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Abstract: In this work, we consider the (3+1) dimen-

sional conformable fractional Zakharov-Kuznetsov equa-

tion with power law nonlinearity. Solitary wave solutions,

soliton wave solutions, elliptic wave solutions, and peri-

odic (hyperbolic) wave rational solutions are obtained by

means of the unified method. The solutions showed that

this method provides us with a powerful mathematical

tool for solving nonlinear conformable fractional evolu-

tion equations in various fields of applied sciences.

Keywords: The unified method; Power law nonlinearity;

Conformable fractional derivative; Traveling wave solu-

tions

1 Introduction

Nonlinear fractional partial differential equations (FPDEs)

showa rich variety of nonlinear phenomena, arise inmany

physical and engineering applications like geophysical

fluid mechanics, fluid mechanics, plasma physics, super-

conductivity, and optics. Therefore, seeking exact solu-

tions of nonlinear FPDEs specifically the nonlinear frac-

tional evolution equations (NLFEEs) plays an important

duty in the study of nonlinear physical phenomena [1–9].

It is significant to find new solutions, since either new ex-

act solutions or numerical approximate solutionsmaypro-

videmore information for understanding thephysical phe-

nomena. For an overview and recent developments of the
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local approach to fractional calculus we refer the reader to

[10, 11] and references therein.

Very recently, Khalil et al. [12] suggested a conformable

fractional derivative. The new fractional derivative is very

interesting and is getting an increasing of interest [13–

17]. The conformable fractional derivatives didn’t have

a physical meaning as the Caputo or Riemann-Liouville

derivatives. This situation is a general open problem

for fractional calculus. Despite this many physical ap-

plications of conformable fractional derivative appear in

the literature. Dazhi Zhao and Maokang Luo general-

ized the conformable fractional derivative and give the

physical interpretation of generalized conformable deriva-

tive [18]. In addition, with the help of this fractional

derivative and some important formulas, one can con-

vert conformable fractional partial differential equations

into integer-order differential equations by traveling wave

transformation [19]. Later on, many researchers estab-

lished exact traveling wave solutions of various non-

linear fractional evolution equations via this fractional

derivative. For example, Eslami [20] solved nonlinear frac-

tional coupled nonlinear Schrodinger equations by us-

ing the Kudryashov method. Kaplan [21] proposed the

modified simple equation method and the exponential

rational function method to solve the nonlinear con-

formable time-fractional Boussinesq equation. Korkmaz

[22] appliedmodified Kudryashovmethod to obtain the ex-

act solutions of the the (3+1) conformable time-fractional

Jimbo-Miwa, Zakharov-Kuznetsov andModified Zakharov-

Kuznetsov equations. Aminikhah et al. [23] used the sub

equation method to obtain the exact solutions of the

fractional (1+1) and (2+1) regularized long-wave equations

which arise in several physical applications, including ion

sound waves in plasma. Rezazadeh et al. [24, 25] con-

cerned about the same method for obtaining traveling

wave solutions for the conformable fractional generalized

Kuramoto-Sivashinsky equation and fractional Zakharov-

Kuznetsov equation with dual-power law nonlinearity.

Tariq et al. [26] investigated the new exact solutions of a

nonlinear evolution equation that appear in mathemati-

cal physics, specifically Cahn-Allen equation by applying
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tanh method. Akbulut et al. [27] obtained exact solutions

for (2+1)-dimensional time-fractional Zoomeron equation

and the time-fractional third order modified KdV equa-

tion via the auxiliary equation method. Ekici et al. [28]

proposed the first integral method to study the optical

solitons with fractional temporal evolution in presence of

Hamiltonian perturbation terms governed by three types

of nonlinearity. Cenesiz et al. [29] obtained some exact

solutions for time-fractional Burgers equation, modified

Burgers equation and Burgers-Korteweg-de Vries equation

via the same method. Kurt et al. [30] established some

traveling wave solutions for fractional Nizhnik-Novikov-

Veselov and fractional Klein-Gordon equations via the

Exp-Function Method. Tasbozan et al., [31] solved nonlin-

ear fractional Boussinesq and combined KdV-mKdV equa-

tions by using Jacobi elliptic function expansion method.

