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Abstract: In this work, we consider the (3+1) dimen-
sional conformable fractional Zakharov-Kuznetsov equa-
tion with power law nonlinearity. Solitary wave solutions,
soliton wave solutions, elliptic wave solutions, and peri-
odic (hyperbolic) wave rational solutions are obtained by
means of the unified method. The solutions showed that
this method provides us with a powerful mathematical
tool for solving nonlinear conformable fractional evolu-
tion equations in various fields of applied sciences.

Keywords: The unified method; Power law nonlinearity;
Conformable fractional derivative; Traveling wave solu-
tions

1 Introduction

Nonlinear fractional partial differential equations (FPDESs)
show arich variety of nonlinear phenomena, arise in many
physical and engineering applications like geophysical
fluid mechanics, fluid mechanics, plasma physics, super-
conductivity, and optics. Therefore, seeking exact solu-
tions of nonlinear FPDEs specifically the nonlinear frac-
tional evolution equations (NLFEESs) plays an important
duty in the study of nonlinear physical phenomena [1-9].
It is significant to find new solutions, since either new ex-
act solutions or numerical approximate solutions may pro-
vide more information for understanding the physical phe-
nomena. For an overview and recent developments of the
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local approach to fractional calculus we refer the reader to
[10, 11] and references therein.

Very recently, Khalil et al. [12] suggested a conformable
fractional derivative. The new fractional derivative is very
interesting and is getting an increasing of interest [13—
17]. The conformable fractional derivatives didn’t have
a physical meaning as the Caputo or Riemann-Liouville
derivatives. This situation is a general open problem
for fractional calculus. Despite this many physical ap-
plications of conformable fractional derivative appear in
the literature. Dazhi Zhao and Maokang Luo general-
ized the conformable fractional derivative and give the
physical interpretation of generalized conformable deriva-
tive [18]. In addition, with the help of this fractional
derivative and some important formulas, one can con-
vert conformable fractional partial differential equations
into integer-order differential equations by traveling wave
transformation [19]. Later on, many researchers estab-
lished exact traveling wave solutions of various non-
linear fractional evolution equations via this fractional
derivative. For example, Eslami [20] solved nonlinear frac-
tional coupled nonlinear Schrodinger equations by us-
ing the Kudryashov method. Kaplan [21] proposed the
modified simple equation method and the exponential
rational function method to solve the nonlinear con-
formable time-fractional Boussinesq equation. Korkmaz
[22] applied modified Kudryashov method to obtain the ex-
act solutions of the the (3+1) conformable time-fractional
Jimbo-Miwa, Zakharov-Kuznetsov and Modified Zakharov-
Kuznetsov equations. Aminikhah et al. [23] used the sub
equation method to obtain the exact solutions of the
fractional (1+1) and (2+1) regularized long-wave equations
which arise in several physical applications, including ion
sound waves in plasma. Rezazadeh et al. [24, 25] con-
cerned about the same method for obtaining traveling
wave solutions for the conformable fractional generalized
Kuramoto-Sivashinsky equation and fractional Zakharov-
Kuznetsov equation with dual-power law nonlinearity.
Tariq et al. [26] investigated the new exact solutions of a
nonlinear evolution equation that appear in mathemati-
cal physics, specifically Cahn-Allen equation by applying
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tanh method. Akbulut et al. [27] obtained exact solutions
for (2+1)-dimensional time-fractional Zoomeron equation
and the time-fractional third order modified KdV equa-
tion via the auxiliary equation method. Ekici et al. [28]
proposed the first integral method to study the optical
solitons with fractional temporal evolution in presence of
Hamiltonian perturbation terms governed by three types
of nonlinearity. Cenesiz et al. [29] obtained some exact
solutions for time-fractional Burgers equation, modified
Burgers equation and Burgers-Korteweg-de Vries equation
via the same method. Kurt et al. [30] established some
traveling wave solutions for fractional Nizhnik-Novikov-
Veselov and fractional Klein-Gordon equations via the
Exp-Function Method. Tasbozan et al., [31] solved nonlin-
ear fractional Boussinesq and combined KdV-mKdV equa-
tions by using Jacobi elliptic function expansion method.
Eslami et al. [32, 33] proposed the first integral method
and functional variable method to solve the space-time
fractional Schrédinger-Hirota equation and the space-
time fractional modified KDV-Zakharov-Kuznetsov equa-
tion and fractional Bogoyavlenskii equations, respectively.
Hosseini et al. [34] used the ansatz method to obtain the
exact solutions of the fractional Klein-Gordon equations
with quadratic and cubic nonlinearities. Eslami [35] ap-
plied G’'/G-expansion method to obtain the exact solu-
tions of the space-time fractional (2+1)- dimensional dis-
persive long wave equations. Cenesiz et al. [36] applied the
functional variable method to obtain the exact solutions of
fractional modified KdV-ZK equation and Maccari system.
Kaplan et al. [37] solved (2+1)-dimensional conformable
time-fractional Zoomeron equation and the conformable
space-time fractional EW equation by using modified sim-
ple equation method.

