
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
Mathematics and Statistics Department Faculty
Publication Series Mathematics and Statistics

2015

Traveling Waves and their Tails in Locally Resonant
Granular Systems
H Xu
University of Massachusetts Amherst, haitao@math.umass.edu

P G. Kevrekidis
University of Massachusetts Amherst, kevrekid@gmail.com

A Stefanov
University of Kansas, stefanov@ku.com

Follow this and additional works at: https://scholarworks.umass.edu/math_faculty_pubs

Part of the Mathematics Commons

This Article is brought to you for free and open access by the Mathematics and Statistics at ScholarWorks@UMass Amherst. It has been accepted for
inclusion in Mathematics and Statistics Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For
more information, please contact scholarworks@library.umass.edu.

Recommended Citation
Xu, H; Kevrekidis, P G.; and Stefanov, A, "Traveling Waves and their Tails in Locally Resonant Granular Systems" (2015). Journal of
Physics A: Mathematical and Theoretical. 1219.
Retrieved from https://scholarworks.umass.edu/math_faculty_pubs/1219

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/math_faculty_pubs/1219?utm_source=scholarworks.umass.edu%2Fmath_faculty_pubs%2F1219&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.119.202.145

This content was downloaded on 04/03/2016 at 20:18

Please note that terms and conditions apply.

Traveling waves and their tails in locally resonant granular systems

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys. A: Math. Theor. 48 195204

(http://iopscience.iop.org/1751-8121/48/19/195204)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/48/19
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Traveling waves and their tails in locally
resonant granular systems

H Xu1, P G Kevrekidis1,2 and A Stefanov3

1Department of Mathematics and Statistics, University of Massachusetts, Amherst MA
01003-4515, USA
2Center for Nonlinear Studies and Theoretical Division, Los Alamos National
Laboratory, Los Alamos, NM 87544, US
3Department of Mathematics University of Kansas 1460 Jayhawk Blvd Lawrence, KS
66045-7523, US

E-mail: haitao@math.umass.edu, kevrekid@gmail.com and stefanov@ku.com

Received 17 December 2014, revised 13 March 2015
Accepted for publication 16 March 2015
Published 22 April 2015

Abstract
In the present study, we revisit the theme of wave propagation in locally
resonant granular crystal systems, also referred to as mass-in-mass systems.
We use three distinct approaches to identify relevant traveling waves. The first
consists of a direct solution of the traveling wave problem. The second one
consists of the solution of the Fourier tranformed variant of the problem, or,
more precisely, of its convolution reformulation (upon an inverse Fourier
transform) in real space. Finally, our third approach will restrict considerations
to a finite domain, utilizing the notion of Fourier series for important technical
reasons, namely the avoidance of resonances, which will be discussed in
detail. All three approaches can be utilized in either the displacement or the
strain formulation. Typical resulting computations in finite domains result in
the solitary waves bearing symmetric non-vanishing tails at both ends of the
computational domain. Importantly, however, a countably infinite set of anti-
resonance conditions is identified for which solutions with genuinely rapidly
decaying tails arise.

Keywords: mass in mass, locally resonant, traveling wave, mass with mass,
Fourier transform, granular chain
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1. Introduction

The theme of granular chains has gained considerable traction over the past decade, perhaps
to a large measure due to the significant advances in corresponding experimental techniques
complementing theoretical and numerical investigations [1–4]. While traveling waves in these
extensively tunable (regarding, e.g., their homogeneous or heterogeneous, weakly or strongly
nonlinear nature) media have received the lion’s share of the corresponding attention,
numerous other excitations have been examined more recently as well including, but not
limited to, defect modes, bright and dark breathers, and shock waves, among others; see e.g.
[5–45] for some characteristic examples. A key feature supporting this explosive rate of
development has been the versatile use of such settings in a diverse host of applications
including e.g., actuating devices [9], acoustic lenses [46], mechanical diodes [47–49], logic
gates [50] and sound scramblers [51, 52].