Eslami et al. [32, 33] proposed the first integral method

and functional variable method to solve the space-time

fractional Schrödinger-Hirota equation and the space-

time fractional modified KDV-Zakharov-Kuznetsov equa-

tion and fractional Bogoyavlenskii equations, respectively.

Hosseini et al. [34] used the ansatz method to obtain the

exact solutions of the fractional Klein-Gordon equations

with quadratic and cubic nonlinearities. Eslami [35] ap-

plied G′/G−expansion method to obtain the exact solu-

tions of the space-time fractional (2+1)- dimensional dis-

persive longwave equations. Cenesiz et al. [36] applied the

functional variablemethod to obtain the exact solutions of

fractional modified KdV-ZK equation and Maccari system.

Kaplan et al. [37] solved (2+1)-dimensional conformable

time-fractional Zoomeron equation and the conformable

space-time fractional EW equation by using modified sim-

ple equation method.

The aim of this paper is to construct exact traveling

wave solutions of the (3+1) dimensional conformable frac-

tional Zakharov-Kuznetsov equation with power law non-

linearity (for α = 1, see [38])

∂αu

∂tα
+ aun

∂u

∂x
+ b

∂

∂x

(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)

= 0, (1)

by using the unified method.

The unified method (UM) [39–45] and its generalized

form (GUM) [46–51], the generalized unified method, that

introduce a simple algorithm to find the exact solutions

and multi-wave solutions respectively in nonlinear evolu-

tion equations and nonlinear conformable fractional evo-

lution equations both with constant and variable coeffi-

cients.

This paper is organized as follows: In section 2, we re-

call some basic definitions of the conformable fractional

derivative. In section 3, the key idea of our method is de-

scribed. Sections 4 is devoted to the application of the UM

for (3+1) dimensional conformable fractional Zakharov-

Kuznetsov equation. Conclusions are outlined in section 5.

2 Conformable fractional derivative

Here, we introduce some basic properties and definitions

of the conformable fractional calculus theorywhich canbe

found in [12, 13].

Definition 2.1 Let f : (0,∞) → R, then, the conformable

fractional derivative of f of order α is defined as [12]

tD
α f (t) = lim

ε→0

f (t + ε t1−α) − f (t)

ε
, (2)

for all t > 0, α ∈ (0, 1).

If f is α-differentiable in some (0, a), a > 0 and

lim
t→0+

tD
α f (t) exists, then by definition

tD
α
(f ) (0) = lim

t→0+
tD

α f (t).

The new definition satisfies the properties which given in

the following theorem.

Theorem 1 Let α ∈ (0, 1], and f , g be α-differentiable at a

point t, then [12]

(i) tD
α(af + bg) = a tD

α f + b tD
αg, for all a, b ∈ R.

(ii) tD
α(tµ) = µ tµ−α, for all µ ∈ R.

(iii) tD
α fg = f tD

αg + g tD
α f .

(iv) tD
α
(

f
g

)

= g tD
α f−f tD

αg
g2

.

In addition, if f is differentiable, then tD
α f (t) = t1−α df

dt
.

In [13], T. Abdeljawad established the chain rule for

conformable fractional derivatives as in the following the-

orem.

Theorem 2 Let f : (0,∞) → R be a function such that f is

differentiable and also α-differentiable. Let g be a function

defined in the range of f and also differentiable; then, one

has the following rule

tD
α(fog)(t) = t1−αg′(t)f ′(g(t)). (3)

3 The description of the UM

In this section we describe the UM for finding exact solu-

tions of nonlinear conformable fractional evolution equa-

tions.

Consider the following nonlinear conformable frac-

tional evolution equation in two variables and a depen-

dent variable u as

F(u,
∂α u

∂ tα
,
∂ u

∂ x
,
∂ u

∂ y
,
∂2α u

∂ t2α
,
∂2 u

∂ x2
, ...) = 0, t ≥ 0, 0 < α ≤ 1,

(4)



M.S. Osman et al., Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov | 561

where F is a polynomial in its arguments inwhich thehigh-

est order derivatives and nonlinear terms are involved.