The aim of this paper is to construct exact traveling
wave solutions of the (3+1) dimensional conformable frac-
tional Zakharov-Kuznetsov equation with power law non-
linearity (for a = 1, see [38])
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by using the unified method.

The unified method (UM) [39-45] and its generalized
form (GUM) [46-51], the generalized unified method, that
introduce a simple algorithm to find the exact solutions
and multi-wave solutions respectively in nonlinear evolu-
tion equations and nonlinear conformable fractional evo-
lution equations both with constant and variable coeffi-
cients.

This paper is organized as follows: In section 2, we re-
call some basic definitions of the conformable fractional
derivative. In section 3, the key idea of our method is de-

scribed. Sections 4 is devoted to the application of the UM
for (3+1) dimensional conformable fractional Zakharov-
Kuznetsov equation. Conclusions are outlined in section 5.

2 Conformable fractional derivative

Here, we introduce some basic properties and definitions
of the conformable fractional calculus theory which can be
found in [12, 13].

Definition 2.1 Let f : (0, 00) — R, then, the conformable
fractional derivative of f of order a is defined as [12]
et -f0) @

a L
D0 = sh—>o €
forallt >0, a € (0, 1).

If f is a-differentiable in some (0,a), a > 0 and

tlirg «D*f(t) exists, then by definition
—0*
tDa (f) (0) = hm [Daf(t).
t—0*

The new definition satisfies the properties which given in
the following theorem.
Theorem 1 Let a € (0, 1], and f, g be a-differentiable at a
point t, then [12]
(i) (D*(af + bg) = a {D*f + b ;D*g, foralla, b c R.
(i) (D*(t*) = pu t* %, forall u € R.
(iii) (D°fg = f +D%g + g ¢D°f.

(iv) (D" (g) - e D

In addition, if f is differentiable, then ;D*f(t) = t' ¢ %.

In [13], T. Abdeljawad established the chain rule for

conformable fractional derivatives as in the following the-
orem.
Theorem 2 Let f : (0, o0) — R be a function such that f is
differentiable and also a-differentiable. Let g be a function
defined in the range of f and also differentiable; then, one
has the following rule

D*(fog)() = t'“g'(t)f ' (g(1)). 3)

3 The description of the UM

In this section we describe the UM for finding exact solu-
tions of nonlinear conformable fractional evolution equa-
tions.

Consider the following nonlinear conformable frac-
tional evolution equation in two variables and a depen-
dent variable u as

o“u dou du 0**u d’u
F(u,W,H,a—y, Spae W"")_O’ t=0, O0<as<l,

(4)
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where F is a polynomial in its arguments in which the high-
est order derivatives and nonlinear terms are involved.

To solve Eq. (4), we take the traveling wave transfor-
mation

ta
u(X’y’t):U(f)’ {:X+y_AE- (5)
This enables us to use the following changes
0 d 0 d o d
W() = _AT{()’ a() = Tf()’ Ty() = Tg()’
aZa ) d2
m(.) = A dié,z(-)y cee e

Substituting Eq. (5) into Eq. (4) yields a nonlinear ordinary
differential equation as following

G(U, v, u”, ...)=0, 6)
where U = U(¢), U’ = (ZTL{]’ U’ = ‘%{,

The obtained solutions of Eq. (6) by using UM are clas-
sified to be the polynomial function solutions or the ratio-
nal function solutions.