The principal theme of robust, highly localized traveling stress waves in such a setting
has received arguably the most attention, as it has posed significant mathematical challenges
and has proved fruitful in a diverse array of applications including, among others, e.g. the
quantification of bone-quality in biomedical applications [53] or the monitoring of hydra-
tion of gypsum cement [54]. From a theoretical perspective, the existence of such waves,
originally established in [17] (see also [1]), was rigorously proved in [55] by means of the
variational approach of [56]. However, the non-constructive nature of this proof offered no
information on the solutions’ profile or on their speed dependence on wave amplitude and
space scale, unlike [17]. Their single pulse character (in the strain variables of the system)
was subsequently established rigorously in [39], following the approach of [43]. These
approaches also enabled the identification of the doubly exponential character of their
spatial decay in the absence of the so-called precompression (i.e., of linear part within the
system dynamics); see also for earlier relevant asymptotic analyses predicting this rate of
spatial decay [44, 45].

While this part of the story is admittedly well-understood in the context of the
standard one-component, homogeneous granular chain, in recent years, a number of
intriguing variants have emerged on this theme which may possess more elaborate
structural characteristics as regards their traveling waves (and other related structures).
Chronologically, an earlier example of this form consists of the so-called cradle system
(of which we are not aware of an experimental realization as of yet) proposed in [57] and
further explored, including by detailed direct numerical computations in [58]. There, a
local, linear oscillator was added to the granular chain, emulating the pendulum
restoring effect in the well-known Newton’s cradle. In that context, numerous unex-
pected features arose including the formation of waves with persistent tails, of traveling
(time-periodic) breathers, of apparently direction-reversing (so-called boomeron-type)
structures, etc. While many of these observations have yet to be explained, here we will
actually turn our attention to another class of systems, the so-called locally resonant
granular crystals, otherwise known as mass-in-mass (MiM) or mass-with-mass (MwM)
systems.

The MiM and MwM systems are rapidly gaining an increasing amount of interest chiefly
because they have already been experimentally realized in [59] and [60], respectively.
Admittedly, both of these realizations were chiefly linear (in the presence of externally
imposed pre-compression of the chain) and aiming to illustrate the remarkable meta-material
type properties that these systems possess. Yet, while a MwM nonlinear prototype was also
demonstrated in [61], it was a different type of experiment that very recently realized highly
nonlinear propagation in a locally resonant granular system [62]. In particular, the experiment
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of [62] built a so-called woodpile configuration consisting of orthogonally stacked rods (every
second rod is aligned, in this alternating 0–90 degree configuration) and demonstrated that the
internal vibrations of the rods can play the role of the local resonator within the granular
chain. It was also shown that depending on the properties of the system (i.e., the length of the
rods), one can controllably incorporate one or more such resonators, yet here our focus will be
in the case of a single such resonator.

A remarkable find of these locally resonant, highly nonlinear chains was found to be
the propagation of traveling waves with an apparently non-decaying tail [62]. It was indeed
found that the tail behind the wave may persist in small amplitude oscillations (in the
experiment they were found to potentially be three orders of magnitude smaller than the
core of the traveling wave) which, however, do not decay and which bear a clear frequency/
wavenumber, namely that of the out-of-phase vibration between the principal and the
resonating mass in such a system. Weakly nonlocal solitary waves have been studied
extensively in a series of examples in physical sciences and engineering [63, 64], yet very
few (especially so, highly experimentally controllable) realizations thereof are known to
exist. Our aim in the present work is to examine more systematically such traveling waves
from a theoretical perspective.

