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Traveling Nanoscale Structures in Reactive Adsorbates with Attractive Lateral Interactions
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A novel type of traveling structures in surface chemical reactions is presented. These structures,
resulting from the competition between reactions, diffusion, and the phase transition caused by attractive
lateral interactions between adsorbed particles, are predicted to exist on submicrometer and nanometer
scales. We show that internal fluctuations lead to a complex dynamics of interacting wave fragments
in this system. [S0031-9007(98)07180-4]

PACS numbers: 82.20.Wt, 05.45.+b, 47.54.+r, 82.65.Jv

The formation of stationary microstructures is often In the present paper we show that a wave bifurcation
found in systems with potential interactions between parean lead to the formation of traveling submicrometer and
ticles. Atequilibrium, such structures typically result from nanoscale structures in surface chemical reactions with
the competition between short-range attractive and longsufficiently strong attractive lateral interactions between
range repulsive interactions [1]. Transient microstructureddsorbed particles. We consider a hypothetical model sys-
phases spontaneously develop in systems undergoing spiem with two adsorbed specie& @ndV) that participate
odal decomposition [2,3]. They can be stabilized by intro-in the nonequilibrium annihilation reactioti + V — 0.
ducing nonequilibrium reactions, as has been seenin mod&he reaction product immediately escapes the surface,
simulations of phase-separating reactive binary mixtureteaving two free surface sites. The particlesand V
[4] and in experiments with polymer blends [5]. occupy different sets of adsorption sites. Both species are

A special property of systems far from thermal equilib- continuously supplied by adsorption from the gas phase.
rium is that, besides stationary structures, they may shoWhe particlesV are so strongly chemisorbed that they
oscillations, turbulence, and various wave patterns [6]do not desorb thermally and cannot laterally move across
Much attention has been paid to studies of traveling wavethe surface. On the other hand, the partidlesre only
in various excitable media, including surface chemi-weakly bound to the substrate; they are highly mobile and
cal reactions [7]. Traveling waves can also softly branctcan desorb. An essential property of the model is that it
from the homogeneous stationary state through a Hopf bincludes potential interactions between the particles. We
furcation with a broken translational symmetry (we call it assume that particleg are strongly attracting each other
the “wave bifurcation”). Wave bifurcations have alreadyand, in the absence of the other spedieghis adsorbate
been found in various problems, such as binary-fluid conwould undergo a first-order phase transition. The par-
vection [8] or electrically driven nematic liquid crystals ticles of the second speci&sare attracted to particles
[9]. The detailed mathematical analysis of pattern sebut do not interact among themselves. Assuming linear
lection and modulational instabilities in the postbifurca-transition rates, the following mesoscopic evolution equa-
tion regimes has been performed [10—12], and the role dfons for the fluctuating coveragesand v are obtained

noises in these regimes has been discussed [13]. (cf. [17]) for this system:
Interactions between adsorbed atoms and molecules on
metal surfaces are often mediated through the substrate, — = k" p,(1 — u) — k' o\(W)u — k,uv + DV?u

and their range can extend from several angstroms to
several nanometers [14]. As has been observed in recent
scanning tunneling microscopy experiments [15], such
attractive interactions may be strong enough to induce
nanoscale phase separation. Earlier we developed a meso-— = ky;p,(1 — v) — k,uv + &,(r,1).

scopic theoretical approach for the description of reactive

adsorbates with potential interactions between particleblere k;q and k., are the sticking coefficients of the
involving nonlinear nonlocal Langevin evolution equa- speciesU andV, p, and p, are their constant partial
tions for fluctuating adsorbate coverages [16,17] (see alspressures in the gas phase, is the reaction rate con-
[18]). This mesoscopic approach has been applied by us &tant, D is the diffusion constant of the mobile species
study the motion of interfaces and spontaneous nucleatioti, andT is the temperature. The desorption rate coeffi-
in nonreactive adsorbates undergoing a first-order phasgent k4.,(W) for the particles of typd/ depends on the
transition [17]. It has also been used to investigate théocal potentialW(r) as kj.s(W) = kgj.s exdW(r)/kgT].
formation of stationary microstructures of different mor- This potential acting on adsorbed particl€s results
phologies in adsorbates with chemical reactions [19].  from attractive pairwise interactions with surrounding

+ V|:/<B£T u(l — u)VW(r):| + &,(r,t), (1)
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molecules of the specidé andV and is given byW(r) = U also contains a term describing a drift of this adsorbed
— [wuu(r = )u()dr’ — [w, (@ — r)v(r’)dr’. For species in the gradient of the local potential.

