl{i=4}), ®)

fori=1,..,4 and j= 1, ..., 4 with 1{-} denoting the indicator function. To avoid over-parame-
terizing the model, the coefficients 8>; and 831, corresponding to the effects associated with mode
1, the reference, are not included. The variance—covariance matrix of Y is given by
Cov(Y) = H(u)/¢, where, for the PSTP model, H(t) = Diag(u).

The analyses can be performed using Splus® (Statsci, 1995) with programming extensions by
Carey and McDermott (1995) based on the GEE method of Liang and Zeger and Zeger and
Liang. To solve GEE problems approx. 50 megabytes of temporary virtual memory is required.
The output consists of estimates of the coefficients, and the robust estimate of the variance of the
estimated coefficients used by Liang and Zeger. Since the method is semi-parametric, there are no
likelihood functions and goodness-of-fit tests are not available. However, this is not expected to be
a problem since the model constraints are relaxed by typical standards.

A continuous wave variable is defined to indicate each wave of travel data. Although the wave
variable may be treated as a categorical variable with four levels, it is better used as a continuous
variable representing the time factor between the four periods. In this way, trends with time can be
described by the effects of the wave variable in the statistical model. The model coefficients gy and
B1 can be interpreted as the intercept and slope for the linear relation between wave and log(uy)
when i =1, i.e. the mode of travel is by car. In particular, the slope 8; quantifies the effect on
log(uy;) for increasing wave numbers. Since the effect of wave on log(uy;) is additive, then the
effect of wave on uy; is multiplicative. Consider the relationship between the two models corre-
sponding to two consecutive wave numbers j and j + 1. Using eqn (7),

#1j+1 = exp{Bo + Bi(j+ 1)}
= exp{Bo + Bulexp(Bi}

= uy;exp{br}.

In other words, the average frequency of SOV worktrips changed between any two consecutive
waves by a factor of exp{g:}. When i=2, 3, or 4, the intercept and slope for the relation between
wave and log(u;) are adjusted by the coefficients B,; and B;, respectively. So, for modes i=2, 3,
and 4, the intercept and slope for the linear relation between wave and log(u;) are o + B; and
B1 + Ba;, respectively; the average frequency of trips made by mode i, (i # 1), changed between any
two consecutive waves by a factor of exp B -+ Bi.

As coefficients for wave-related terms, 8; and B, + Bj; are the primary parameters describing the
rates of changes occurring in mode frequencies over wave time. The coefficient 8; is negative if the
mean frequency of mode 1 (SOV) worktrips is decreasing, positive if increasing, and zero if there
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were no changes. Similarly, 8; + B3; is negative if the mean frequency of worktrips for mode i,
(i=2, 3, or 4), is decreasing, positive if increasing and zero if there were no changes. Each of the
single parameters S3; may be thought of as a measure for the rate of change over time of mode i
frequency relative to that of driving alone.

Since the vector of estimates 8 is approximately normal with an approximate covariance matrix
given by V nfidence intervals may be calculated using the covariances supplied by V. For
se(B1) = y/ vir(B), where var(f,) is the diag nal element of V which estimates var()), then a
(1 — @) 100% confidence interval for g is ﬂl —Z,,/zse(ﬂl) IBl +za/zse(,31)) Thus, a (1 —a)
100% confidence interval for exp B, the factor by which u; changes between consecutive waves, is

(CXP{f}l - Zu/zse(/él)], exp[ﬁl + Za/zse(ﬁl)})-
Similar confidence intervals for exp{g; + B3;} are
/ ~ A A A A A A A
'.\exP[ﬂl + B3i — zas25e(B1 + ﬂsi)}, CXplﬁl + Bsi + zaj2se(Br + ﬂ3i)}),

where,

se(B + Ban) = / VAr(B) + Var(Bs) + 2eon(Br, B,

The change in SOV mean worktrip frequency between the fourth and first waves may be expressed
as exp{(4 — 1)1}, and exp{(4 — 1)(B1 + B3;)} for modes 2, 3, or 4. The respective confidence
intervals are

(exp[3/§1 - za/zse(3f§1)], exp[331 + Za/256(3l§1)})

and
(CXP{3(31 + B3i) — zap25e(3(B1 + 331'))], eXP{3(A§1 + Bi) + zaj25e(3(B1 + 53:‘))])
where
se(3f§1) = ~/§se(31)
and