We will use three distinct approaches in order to identify this important class of
solutions for the MiM/MwM systems. We will seek them directly as traveling waves in
real space, by attempting to identify fixed points of a discretization of the co-traveling
frame nonlinear problem in our direct method. We will also follow the approach of [43],
rewriting the problem in Fourier space (upon a Fourier transform) and seeking fixed points
of that variant upon inverse Fourier transform, similarly to [39, 43]. This will recover a
convolution based reformulation of the problem in real space. Finally, the third method
will recognize the limitations of the infinite domain formulation of the above convolution
problem and will instead restrict consideration to a finite lattice, using Fourier series rather
than Fourier transforms. The presentation of the three methods will take place in section 2
below. These methods will be explored in a finite domain setting yielding convergence to
exact traveling waves under suitable conditions that will be explicitly analyzed. In
addition to the, arguably more tractable, pulse-like solutions of the so-called strain variant
of the problem, we will also translate the results at the level of bead displacements.
Relevant numerical results will be given in section 3 of the manuscript, along with some
of the nontrivial associated challenges of the computations and impact of parametric
variations on the resulting waves. In that process, a particularly interesting feature will be
identified (and subsequently explained), namely for an isolated, countably infinite set of
parameters the problem will no longer possess the oscillating tails described above, but
rather the symmetric, rapidly decaying tails of the standard granular chain. Finally, in
section 4, we will summarize our findings and present some potential directions for
future work.

2. Theoretical setup

2.1. Model and traveling wave formulation

Our starting point will consist of a Hertzian chain [1] of identical beads with the displacement
of the nth bead from the original position denoted by Un. For the nth bead = …n N( 1, 2, , ),
we attach a local resonator, effectively coupling it to another kind of bead (the ‘MiM’ [59] or
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the ‘MwM’ [60] discussed above), whose displacement from the original position is denoted
by Vn. Notice that in the case of the woodpile configuration, this does not constitute a separate
mass but rather reflects the internal vibrational modes of the woodpile rods [62]. Here we use
K1 to stand for the spring constant; R for the radius of the bead, ρ for the density, E for the
elastic modulus, μ for the Poisson’s ratio of the bead so that the mass πρ=m Ru

4

3
3; ν1 reflects

the ratio of two kinds of masses m

m
v

u
(or more generally, the effective mass of the locally

resonant mode). With these assumptions, we write our model of the MiM/MwM problem as
follows:

δ δ= + − − + − − −−
+

+ +
⎡⎣ ⎤⎦( ) ( ) ( )m U E

R
U U U U K U V¨ 4

3 * 2
, (1)u n n n

p

n n
p

n n1 1 1 1 1

= − −( )m V K V U¨ . (2)v n n n1

Here ∈n Z, and δ1 is the initial pre-compression between beads, while =p 3 2 is determined
by the Hertzian interaction and =

μ−
E*

E

2(1 )2
. The plus subscripts mean that the terms in the

parentheses will be considered only when their arguments are non-negative and will be set to
zero values otherwise.

By defining =k
*

K

E R1
3

2 2
1 , δ = δ

R0
1 , =un

U

R
n , =vn

V

R
n and time =

πρ
t t( )*E

Rnew
1

2 old2

1
2 , we

obtain the nondimensional system as:

δ δ= + − − + − − −− + + +( ) ( )u u u u u k u v¨ ( ), (3)n n n
p

n n
p

n n0 1 0 1 1

ν = − −v k v u¨ ( ). (4)n n n1 1

Focusing on traveling wave solutions of the above system, we seek them in the form
ξ= − =u t r n ct r( ) ( ) ( )n and ξ= − =v t s n ct s( ) ( ) ( )n , i.e., going to the co-traveling frame

with c as the traveling speed, obtaining advance-delay differential equations for the profile
dependence on the co-traveling frame variable ξ:

ξ δ ξ ξ δ ξ ξ ξ ξ= + − − − + − + − −
+ +( ) ( )c r r r r r k r s¨ ( ) ( 1) ( ) ( ) ( 1) ( ( ) ( )), (5)
p p2

0 0 1

ν ξ ξ ξ= − −c s k s r¨ ( ) ( ( ) ( )). (6)2
1 1

Moreover, if we consider the equations of relative displacements (i.e., the strain variables),
writing ξ ξ ξ= − −R r r( ) ( 1) ( ) and ξ ξ ξ= − −S s s( ) ( 1) ( ), the equations assume the
form:

ξ δ ξ δ ξ δ ξ ξ ξ= + + + + − − + − −
+ + +( ) ( ) ( )c R R R R k R S¨ ( ) ( 1) ( 1) 2 ( ) ( ( ) ( )),

(7)

p p p2
0 0 0 1

ν ξ ξ ξ= − −c S k S R¨ ( ) ( ( ) ( )). (8)2
1 1

The discrete version of the strain equations can be obtained as:

δ δ δ= + + + − + − −+ + − + +( ) ( ) ( )x t x x x k x y¨ ( ) 2 ( ), (9)n n
p

n
p

n
p

n n0 1 0 1 0 1

ν = − −y t k y x¨ ( ) ( ), (10)n n n1 1

where = −−x t u u( )n n n1 and = −−y t v v( )n n n1 .

Remark 1. If ξr ( ) and ξs ( ) are solutions to equations (5)–(6) with current parameters,
=r a r˜ 4 and =s a s˜ 4 will solve those equations with =c ac˜ , =k a k1̃

2
1 and δ δ= a˜0

4
0.
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Similarly, there is a family of solutions to equations (7)–(8) with different speeds, amplitudes
and other parameters.

Our first solution method of this system will consist of a direct method attempt at solving
this problem at the level of equations (5)–(6) for the displacements or of equations (7)–(8) for
the strains in real space. This approach is denoted by ‘scheme I’ in what follows.

2.2. Infinite domain with Fourier transform

In this subsection, we consider the infinite domain situation, where ξ ∈ −∞ ∞( , ), bearing
in mind, however, that in realistic setups this is practically irrelevant, as all numerical
computations and experimental observations are conducted in finite domain settings.
Additionally, our analysis will be restricted to the highly nonlinear regime whereby
δ = 00 .

Here we assume R and S are functions such that Fourier transform
∫ ξ ξ= ξ

−∞
∞ −f k f dˆ ( ) ( )e ki can be applied on R, S, R̈, S̈ and +R( )3 2 . This condition is necessary

because the above-mentioned experimental observations [62] suggest that ξR ( ) and ξS ( )
sometimes bear non-decaying (yet bounded) oscillating tails as ξ∣ ∣ → ∞. This implies that R
and S may be non-integrable and thus their Fourier transforms may not be possible to define.
In this subsection we will only focus on the special cases for R and S where such integrable
solutions do exist.

With the assumption above, we apply Fourier transform to equations (7)–(8) to obtain:

ν ν ν+ − = −
+

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )k k c k R

c
k c k

k
Rˆ 1

sinc
2

, (11)1 1 1
2

1
2

2 1
2

1
2 2 3 2

ν− =( )k c k S k Rˆ ˆ (12)1
2

1
2

1

with ksinc( ) being defined as k

k

sin( ) . If R̂, Ŝ and +
R( )3 2 are well-defined functions, the

following conditions should be satisfied:

(a) ± ≡ ± =
ν

R R kˆ ( ) ˆ ( ) 0k

c
2

1

2
1

;

(b) ± ≡ ± =ν
ν+
+

+
 R R k( ) ( ) ( ) ( ) 0k

c
3 2 (1 ) 3 2

0
1 1

2
1

or π=k n20 .

Here we defined = ν
ν
+k k

c
0

(1 )1 1

2
1

and =
ν

k k

c
2

1

2
1

.