simplicity we assume that both binary interactions have The internal noiseg,(r,t) and &,(r,¢) in the meso-

the same radiug,, although their strengths are differ- scopic equations (1) take into account fluctuations of
ent. The interactions are therefore described by funcadsorption, desorption, reaction, and diffusion processes
tions wy,(r) = W0,/ 7rd) exp(—r2/r3), and w,,(r) =  which are defined as discrete stochastic processes on the
(wgv/wg) exp(—rz/rg). We note that, besides the dif- underlying lattice and are described by the respective
fusion term, the evolution equation for the mobile speciesnicroscopic master equation for joint probability distribu-

| tions (see [17]),

&, t) = 272k (1 — w) faa(r,t) + Z7 V2 kfosu exdW () /kpT] faes(r, 1)
+ 7272k, uv Greact(r, 1) + Z7V2V[Du(1 — u) £(r,1)], (2
&, 1) = 272V kia(1 = 1) gaa(r. 1) + Z7 2kt Greaer (v, 1) .

All these noises are proportional # /2, whereZ is the | part of the eigenvalues, of the corresponding Jacobian,
lattice density, i.e., the number of lattice sites per unitbecomes positive for a mode with a certain wave number
surface area of the metal substrate. Heiges 1/+/Zis k. Figure 2 shows the largest real part and the respective
the atomic lattice length representing an important microtmaginary part of\; near the instability point. We see that,
scopic parameter of the problem. Note that the mesoscopino contrast to the standard Turing bifurcation, the first un-
evolution equations are derived through coarse grainingtable mode has a finite oscillation frequency. This is the
of the microscopic master equation over area elementsharacteristic property of the wave bifurcation (see [11]).
containing a large number of lattice sites but still small if In the limit po — 0 the instability boundary of the
compared with the interaction radiug. It is therefore uniform phases is determined by the condition= up,
applicable only if the conditiomy > [, is satisfied [17]. whereup = (1 — /1 — 4/e)/2. As the reaction rate
The random force$, faq, fdes, 8ad» 83NAGreact IN EQS. (2)  constant is increased, the instability first develops in a
represent independent white noises of unit intensity; i.e.small region close to the critical cusp point in the parameter
we have ( faa(r, 1) faa(®, 1)) = { faes(r, 1) faes(x', 1)) = plane(e, @). Subsequently, the instability region grows
(Greact (s 1) Greact (¥, 1)) = ( f(x, 1) f (x',¢)) =(f,(r,1) X and spreads over a large part of this parameter plane.
fy(® 1) =(gaa(r,1)gaa(r’, ")) =6(r —x')6(r — '), and  As an example, Fig. 1 shows the instability boundaries in
(fx(r,0)f,(x’,1))) = 0. The reaction-related noises in the limit pyo — 0 in this case. When the dimensionless
the equations for the coveragesand v are identical interaction radiug, is sufficiently small, the wave number
because each annihilation event simultaneously changeg of the first unstable mode is approximately given in the
the numbers of particles of both species.

To simplify the analysis, we measure time in units of
the mean surface residence tirfig,,) ! of particlesU. 14
The surface coordinates are measured in units of the char-
acteristic diffusion lengthL,, = +/D/kg.s of particles 2| I
U with respect to their desorption. The studied system
is then characterized by several dimensionless parame- 0l v I
ters a = kygpu/kdes: & = kr/kaapu, B = kaapv/kr, w
&= Wgu/kBTf g = ng/kBTv ande = rO/Ld,u- | \\

We consider first the phenomena described by Egs. (1) \
in the deterministic limit, neglecting fluctuations. The | N
stationary uniform statest = up and v = vy of this 1 ~
system are obtained in terms of the dimensionless parame- . D
ters by solving the equatiom[1 — u — kuvo(u)] — 0.00 0.01 0.02
uexd—eu — e'vo(u)] =0, where v = vy(u) = 8/ o
(B + u). Inside the cusp region shown by the solid curver|G. 1. Bifurcation diagram in the parameter plaea) for
in Fig. 1, the system has a dense and a dilute uniformre’ = 3, 8 = 3, andx = 1. Two uniform states of the system
phase. Outside that region, it has only one uniform phasére found inside the cusp shown by the solid curve. The dashed

The stability of these uniform states is tested by adding#'ne corresponds to the wave bifurcation in the linpig — 0.