3.1 The polynomial function solution

To get the polynomial function solutions of Eq. (6), UM
suggests that

U=U@ =Y pid'@),

pi’?() | . (7)
@' @Y =D cid'(@, z=aot+)_ asxs,
i=0 s=1

j=1,2’---,m9p=1,2,

where p;, ¢;, @y, and as are arbitrary constants to be de-
termined later. It is worth to be noticing that, n and k are
determined from the balance equation by the criteria given
in [39-45]. Also, a second condition (the consistency con-
dition), which asserts that the arbitrary functions in Eq. (7)
could be consistently determined, is used.

When p = 1, (7) solves to elementary solutions (explicit or
implicit) while when p = 2, it solves to elliptic solutions.

3.2 The rational function solution

To get the rational function solutions of Eq. (6), UM sug-
gests that

U=U@ =Y n¢'@ D a:¢'(2), n=r,

i=0 i=0

pk ] q (8)
@@P = cid'@), z=aot+ > asxs,

i=0 s=1
j=1’2’---’m’ p=1)2’

where p;, qi, i, Ao, and as are arbitrary constants to be de-
termined later. It is worth to be noticing that, n, r and k are
determined from the balance equation by the criteria given
in [39-45]. Also, a second condition (the consistency con-
dition), which asserts that the arbitrary functions in Eq. (8)
could be consistently determined, is used.

When p = 1, (8) solves to elementary solutions (explicit or
implicit) while when p = 2, it solves to elliptic solutions.

3.3 Steps of computation

When substituting from Eq. (7) (or Eq. (8)) into Eq. (6),
we get the principle equations and the following steps are
done.

1-Solving the principle equations.

2-Solving the auxiliary equations.

3-Finding the exact solution.

4-We check that the obtained solution satisfies Eq. (4).

4 The (3+1) dimensional
conformable fractional
Zakharov-Kuznetsov equation
with power law nonlinearity

In Eq.(1), a and b are real valued constants. The first
term is the evolution term, while the coefficients of a
and b respectively, are the nonlinearity and dispersion.
Also the parameter n is the power law nonlinearity pa-
rameter. Solitons are the result of a delicate balance be-
tween dispersion and nonlinearity. Eq.(1) typically ap-
pears in the study of plasma physics. B. T. Matebese et al.
[52] solved the (3+1) dimensional Zakharov-Kuzetsov equa-
tion by G’/ G—expansion method, extended tanh-function
method and ansatz metod. Furthermore, Aminikhah et al.
[53] proposed the functional variable method to solve this
equation when a = 1. The special case where n = 1
and a = 1 gives the (3+1) dimensional Zakharov-Kuzetsov
equation [54]. Let

U€) =ulx,y, z,t), 5=x+y+z—/\§, 9)

with puting the relation (9) and its derivatives in to the
Eq.(1)

—/\U€+aUnU£+b(U£{+U££+U{{)§=0 (10)

a +1
—AU+mUn +3bU€5=0 (11)
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By using the transformation U = Vi, Eq.(11) can be written
as

3bn(n+1)VV55+3b(n2—1)V§—n2(1+n)AV2+an2V3,

n+0,n#+1. (12)

4.1 The polynomial solutions

To find the polynomial solutions of the fractional (3+1)-
Zakharov-Kuznetsov equation with power law nonlinear-
ity, we assume that

VE) =Y pid®),

i=0 ok (13)

@'©P=>"b:¢'©), p=1,2,

i=0

where p; and b; are arbitrary constants. By considering the
homogeneous balance between V Vg and V3 in Eq.(12),
wegetn=2(k-1),k=2,3,,....

Here, we confine ourselves to find these solutions
when k = 2and p = 1 or p = 2. So, we suppose that the
polynomial solution of the ODE (12) has the form

V(&) =po+p19(&) +p2 ¢2(f),
2p
(@' (P =D bid'(®), p=-1,2.

i=0

(14)

4.1.1 The solitary wave solution

To obtain these solutions, we put p = 1 in the auxiliary
equation given by (14). From Eq.(14) when p = 1, we have

V(&) = po + p19(&) + p2 $*(9),
¢'(§) =bo + by ¢(f) +by ¢2(f)-

When we use Eq.(15) into Eq.(12) and equating the coeffi-
cients of ¢(&) to zero we get a system of algebraic equa-
tions. By solving this algebraic system of equations with
the help of MATHEMATICA or MAPLE, it yields the follow-
ing:

(15)

_3b(Q+3n+n*)(b}-R?