To solve Eq. (4), we take the traveling wave transfor-

mation

u(x, y, t) = U(ξ ), ξ = x + y − λ
tα

α
. (5)

This enables us to use the following changes

∂α

∂ tα
(.) = −λ

d

dξ
(.),

∂

∂ x
(.) =

d

dξ
(.),

∂

∂ y
(.) =

d

dξ
(.),

∂2α

∂ t2α
(.) = λ2

d2

dξ2
(.), . . . .

Substituting Eq. (5) into Eq. (4) yields a nonlinear ordinary

differential equation as following

G(U, U′
, U′′

, ...) = 0, (6)

where U = U(ξ ), U′ = dU
dξ
, U′′ = d2U

dξ2
, ... .

The obtained solutions of Eq. (6) by using UM are clas-

sified to be the polynomial function solutions or the ratio-

nal function solutions.

3.1 The polynomial function solution

To get the polynomial function solutions of Eq. (6), UM

suggests that

U = U(z) =

n
∑

i=0

piϕ
i(z),

(ϕ′(z))p =

p k
∑

i=0

ciϕ
i(z), z = α0 t +

q
∑

s=1

αs xs ,

j = 1, 2, ...,m, p = 1, 2,

(7)

where pi, ci, α0, and αs are arbitrary constants to be de-

termined later. It is worth to be noticing that, n and k are

determined from the balance equation by the criteria given

in [39–45]. Also, a second condition (the consistency con-

dition), which asserts that the arbitrary functions in Eq. (7)

could be consistently determined, is used.

When p = 1, (7) solves to elementary solutions (explicit or

implicit) while when p = 2, it solves to elliptic solutions.

3.2 The rational function solution

To get the rational function solutions of Eq. (6), UM sug-

gests that

U = U(z) =

n
∑

i=0

piϕ
i(z)/

r
∑

i=0

qiϕ
i(z), n ≥ r,

(ϕ′(z))p =

p k
∑

i=0

ciϕ
i(z), z = α0 t +

q
∑

s=1

αs xs ,

j = 1, 2, ...,m, p = 1, 2,

(8)

where pi , qi, ci, α0, and αs are arbitrary constants to be de-

termined later. It is worth to be noticing that, n, r and k are

determined from the balance equation by the criteria given

in [39–45]. Also, a second condition (the consistency con-

dition),which asserts that the arbitrary functions in Eq. (8)

could be consistently determined, is used.

When p = 1, (8) solves to elementary solutions (explicit or

implicit) while when p = 2, it solves to elliptic solutions.

3.3 Steps of computation

When substituting from Eq. (7) (or Eq. (8)) into Eq. (6),

we get the principle equations and the following steps are

done.

1-Solving the principle equations.

2-Solving the auxiliary equations.

3-Finding the exact solution.

4-We check that the obtained solution satisfies Eq. (4).

4 The (3+1) dimensional

conformable fractional

Zakharov-Kuznetsov equation

with power law nonlinearity

In Eq.(1), a and b are real valued constants. The first

term is the evolution term, while the coefficients of a

and b respectively, are the nonlinearity and dispersion.

Also the parameter n is the power law nonlinearity pa-

rameter. Solitons are the result of a delicate balance be-

tween dispersion and nonlinearity. Eq.(1) typically ap-

pears in the study of plasma physics. B. T. Matebese et al.

[52] solved the (3+1) dimensional Zakharov-Kuzetsov equa-

tion by G′/G−expansion method, extended tanh-function

method and ansatz metod. Furthermore, Aminikhah et al.