56(3(51 + 53:’)) = \/3_53(31 + 33.f)-

Finally, it is important to also note the limitations of this study. First, survey participants were
randomly selected using a stratified sampling protocol based on mode use proportions derived
from previous research (for additional details see Murakami and Watterson, 1990). Respondents
were recruited using three methods: random telephone digit dialing, contacting prior participants
in the Seattle Metro transit surveys, and solicitation of volunteers on randomly selected bus
routes. The random telephone digit dialing method was the primary way of collecting participants
who drive alone or carpool. The latter two methods target transit users. The sample groups were
obtained separately and controlling for the proportion of transit users, therefore, it is not appro-
priate to use this data to compute regionwide mode proportions. Moreover, to conclude that the
results of the analysis applies to the general population, the probability of returning travel diaries
in all four waves must be assumed independent of travel behavior.

5. RESULTS

Table 3 presents the results for the model specified in eqn (7). Notice that the robust standard
errors from V are generally smaller than those obtained from naively assuming an independence
correlation structure, allowing detection of more significant effects. Both the wave and the wave by
mode3 terms (corresponding to the coefficients B; and fs3) are significant while the wave by mode2
and wave by mode4 terms (corresponding to the coefficients B3, and Bi4), are not. These results
imply that: (1) the mean frequency of single occupancy vehicle (SOV) worktrips is increasing
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Table 3.
Variable Coefficient Naive SE Robust SE t-ratio
Intercept 0.67 0.05 0.04 18.75*
Wave 0.05 0.02 0.01 4.16*
Mode?2 ~1.81 0.14 0.13 -13.61*
Mode3 ~2.05 0.17 0.16 —-13.15*
Mode4 ~2.67 0.21 0.20 -13.29*
Wavexmode2 0.01 0.05 0.05 0.27
Wavexmode3 -0.15 0.07 0.05 —~3.03*
Wave xmode4 -0.03 0.08 0.07 -0.42

*P<0.05, n=8304.

significantly between waves; (2) the rates at which the mean frequencies of HOV-pools and non-
motor worktrips change over time are not statistically different from the rate of increase in the mean
frequency of SOV worktrips; and (3) conversely, the rate at which the mean frequency of the
HOV-transit worktrips changed over time is statistically different than the rate of change in the
frequency of SOV worktrips (t = —3.0, P<0.05). Moreover, this rate of change 8; + B3 is esti-
mated as —0.1, indicating an overall decrease in the mean frequency over time.

Generally, wave effects are reflected by the t-ratios for the wave-related coefficients, B, B3z, B33
and Bis, however, examination of these coefficients alone gives only a partial indication of the
overall travel trends. More usefully, the full parameters of the model can be used to estimate mean
trip frequencies. Table 4 shows the estimated mean frequencies for the four modes for waves 1 and
4 along with estimates of the rate of increase in terms of percentage increase (PI) and their confi-
dence intervals.

The results are consistent with the coefficients and their #-ratios given in Table 3, but provide
additional insight. With 95% confidence, the mean number of worktrips made by driving alone
significantly increased from wave 1 to wave 4 (1989-93); the 95% C.I. indicates that the rate of
percent increase was between 8.2 and 24.5%. The ranges for rates of change in HOV-pool and
non-motor worktrip frequencies overlap with the range for SOV rate of change, corresponding to
the insignificant ¢-ratios for the wave by mode coefficients for these modes; thus, it cannot be said
that rate of change for these modes was significantly different from the SOV rates of change.
Moreover, the confidence intervals for percent increase in frequencies for HOV-pool and non-
motor trips overlap zero, indicating that no significant change in frequencies of trips by these
modes was found.

Although these results are inconclusive in determining whether the trip frequencies for these
modes changed, with 95% confidence we can say that the mean frequency of the HOV-pool trips
did not decrease by more than 7.72% nor increase by more than 58.10%. Likewise, with 95%
confidence, the mean frequency of non-motor trips did not decrease by more than 27.11% nor
increase by more than 56.35%. Conversely, the rate of change in the mean frequency for HOV-
transit is not only below the range for SOV trips (as is consistent with Table 3) but also suggests an
estimated overall negative rate of change; with 95% confidence, the rate of percent decrease was
between 2.88 and 44.0%.