If we choose π=k n20 , the condition (b) is automatically met and the zeros of R̂ will be
investigated later for the condition (a). In this case, the second one among equations (11) and
(12) can be directly solved and back-substituted in the first, to yield

= ≡ν
ν ν

−
+ − + +

 R R M k Rˆ sinc ( ) ( ) ( ) ( )k c k

c k k c k

k

( )
2

2
3 2

1
3 21

2
1

2

2
1 1 1

2
1

2 . Since =→± −
lim 0k k k k

sinc ( )k

0

2
2

2
0
2 , the singu-

larities of M k( )1 at ±k0 can be removed when π=k n2o . Moreover, if we define the inverse

Fourier transform of f kˆ ( ) as ∫ξ =
π

ξ
−∞
∞

f f k dk( ) ˆ ( )e k1

2
i , then the inverse Fourier transform of

M k( )1 is
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0
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2
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2

by direct calculation, where I a b[ , ] has been used to denote the indicator function in the
corresponding interval. Utilizing the convolution theorem, equation (11) can be transformed
back to real space as:

ξ ξ=
+( )( )R m R( ) * ( ), (14)1

3 2

where ∗ will be used hereafter to denote the convolution.
Then, by iterating → →+

+R R R(( ) )l l l( ) 3 2 ( ) ( 1) using equation (14), in the same spirit as
the calculation of [43] (see also the much earlier similar proposal of [65]), we obtain yet a new
scheme, hereafter termed ‘scheme II’.

Next, we will try to find ξS ( ) from equation (12). Theoretically, one can follow the order
→ → →R R S Sˆ ˆ to find ξS ( ). But the singularity points of Ŝ can induce practical difficulties in

this vein of numerical computations. Instead, we use the relationship between Ŝ and +
R( )3 2

ν
= −

−
≡

+ +

 ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )S

k

c k k

k
R M k Rˆ sinc

2
( ) (15)1

4
1

2
0
2

2 3 2
2

3 2

to reach ξS ( ) since +
R( )3 2 is already known. Similar to deriving equation (14), we find the

inverse Fourier transform of M k( )2 as





ξ
ν

ν
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−

= −
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−
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⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟
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⎢⎢⎢⎢⎢
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⎠
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ν
ξ ξ ξ ξ= − + −⎡⎣ ⎤⎦( )

k

c k
k k I(1 ) sgn( )sin ( ) (16)1

4
1 0

3 0 0 [ 1,1]

and apply the convolution theorem again on equation (15), to obtain

ξ ξ=
+( )( )S m R( ) * ( ). (17)2

3 2

It is noticed that functions m1 and m2 have explicit expressions with finite support −( 1, 1)
derived in equations (13) and (16) when we set π=k n20 . As a result, R and S that we
obtained from the integration equations are smooth, localized and integrable functions and
Fourier transform on these functions will be applicable once the parameters are chosen such
that π=ν

ν
+ n2k

c

(1 )1 1

2
1

. Illustrations of the solution of R and S solved from equations (14)–(17)

with numerical evidence will be shown in section 3. On the other hand, setting ∈
π


k

2
0 will

bring about not only difficulties in finding the values of ±R kˆ ( )0 through the iterative method
but also failure to derive the convolution equations (14)–(17) via inverse Fourier transform.
Later, an alternative scheme will be introduced to solve the system not satisfying ∈

π


k

2
0 and

the results will show that the non-decaying oscillatory tails are present in the solution of R and
S, which implies that only under condition π=k n20 the oscillation tails can be removed. In
the observations of experiments or simulations (where k1 and ν1 are known from the settings),
the traveling-wave solutions without oscillatory tails will be expected to exist with velocities

= ν
π

+
c ,

k

n

(1 1 )

2

1 1 where ∈ n .
From a physical perspective, the anti-resonance condition π=k n20 appears to signal a

matching between wavenumbers enabling translation of the energy within the underlying
granular lattice and the internal vibration wavenumber/frequency of each resonator such that the
energy can fully be transferred from one lattice site to the next and hence a genuine traveling
wave can be produced. On the other hand, when this condition is not satisfied some energy will
be retained within each resonator, oscillators producing a non-vanishing tail for the wave.