[53] proposed the functional variable method to solve this

equation when α = 1. The special case where n = 1

and α = 1 gives the (3+1) dimensional Zakharov-Kuzetsov

equation [54]. Let

U(ξ ) = u(x, y, z, t), ξ = x + y + z − λ
tα

α
, (9)

with puting the relation (9) and its derivatives in to the

Eq.(1)

−λUξ + aU
nUξ + b(Uξξ + Uξξ + Uξξ )ξ = 0. (10)

−λU +
a

n + 1
Un+1 + 3bUξξ = 0. (11)
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Byusing the transformationU = V
1
n , Eq.(11) can bewritten

as

3bn (n + 1)V Vξξ + 3b (n
2
− 1)V2

ξ − n
2(1 + n)λV2 + an2V3

,

n ≠ 0, n = ̸ ±1. (12)

4.1 The polynomial solutions

To find the polynomial solutions of the fractional (3+1)-

Zakharov-Kuznetsov equation with power law nonlinear-

ity, we assume that

V(ξ ) =

n
∑

i=0

piϕ
i(ξ ),

(ϕ′(ξ ))p =

p k
∑

i=0

biϕ
i(ξ ), p = 1, 2,

(13)

where pi and bi are arbitrary constants. By considering the

homogeneous balance between V Vξξ and V3 in Eq.(12),

we get n = 2(k − 1), k = 2, 3, , . . . .

Here, we confine ourselves to find these solutions

when k = 2 and p = 1 or p = 2. So, we suppose that the

polynomial solution of the ODE (12) has the form

V(ξ ) = p0 + p1ϕ(ξ ) + p2ϕ
2(ξ ),

(ϕ′(ξ ))p =

2 p
∑

i=0

biϕ
i(ξ ), p = 1, 2.

(14)

4.1.1 The solitary wave solution

To obtain these solutions, we put p = 1 in the auxiliary

equation given by (14). From Eq.(14) when p = 1, we have

V(ξ ) = p0 + p1ϕ(ξ ) + p2ϕ
2(ξ ),

ϕ′(ξ ) = b0 + b1ϕ(ξ ) + b2ϕ
2(ξ ).

(15)

When we use Eq.(15) into Eq.(12) and equating the coeffi-

cients of ϕ(ξ ) to zero we get a system of algebraic equa-

tions. By solving this algebraic system of equations with

the help of MATHEMATICA or MAPLE, it yields the follow-

ing:

p0 = −
3b (2 + 3n + n2)(b21 − R

2)

2an2
,

p1 = −
6bb1 b2 (2 + 3n + n

2)

an2
,

p2 = −
6bb22 (2 + 3n + n

2)

an2
, λ =

3bR2

n2
, (16)

where R =
√

b21 − 4b0 b2.

By solving the auxiliary equationϕ′(ξ ) = b0+b1ϕ(ξ )+

b2ϕ
2(ξ ) and substituting together with (16) into Eq.(12),

we get the solution of Eq.(1) namely

u1 (x, y, z, t) =

(

3b
(

2 + 3n + n2
)

R2sech2(12 R ξ )

2a n2

)
1
n

,

(17)

where ξ = x + y + z −
(

3 b R2

n2 α

)

tα and 0 < α ≤ 1.

Fig. 1 depicts the 3Dand 2D charts of the solution given

by u1(x, y, z, t) with the parameters a = 0.1, b = 0.2, n =

2, and R = 1.

4.1.2 The soliton wave solution

Here, we put p = 2 in the auxiliary equation given by

(14). From Eq.(14) when p = 2, we have

V(ξ ) = p0 + p1ϕ(ξ ) + p2ϕ
2(ξ ),

ϕ′(ξ ) = ϕ(ξ )
√

b0 + b1ϕ(ξ ) + b2ϕ2(ξ ).
(18)

By substituting from (18) into Eq.(12) and by a similar way

as we did in the last case, we get

p0 = −
9 b b21
8 a b2

, p1 = −9 b b1
a , p2 = −18 b b2

a ,

λ = −
3 b b21
8 b2

, b0 =
b21
4 b2

, n = 2.
(19)

By solving the auxiliary equation ϕ′(ξ ) =

ϕ(ξ )
√

b0 + b1ϕ(ξ ) + b2ϕ2(ξ ) and substituting together

with (19) into Eq.(18), we get the solution of eq.(1) namely

u2(x, y, z, t) =

3
√
−b

(

b1 + 2b1 b2 e
b1 ξ

2
√

b2

)

2
√

2ab2

(

1 − 2b2 e
b1 ξ

2
√

b2

)
, b < 0,

(20)

where ξ = x + y + z +
(

3 b b21
8 b2 α

)

tα and 0 < α ≤ 1.