The generalized linear model used above for the GEE naturally extends to include additional
covariates. The design matrix X and coefficient vector are both augmented to include the effects
represented by the additional terms. Analogous to ordinary regression modeling, when the interest

Table 4.

Wave 1 frequency Wave 4 frequency Increase factor Percent increase PI: 95% (lower) PI: 95% (upper)

Sov 2.04 2.37 1.16 16.07 8.20 24.51
HOV-pools 0.34 0.41 1.21 20.79 -7.72 58.10
HOV-transit 0.23 0.17 0.74 —26.26 ~44.00 -2.88
Non-motor 0.14 0.15 1.07 6.75 =27.11 56.35

The fitted mean frequencies of worktrips per two consecutive weekdays for wave 1 and wave 4, and the percent increase
between the two waves.
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Table 5.
Variable Coefficient Naive SE Robust SE t-ratio
Intercept 0.50 0.10 0.07 7.20*
Wave 0.09 0.04 0.03 3.39*
Mode2 -1.77 0.28 0.27 —6.56*
Mode3 . -1.63 0.27 0.24 -6.94*
Mode4 -2.66 0.40 0.45 —5.92*
Income 0.24 0.12 0.08 2.85*
Wave xmode2 -0.07 0.11 0.10 -0.67
Wavexmode3 —0.08 0.11 0.08 -1.03
Wave xmoded -0.02 0.16 0.19 -0.08
Wave xincome -0.06 0.04 0.03 -1.87
Mode2 xincome -0.03 0.32 0.31 -0.09
Mode3 xincome —-0.71 0.35 0.33 -2.18*
Moded xincome -0.02 0.47 0.51 -0.04
Wavexmode2 xincome 0.09 0.13 0.11 0.86
Wave xmode3 xincome -0.04 0.14 0.11 -0.37
Wave xmoded xincome -0.01 0.18 0.20 -0.07

*P<0.05, n=8304.

lies in determining whether or not the values of other covariates are associated with changes in
mode frequencies by wave, interaction terms are constructed and included in X and 8.

5.1. Income effects

To test the effects of income, the subjects were identified as having household incomes either
greater than or less than $35,000 (the median King County income) and a categorical covariate,
Income, was added to the model to assess mode frequencies between the two income groups. This
model was fitted with all possible interactions between the three factors: Wave, Mode and Income.
Table 5 presents the coefficients and their z-ratios.

One striking result is that the two-way interaction between Wave and Mode3 is no longer sig-
nificant; however, the Wave term is still significant. With all other covariates held fixed, the rate at
which the mean frequency of HOV-transit worktrips changed over time is not statistically different
than the rate of change in the mean frequency of SOV worktrips. In the earlier analysis, without
the income variable, the interaction effect reveals an overall trend in the PSTP sample for a
tendency to make proportionally more SOV worktrips and fewer HOV-transit worktrips. In this
analysis, the effect of the two-way interaction between wave and mode is interpreted in the
presence of income. For households with unchanging income status, there is an increasing number
of SOV worktrips over time (the Wave term is positive and significant) while the rates of change in
worktrip frequencies over time observed for the remaining modes are not significantly different
from the increase observed for SOV. This can be observed in Tables 6 and 7, where the incomes

Table 6.
Wave 1 Wave 4 Increase Percent PI: 95% PI: 95%
frequency frequency factor increase (lower) (upper)
sov 1.79 2.34 1.30 30.44 11.87 52.10
HOV-pools 0.28 0.30 1.0& 5.68 —41.23 90.06
HOV—transit 0.32 0.33 1.01 1.47 -33.10 53.91
Non-motor 0.12 0.15 1.25 24.63 —57.07 261.79
Table 7.
Wave 1 Wave 4 Increase Percent PI: 95% PI: 95%
frequency frequency factor increase (lower) (upper)
Sov 2.16 2.37 1.10 9.80 0.89 19.51
HOV-pools 0.36 0.43 1.18 18.04 -12.00 58.35
HOV-transit 0.18 0.14 0.75 ~24.81 —49.86 12.76