0=

2an?
_ _6bb1b2(2+3n+n2)
b1 = anz ’
6bb3(2+3n+n?) 3bR?
br=- an2 s A= n2 s (16)

where R = /b2 — 4bo b,.

By solving the auxiliary equation ¢(£) = bo+bq (&) +
b, $%(¢) and substituting together with (16) into Eq.(12),
we get the solution of Eq.(1) namely

1
3b(2+3n+n?)R*sech’(R&) "
2a n? ’

uy (x,y,z,t) = (

a7)

_ 3bR?

where{ =x+y+z- (25 -)t“and0<a<1.
Fig. 1depicts the 3D and 2D charts of the solution given

by u;(x, y, z, t) with the parameters a = 0.1, b =0.2, n =

2,and R = 1.

4.1.2 The soliton wave solution

Here, we put p = 2 in the auxiliary equation given by
(14). From Eq.(14) when p = 2, we have

V(&) = po + p1 (&) + p2 p2(&),
¢'(&) = p(€)\/bo + by P(&) + by P2(£).

By substituting from (18) into Eq.(12) and by a similar way
as we did in the last case, we get

(18)

_9bb? 18bby

_ _ _9bb -
pO— m) _le pz__ a ) (19)
A= _3bbi o _ b _>
T~ T8h, > 0T ap M
By solving the auxiliary equation ¢'(&) =

d(E)\/bo + b1 p(&) + b, Pp2(§) and substituting together
with (19) into Eq.(18), we get the solution of eq.(1) namely

b1 ¢
3v-b <b1+2b1b2€2\/g)
b<O0

uz(X’ Y, 2z, t) = by & ’ ’
2+/2ab, (1—2b2e2¢5)

(20)

_ 3bb?\ La

whereé =x+y+z+ (sza) t*andO0<a<1.

Fig. 2 depicts the 3D and 2D charts of the solution

given by u,(x, y, z, t) with the parameters a = 0.1, b =

-0.2, b1 =1, and bz =1.

4.1.3 The elliptic wave solution

In this section we find the complex elliptic wave solution.
To this end, we put p = 2 in the auxiliary equation given
by (14). From Eq.(14) when p = 2, we have

V(&) = po + p19(&) + p2 $*(),
@'(&) = /bo + by p2(&) + b4 *(8).

(21)
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Fig. 1: (a)-(d) The wave solution u;(x, y, z, t) given by (17) in 3D-and 2D-plots wheny = z = 0.

(a) @=0.35

5
wixyzt) g

-5

5t
wlxyzl) g
-5

(b) @=0.65

(¢) @=0.95

5
wixyzl) o
-5

2
x-axis

uz(X,y,Z,t)

-4.2

— a=035
— a=10.65
— a =095

o
N

Fig. 2: (a)-(d) The wave solution ux(x, y, z, t) given by (20) in 3D-and 2D-plots wheny = z = 0.

By substituting from (21) into Eq. (12) and by a similar
way as we did in the last two cases, we get

b(-by+\/BI—4bo b
po = 22baryhaiboby) a24 ob) - p =0, py = - 180be,
A=3(-by+3/b2-4bob)), n=2,
(22)

where, b;, i = 0, 2, 4 are arbitrary constants. For particu-
lar values of b; we get different solutions in Jacobi elliptic
functions. According to the classification in [55], namely

1+Kk
2

72y
b4=—%,bz ,b0=—%’0<k<1’ (23)

the auxiliary function takes the form ¢(¢) = kcn(&, k) +
dn(¢, k) and the solution of Eq. (1) will be in the form

(—1 IR+ /-kh 6k -1

+ (ken(é, k) +dn(¢, k))z))% ,

9b

u3(x’ y’ z, t) = <Z

(24)

where & = x+y+z-3 b(-1-k*+3 V-1 + 6k2 - k*) (%) and
0 < a < 1. We mention that O < k < 1 is called the modulus
of the Jacobi elliptic functions. When k — 0, sn(&), cn(&)
and dn(¢) degenerate to sin(&), cos(¢) and 1 respectively.
While when k — 1, sn(¢), cn(€) and dn(&) degenerate to
tanh(&), sech(¢) and sech(&) respectively.
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Fig. 3: (a)-(d) The wave solution us(x, y, z, t) given by (24) in 3D- and 2D-plots wheny = z = 0.