Fig. 2 depicts the 3D and 2D charts of the solution

given by u2(x, y, z, t) with the parameters a = 0.1, b =

−0.2, b1 = 1, and b2 = 1.

4.1.3 The elliptic wave solution

In this section we find the complex elliptic wave solution.

To this end, we put p = 2 in the auxiliary equation given

by (14). From Eq.(14) when p = 2, we have

V(ξ ) = p0 + p1ϕ(ξ ) + p2ϕ
2(ξ ),

ϕ′(ξ ) =
√

b0 + b2ϕ2(ξ ) + b4ϕ4(ξ ).
(21)



M.S. Osman et al., Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov | 563

0 1 2 3 4 5

2.90

2.92

2.94

2.96

2.98

3.00

t-axis

u
1
(x
,y
,z
,t
)

(d) x=0

α = 0.35α = 0.65α = 0.95

Fig. 1: (a)-(d) The wave solution u1(x, y, z, t) given by (17) in 3D- and 2D-plots when y = z = 0.
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Fig. 2: (a)-(d) The wave solution u2(x, y, z, t) given by (20) in 3D- and 2D-plots when y = z = 0.

By substituting from (21) into Eq. (12) and by a similar

way as we did in the last two cases, we get

p0 =
9 b (−b2+

√
b22−4 b0 b4)
a , p1 = 0, p2 = −18 b b4

a ,

λ = 3
2 (−b2 + 3

√

b22 − 4b0 b4), n = 2,

(22)

where, bi , i = 0, 2, 4 are arbitrary constants. For particu-

lar values of bi we get different solutions in Jacobi elliptic

functions. According to the classification in [55], namely

b4 = −
1

4
, b2 =

1 + k2

2
, b0 = −

(1 − k2)2

2
, 0 < k < 1, (23)

the auxiliary function takes the form ϕ(ξ ) = k cn(ξ , k) +

dn(ξ , k) and the solution of Eq. (1) will be in the form

u3(x, y, z, t) =

(

9b

2a

(

−1 − k2 +
√

−k4 + 6k2 − 1

+
(

k cn(ξ , k) + dn(ξ , k)
)2
))

1
2
, (24)

where ξ = x+y+z− 3
4 b (−1−k

2+3
√
−1 + 6k2 − k4)

(

tα

α

)

and

0 < α ≤ 1. We mention that 0 < k < 1 is called the modulus

of the Jacobi elliptic functions. When k → 0, sn(ξ ), cn(ξ )

and dn(ξ ) degenerate to sin(ξ ), cos(ξ ) and 1 respectively.

While when k → 1, sn(ξ ), cn(ξ ) and dn(ξ ) degenerate to

tanh(ξ ), sech(ξ ) and sech(ξ ) respectively.



564 | M.S. Osman et al., Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov

0 1 2 3 4 5

3.4

3.5

3.6

3.7

3.8

t-axis

u
3
(x
,y
,z
,t
)

(d) x=0

α = 0.35α = 0.65α = 0.95

Fig. 3: (a)-(d) The wave solution u3(x, y, z, t) given by (24) in 3D- and 2D-plots when y = z = 0.

Fig. 3 depicts the 3Dand 2Dcharts of the solutiongiven

by u3(x, y, z, t)with the parameters a = 0.1, b = 0.2, and

k = 0.5.