Non-motor 0.14 0.14 1.01 0.67 ~33.17 51.64




30 Julie L. Yee and Debbie A. Niemeier

Table 8.
Lifecycle group Sample size
(1) Any child, less than 6 yr 1284
(2) All children, between 617 yr 2516
(3) 1 adult, less than 35 yr 156
(4) 1 adult, 35-64 yr 704
(5) 1 adult, 65 yr or greater 52
(6) 2 or more adults, less than 35 yr 204
(7) 2 or more adults, 35-64 yr 3192
(8) 2 or more adults, 65 yr or greater 196

are examined separately,* by noticing that the confidence intervals for percentage increase for
mode | are greater than zero but also overlap with each of the confidence intervals of the other
modes, which are not statistically different from zero. The tables also suggest that respondents
with higher incomes generally make more worktrips by all modes except for HOV-transit, in which
they make considerably fewer trips.

The statistical significance of the two-way interaction between mode3 and income hints at the
difference between the two analyses with regard to the changes in HOV-transit use over tirne. The
analysis indicates that HOV-transit mode use frequencies differ between the income groups; as
might be expected, respondents with household incomes greater than $35,000 make fewer work-
trips by HOV-transit. Since, by definition, we are looking at the same households over each of the
four waves, this implies a possible increase in the number of households earning greater than
$35,000 vice versa. Goulias and Ma (1996) have shown that PSTP household incomes increased
between 1989-93. As respondents moved from one income group to the next, their use of both
HOV-transit and SOV modes for worktrips changed. For respondents remaining in the same
income group for each of the four waves, only SOV mode use increased significantly.

Including income and all possible interactions in one model effectively results in a separate
model for each of the two groups (i.e. each of the Intercept, Wave, Mode, and Wave by Mode terms
are all adjusted by the indicator variable, Income). Alternatively, the analysis was performed using
separate income groups, with two models estimated. Both analyses are similar in that they estimate
the parameters of the same pairs of models. However, in the former (aggregated) analysis, the
covariance is assumed homogeneous over the entire dataset. In the latter (separated) analysis, this
assumption is not necessary since it fits separate covariances for each income group.

5.2. Lifecycle type effects

The analysis was repeated with the covariate household type (lifecycle group). The eight groups
lifecycle types are listed in Table 8.

To study the effect of Wave for each group in an aggregated analysis involves a model with
64 coefficients and creates computational difficulties. As an alternative, the analysis was run
separately for the eight household lifecycle groups. The total sample was divided into eight sub-
samples by lifecycle group using the same analysis technique as noted for income. Results for
household types 5 and 8, consisting of adults older than 65 years, failed to converge. These
households tend to make fewer worktrips and accordingly, have estimated means close to zero;
Poisson data close to zero have variances approaching zero and consequently, not infrequently a
near-singular covariance matrix.

The remaining lifecycle groups reveal heterogeneous travel patterns. For lifecycle 1 (households
with a child less than 6 years old), there was a significant increase only in the mean HOV-pool use
(Table 10), increasing at a rate between 5.19 and 225.93%. The large variances in this subgroup
might be attributed to within group heterogeneity. There appears to have been an increase in use
of HOV-transit as well (~53%), but this increase is not statistically significant at the type I error
level of 0.05.

*To examine incomes separately, the sample is divided according to income classifications for analyses. For those subjects
whose income classification changed during the four waves, the portion of their data vector corresponding to the period
in which they made less than $35,000 was included in the analysis for incomes less than $35,000, and the remaining
portion was included in the over $35,000.
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Table 9.
Variables Coefficients Naive SE Robust SE t-ratio
Intercept 0.75 0.12 0.09 8.76*
Wave 0.05 0.04 0.04 1.10
Mode2 -2.25 0.33 0.34 ~6.58*
Mode3 -2.88 047 0.46 ~6.28*
Mode4 -2.57 0.48 0.49 —5.21*
Wavexmode2 0.16 0.12 0.11 1.41
Wavexmode3 0.09 0.17 0.13 0.70
Wavexmoded -0.11 0.19 0.20 -0.55
*P<0.05.
Table 10.
Wave | Wave 4 Increase Percent PIL: 95% PIL: 95%
frequency frequency factor increase lower bound upper bound
SOV 2.22 2.57 1.15 15.47 -10.70 49.32
HOV-pools 0.27 0.51 1.85 85.16 5.19 22593
HOV-transit 0.14 0.21 1.53 53.27 -25.14 213.79
Non-motor 0.15 0.13 0.83 —-17.15 -72.76 152.03

For lifecycle 2, households with all children between the ages of 6 and 17, the only significant
change was an increase in SOV worktrips of a rate between 6.23% and 39.26% (Table 12). Mean
worktrip frequencies for the other modes did not significantly change.