Fig. 3 depicts the 3D and 2D charts of the solution given nomial of ¢(¢). By solving this algebraic system of equa-
by us(x, y, z, t) with the parameters a = 0.1, b = 0.2, and tions, we get

k=0.5. p =_9bb0b2q1 p =9bb%q1 q =b0ql
0 2a » Pl 2a 10 b, ’
. . 3bb3
4.2 The rational solutions A= 5 =2 (27)

By solving the auxiliary equation ¢'(£) =
\/b3 - b3¢2(¢) and substituting together with (27)
into Eq. (26), we get the solution of eq. (1) namely

To find the rational solutions of the fractional (3+1)-
Zakharov-Kuznetsov equation with power law nonlinear-
ity, we assume that

9bb2 (-1 +sin(b, f))) :
" ; ! ; us(x,y,z,t) = = , 28
VO =3 pd' O a9, ner, 0= (P ) 9
=0 pk . =0 (25) whereé =x+y+z- 35’55 t*and 0 < a < 1.
@©P=> bi9'(®), p=1,2, Fig. 4 depicts the 3D and 2D charts of the solution

i=0 given by u,(x, y, z, t) with the parameters a = 0.1, b =

where p;, g; and b; are arbitrary constants. By consider- —0.2,and b, = 1.
ing the homogeneous balance between VV” and V> in
Eq.(12),wegetn-r=2(k-1),k=1,2,3,....

Here, we find these solutions when k = 1 (son = r) #4.2.2 Case 2: soliton type

and p = 2. So from (25), we have two cases as follow
Here, we assume that

Po +p19(8)
V() =—"——722,
@ Gor a1 6® (29)
¢'(&) = \/bo + b1 p(&) + by $2(8).
When we use Eq. (29) in Eq. (12), we obtain a system of
algebraic equations from the coefficients of polynomial of

4.2.1 Case 1: periodic type

In this case, we assume that

V(-f) - Do+ D1 ¢(£)

do+q19@)’ 26) ¢(&). By solving this algebraic system of equations, we get
¢,(‘f)=\/bé—b%¢2($)- p =_9bQ1(b1 +H) ) =_9bb2q1
0 4a » H1 2a
Similarly, when we use Eq. (26) in Eq. (12), we obtain a do - q1(b1 - H)’ I _3bby n=2, (30)

system of algebraic equations from the coefficients of poly- 2b; 2
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Fig. 4: (a)-(d) The wave solution u4(x, y, z, t) given by (28) in 3D- and 2D-plots wheny = z = 0.
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Fig. 5: (a)-(d) The wave solution us(x, y, z, t) given by (31) in 3D-and 2D-plots wheny = z = 0.

where H = /b2 - 4bo b,.

By solving the auxiliary equation ¢'(¢) =
\/ bo+ b1 (&) + by p2(¢) and substituting together
with (30) into Eq. (29), we get the solution of Eq. (1)
namely

/_ Vb ¢
us(x,y,z,t) = (3 \/%IZZ\(/%S{—I;)H» R €3]

where{ =x+y+z+ (% t*and 0 < a < 1.

Fig. 5 depicts the 3D and 2D charts of the solution
given by us(x, y, z, t) with the parameters a = 0.1, b =
-0.2, H=1,and b, = 1.

5 Conclusion

In this work, we have constructed exact traveling wave
solutions for nonlinear conformable fractional evolution
equations by using unified method. This method allows us
to solve more nonlinear conformable fractional evolution
equations in mathematical physics via the (3+1) dimen-
sional conformable fractional Zakharov-Kuzetsov equa-
tion with power law nonlinearity. As a result, many new
types of exact traveling wave solutions are obtained. These
solutions include the solitary wave solutions, soliton wave
solutions, elliptic wave solutions, and periodic (hyper-
bolic) wave rational solutions.
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