4.2 The rational solutions

To find the rational solutions of the fractional (3+1)-

Zakharov-Kuznetsov equation with power law nonlinear-

ity, we assume that

V(ξ ) =

n
∑

i=0

piϕ
i(ξ )/

r
∑

i=0

qiϕ
i(ξ ), n ≥ r,

(ϕ′(ξ ))p =

p k
∑

i=0

biϕ
i(ξ ), p = 1, 2,

(25)

where pi , qi and bi are arbitrary constants. By consider-

ing the homogeneous balance between V V ′′ and V3 in

Eq. (12), we get n − r = 2(k − 1), k = 1, 2, 3, . . . .

Here, we find these solutions when k = 1 (so n = r)

and p = 2. So from (25), we have two cases as follow

4.2.1 Case 1: periodic type

In this case, we assume that

V(ξ ) =
p0 + p1ϕ(ξ )

q0 + q1ϕ(ξ )
,

ϕ′(ξ ) =
√

b20 − b
2
2ϕ

2(ξ ).

(26)

Similarly, when we use Eq. (26) in Eq. (12), we obtain a

systemof algebraic equations from the coefficients of poly-

nomial of ϕ(ξ ). By solving this algebraic system of equa-

tions, we get

p0 = −
9bb0 b2 q1

2a
, p1 =

9bb22 q1
2a

, q0 =
b0 q1
b2

,

λ =
3bb22
2

, n = 2. (27)

By solving the auxiliary equation ϕ′(ξ ) =
√

b20 − b
2
2ϕ

2(ξ ) and substituting together with (27)

into Eq. (26), we get the solution of eq. (1) namely

u4(x, y, z, t) =

(

9bb22 (−1 + sin(b2 ξ ))

2a (1 + sin(b2 ξ ))

)

1
2

, (28)

where ξ = x + y + z −
(

3 b b22
2 α

)

tα and 0 < α ≤ 1.

Fig. 4 depicts the 3D and 2D charts of the solution

given by u4(x, y, z, t) with the parameters a = 0.1, b =

−0.2, and b2 = 1.

4.2.2 Case 2: soliton type

Here, we assume that

V(ξ ) =
p0 + p1ϕ(ξ )

q0 + q1ϕ(ξ )
,

ϕ′(ξ ) =
√

b0 + b1ϕ(ξ ) + b2ϕ2(ξ ).
(29)

Whenwe use Eq. (29) in Eq. (12), we obtain a system of

algebraic equations from the coefficients of polynomial of

ϕ(ξ ). By solving this algebraic system of equations, we get

p0 = −
9bq1 (b1 + H)

4a
, p1 = −

9bb2 q1
2a

,

q0 =
q1 (b1 − H)

2b2
, λ = −

3bb2
2

, n = 2, (30)
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Fig. 4: (a)-(d) The wave solution u4(x, y, z, t) given by (28) in 3D- and 2D-plots when y = z = 0.
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Fig. 5: (a)-(d) The wave solution u5(x, y, z, t) given by (31) in 3D- and 2D-plots when y = z = 0.

where H =
√

b21 − 4b0 b2.

By solving the auxiliary equation ϕ′(ξ ) =
√

b0 + b1ϕ(ξ ) + b2ϕ2(ξ ) and substituting together

with (30) into Eq. (29), we get the solution of Eq. (1)

namely

u5(x, y, z, t) =

(

3
√

−bb2 (e
√
b2 ξ + H)

√
2a (e

√
b2 ξ − H)

)

, (31)

where ξ = x + y + z +
(

3 b b2
2 α

)

tα and 0 < α ≤ 1.

Fig. 5 depicts the 3D and 2D charts of the solution

given by u5(x, y, z, t) with the parameters a = 0.1, b =

−0.2, H = 1, and b2 = 1.

5 Conclusion

In this work, we have constructed exact traveling wave

solutions for nonlinear conformable fractional evolution

equations by using unifiedmethod. Thismethod allows us

to solve more nonlinear conformable fractional evolution

equations in mathematical physics via the (3+1) dimen-

sional conformable fractional Zakharov-Kuzetsov equa-

tion with power law nonlinearity. As a result, many new

types of exact travelingwave solutions are obtained. These

solutions include the solitary wave solutions, solitonwave

solutions, elliptic wave solutions, and periodic (hyper-

bolic) wave rational solutions.
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