Households with one adult less than 35 years old, lifecycle type 3, had a tendency towards
reduced use of non-motor vehicles for worktrips with a decrease of 87.97-95.41%. There were no
significant changes with the other mode frequencies although there was a marginally significant
reduction in HOV-pools (a 90% CI for the percentage of decrease of worktrips by HOV-pools
would be 17.10-88.8%).

For lifecycle group 4, households with 1 adult between 35 and 64 years old, no significant wave
effects were found. This was a moderately sized sample at 704, much larger than the groups of 156
and 204 represented by two other groups in this study, both of which had a sufficiently large

Table 11.
Variables CoefTicients Naive SE Robust SE t-ratio
Intercept 0.62 0.01 0.07 8.68*
Wave 0.07 0.03 0.02 2.84*
Mode2 -1.58 0.25 0.25 -6.41*
Mode3 ~2.20 0.33 0.33 —6.67*
Mode4 -291 041 0.54 —5.36*
Wavexmode2 -0.09 0.09 0.09 -0.99
Wavexmode3 -0.12 0.12 0.11 -1.01
wave xmoded 0.04 0.14 0.19 0.20
*P<0.05.
Table 12.
Wave 1 Wave 4 Increase Percent PL: 95% PIL: 95%
frequency frequency factor increase lower bound upper bound
Car (alone) 1.98 241 1.22 21.63 6.23 39.26
HOV-pools 0.37 0.35 0.93 -7.50 —44.75 54.86
HOV-transit 0.20 0.17 0.86 -14.16 -54.27 61.11

Non-motor 0.11 0.15 1.36 —36.23 -53.01 295.97

TR(B) 32:1-8
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Table 13.
Variables Coefficients Naive SE Robust SE t-ratio
Intercept 0.67 0.29 0.17 3.94*
Wave 0.00 0.11 0.06 0.05
Mode2 -1.57 0.94 0.76 --2.06*
Mode3 -2.19 1.11 1.65 -1.33
Mode4 -2.04 1.72 0.99 -2.07*
Wavexmode2 -0.40 0.44 0.23 -1.1
Wavexmode3 -0.26 0.49 0.53 -0.48
Wave xmode4 -0.87 1.01 0.09 --9.38*
*P<0.05.
Table 14.
Wave 1 Wave 4 Increase Percent PL: 95% PIL: 95%
frequency frequency factor increase lower bound upper bound
Car (alone) 1.97 1.98 1.01 0.94 -29.48 44.48
HOV-pools 0.27 0.08 0.30 —69.53 -90.73 0.15
HOV-transit 0.17 0.08 0.47 —53.09 -97.68 850.12
Non-motor 0.11 0.01 0.07 -92.57 -95.41 —87.97
Table 15.
Variables Coefficients Naive SE Robust SE t-ratio
Intercept 0.59 0.18 0.13 4.45*
Wave 0.05 0.06 0.04 1.36
Mode2 -2.18 0.58 0.45 —~4,37*
Mode3 -1.11 0.40 0.44 ~2.51*
Mode4 -3.03 0.70 0.69 —4.39*
Wavexmode2 -0.03 0.20 0.16 —0.18
Wavexmode3 -0.17 0.15 0.14 -1.21
Wavexmode4 0.24 0.22 0.20 1.16
*P<0.05.
Table 16.
Wave 1 Wave 4 Increase Percent PL: 95% PL: 95%
frequency frequency factor increase 1. bound u. bound
Car (alone) 1.90 2.23 1.18 17.84 -7.05 49.40
HOV-pools 021 0.22 1.08 7.70 -56.34 165.70
HOV-transit 0.53 0.38 0.72 —-28.45 —62.93 38.11
Non-motor 0.12 0.28 2.41 140.78 -26.73 691.20
Table 17.
Variables Coefficients Naive SE Robust SE t-ratio
Intercept 042 0.24 0.19 2.18*
Wave 0.22 0.10 0.07 3.31*
Mode2 -1.56 0.60 0.58 -2.71%
Mode3 -2.37 1.15 0.88 —2.69*
Moded -2.06 0.92 0.77 —2.66*
Wavexmode2 -0.07 0.25 » 0.26 -0.27
Wavexmode3 -0.41 0.56 0.18 —2.32*
Wavexmoded -0.33 0.43 0.19 —1.68