I ol turbati ith baand n region | the system has a single uniform phase, in Il a single
small plane-wave perturbations with wave NUMBEANd e “of traveling wave train is found, in Ill one uniform low-

linearizing Egs. (1). At the instability boundary, the density state coexists with wave trains, and in IV two different
growth rate of these perturbations, i.e., the largest redpes of traveling wave trains coexist.
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FIG. 2. Dispersion relationfot = 5,8’ = 3,8 =3,k = 1,
a = 0.01, and ry = 0.01Lg;. The bold solid line shows
Re()A;), and the dashed line displays the imaginary partAlm
as functions of the wave numbgr

FIG. 3. Formation of coherent traveling wave patterns at
e =25, g = 3, k=1, ,8 =3, a=0.,, and ro = 0.07Lgiss.
Snapshots (a), (b), and (c) correspond to time moments:
(@) t = 18/kjes; (b) t = 45/kgss; (C) t = 72/kies. The tem-
poral evolution in (d) is displayed during the time interval
18/kies < t < 85/kg.s in the one-dimensional cross section in-
nonrescaled units by dicated by the vertical dashed lines in the snapshots. The total
size of the system i& = 4.2L4¢. The local surface coverage

ko = Zl/z(suDvD + B+ ”D)1/4(7”0Ldiff)7l/2’ (3)  of the specied/ is shown in gray scale, with darker areas cor-

responding to higher coverages.

where the characteristic diffusion length of the reaction

Lgirr = D/k, and the notationvp = 8/(8 + up) are
introduced. standing waves are formed [Fig. 3(a)]. Later, however,
The analysis of the bifurcation diagrams shows that ahe standing waves evolve into planar wave trains traveling
minimum reaction rate and a small enough interaction raat a constant velocity. These wave trains tend to form a
dius are necessary in order to observe the considered instgeriodic pattern containing pointlike defects. Note that the
bility. Furthermore, when the characteristic intengitpf  characteristic scales of this wave pattern can be very small.
the cross-species interactions is decreased, a codimensidn-this simulation the interaction radiusis = 0.07Lgis¢,
2 bifurcation is found atel;,. For sufficiently small and the resulting characteristic wavelength of the wave
po this critical value is approximately given by train is about0.75Lgi¢, i.€., shorter than the diffusion
ebie = 28(B2vp” + up)Lgt(kd + k2)7!, where k, =  length of the system. It can be made even much shorter
22[up /(1 — up) — upvh/B1*(roLaier) "> is the by further decreasing the interaction radius [cf. Eq. (3)].
critical wave number at the Turing bifurcation. At weaker Generally, selection and stability of patterns above the
cross interactions between the two species, the instabilitwave bifurcation can be studied by means of coupled
leading to stationary microstructures is first taking placedynamical equations for the amplitudes of interacting
Indeed, in the limit whend — « and ¢’ = 0, the con- unstable modes representing left- and right-propagating
sidered system reduces to the previously studied mod&laves [10—12]. Depending on the coefficients of these
where only stationary microstructures were possible [19].equations, the system forms either standing or traveling
We have performed numerical simulations of the deterwaves. Moreover, the patterns may also be unstable with
ministic system in the unstable region fgr> ¢/, using respect to a modulational instability. We have derived
periodic boundary conditions. Our one-dimensional simuin the one-dimensional case the amplitude equations for
lations reveal, in this case, the development of periodithe considered system when thermal desorption of the
wave trains traveling at a constant velocity. Figure 3 disspeciesU is absent and have analytically determined
plays the results of a typical two-dimensional simulationthe coefficients of these equations. This analysis shows
in the absence of fluctuations, starting with small randonthat there are large regions in the parameter space where
perturbations added to the unstable homogeneous phagke bifurcation is supercritical. In these regions the
Three snapshots [Figs. 3(a), 3(b), and 3(c)] show the counteraction between the modes leads to the selection of
erage distribution of the specid$ at different selected traveling waves which are stable with respect to spatial
time moments in the entire system. To characterize thenodulations of their amplitudes. Thus, the results of this
dynamic behavior of the patterns, Fig. 3(d) presents thereliminary study support our numerical findings.
temporal evolution along the cross section shown by The traveling patterns can be much smaller than the
the dashed lines in these three snapshots. characteristic diffusion length which itself may be on
It can be seen that, at the early stage of evolution fronthe submicrometer scale. In such a situation only a
the unstable uniform state, irregular patterns of distortedelatively small number of adsorbed particles contributes
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that similar mechanisms may produce traveling nanoscale
structures in other soft matter far from equilibrium. Such
extremely small traveling structures would fit perfectly into
the characteristic dimensions of a single biological cell
and may therefore play an important functional role by
providing additional possibilities for information transfer
and intracellular transport of particles (see also [21,22]).
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