*P<0.05.
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Table 18.
Wave 1 Wave 4 Increase Percent PI: 95% PL: 95%
frequency frequency factor increase lower bound upper bound
Car (alone) 1.89 3.61 1.92 91.50 30.34 181.36
HOV-pools 0.37 0.58 1.56 56.99 -56.07 453.93
HOV-transit 0.12 0.06 0.56 ~44.30 -78.11 41.69
Non-motor 0.17 0.12 0.72 -28.12 ~75.60 111.77
Table 19.
Variables Coefficients Naive SE Robust SE t-ratio
Intercept 0.67 0.09 0.07 9.93*
Wave 0.03 0.03 0.02 1.42
Mode2 -1.70 0.22 0.20 —8.41*
Mode3 -1.74 0.28 0.26 —6.72*
Mode4 -2.42 0.33 0.30 —8.10*
Wavexmode2 0.03 0.08 0.08 0.43
Wavexmode3 -0.30 0.11 0.09 —3.29*
Wave xmoded -0.09 0.12 0.11 —0.82
*P<0.05.
Table 20.
Wave 1 Wave 4 Increase Percent PIL: 95% PI: 95%
frequency frequency factor increase lower bound upper bound
Car (alone) 2.03 2.24 1.11 10.75 -3.80 27.51
HOV-pools 0.38 - 0.47 1.23 22.66 —19.65 87.26
HOV-—transit 0.26 0.12 0.45 ~55.25 —72.76 —26.48
Non-motor 0.16 0.14 0.85 -15.21 -53.82 55.67

enough sample size to detect changes between waves. Since the standard errors are relatively large,
this suggests the group was very heterogeneous in their travel behavior (Tables 15 and 16).

For lifecycle group 6, households with more than two or more adults less than 35 yr, there was
an increased use of worktrips made by driving alone with the percentage increase estimated to be
between 30.34 and 181.36% (Table 18). The other modes did not have significantly different
worktrip frequencies over the waves.

For lifecycle group 7, households with more than one adult between 35 and 64 yr old, there was
a significant decrease, between 26.48 and 72.76%, in use of HOV-transit. The other mode fre-
quencies show no statistically significant change (Table 20).

6. CONCLUSIONS

In conclusion, there was an increase in the number of worktrips made between 1989 and 1993
and these were marked by increasing use of single occupancy vehicles. HOV-transit mode use
simultaneously declined, an effect apparently associated with the increasing income of the popu-
lation. The two income groups defined by those making greater or less than $35,000 exhibited
comparable mode use behavior with the exception of HOV-transit. Particularly, people in both
income brackets tended to make increasingly more SOV trips as wave increased, however, people
in households with the higher income bracket made fewer worktrips overall by HOV-transit than
individuals in household’s in the lower income bracket. When considering the factor by lifecycle
group, it was found that different household types varied. The following summarizes the signifi-
cant changes with wave: households having all children between 6 and 17 or households having
two or more adults less than age 35 made increasingly more worktrips by car over time; house-
holds with a child less than 6 years old made increasingly more trips by HOV-pool over time;
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households with more than one adult between 35 and 64 yr made increasingly fewer worktrips by
HOV-transit over time; and households with one adult less than 35 years made increasingly fewer
non-motor worktrips over time.

The full parameters of the model were also used to estimate the rate of increase in terms of PI
and their confidence intervals. These results suggest that the mean number of SOV worktrips sig-
nificantly increased from wave 1 to wave 4 with a 95% C.I. for the rate of percent increase of
between 8.2 and 24.5%. The rates of change in HOV-pool and non-motor worktrip frequencies
overlap with the range for SOV rate of change, and thus, it cannot be said that rate of change for
these modes was significantly different from the SOV rates of change. The rate of change in the
mean frequency for HOV-transit is not only below the range for SOV trips but also suggests, with
95% confidence, the rate of percent decrease was between 2.88 and 44.0%.
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