2.3. Finite domain with Fourier series

As a result of the necessity to explore realistic computations and observations, it is natural to
also consider the problem as restricted on a finite domain, i.e., for ξ ∈ −L L[ , ]. Then, we will
express the corresponding functions as Fourier series instead of using their Fourier trans-
forms. In this case, the bounded nature of our profiles, in conjunction with the finiteness of the
domains guarantees integrability. R, S and +R p can then be expressed in the form of Fourier

series ξ = ∑ ξ
=−∞

∞ π
f f( ) e ,k k

ki L
2
2 where ∫ ξ ξ= ξ

−
− π

f f ( )e dk L L

L k1

2
i L

2
2 . It can be shown when ξf ( )

is (piecewise) smooth in the interval −L L[ , ], then its Fourier series will converge to f in
−L L[ , ]. Since this condition is not difficult to achieve, we assume R, S and +R p are such
functions. Then equations (7) and (8) can be written as:

ν ν π ν π π+ − = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠( )k k c

L
k R

c
k c

L
k

L
k R

1
sinc

2
, (18)k

k
1 1 1

2
1

2

2 1
2

1

2
2 3 2

ν π− =⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟k c

L
k S k R , (19)k k1

2
1

2

1

where ∈ k .
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It is straightforward to observe that equations (18) and (19) are just discrete versions of
equations (11) and (12). However, the fact that k only assumes integer values can greatly
facilitate the avoidance of singularities in these equations and hence the unobstructed per-
formance of the relevant computations. Nevertheless, there are still requirements on Rk and

+R(( ) )k
3 2 so that equations (18) and (19) can be defined for any integer k:

(c) If = ∈ν
π π

+ kk L

c

L(1 1 )
0

1 1
2

2 2
and ≠k nL20 , = =+ + −π πR R(( ) ) (( ) ) 0k k

3 2 3 2L L
0 0 ;

(d) If = ∈
ν π π

kk L

c

L
2

1
2

2
1

2
, = =+ + −π πR R(( ) ) (( ) ) 0k k

3 2 3 2L L
2 2 .

If we assume ∈
π

k L
0 , then conditions (c)-(d) will not be violated and equation (18)

can be expressed as = =
ν

ν ν
π−

+ − + +

π

πR k R M Rsinc ( )( ) ˜ ( )k
k c k

c k k c k L k k k
( ( ) )

( ( ) )
2

2
3 2

1
3 2L

L

1
2

1
2

2
1 1 1

2
1

2
. Since

ξ = ∑ ξ
=−∞

∞ π
m M˜ ( ) ˜ ek k

k
1 1

i L
2
2 converges and ∫ δ=ξ ξ

−
−π π π

f g y f ge e d e
L L

L
j

j y
k

k y
j k

k
jk

1

2
i i ( ) iL L L

2
2

2
2

2
2 , the

equation = +R M R˜ ( )k k k1
3 2 can be rewritten using convolution as:

ξ ξ=
+( )( )R

L
m R( )

1

2
˜ * ( ), (20)1

3 2

where in this case the convolution is restricted to the domain −L L[ , ].
In order to get S, we define ξ = ∑ =

ν ν
π ξ

=−∞
∞

+ − π
π

m k˜ ( ) sinc ( )ek
k

c k k c k L
k

2 ( ( ) )
2

2
i

L

L
1

2
1 1 1

2
1

2

2
2

∑ ξ
=−∞

∞ π
M̃ ek k

k
2

i L
2
2 and similarly obtain the equation:

ξ ξ=
+( )( )S

L
m R( )

1

2
˜ * ( ). (21)2

3 2

Again, the convolution in the equation is only defined within −L L[ , ]. The above setting
realizes a way of finding ξR ( ) and ξS ( ) on a finite domain which will hereafter be denoted as
‘scheme III’. Being different from ‘scheme II’, this scheme is able to deal with the situation
where the traveling-wave solution has non-decaying oscillatory tails, namely, when ∈

π


k

2
0 .

But we should also bear in mind that this new scheme is only numerically implementable when
∈

π
k L

0 due to the singularities of M̃ k1 and M̃ k2 . From a physical perspective, for a solution to
exist in the finite domain, and for the ‘storing’ of energy to occur in its tails, the above condition
suggests that the resonator’s vibrational wavenumber should not coincide with one of the
(quantized, for the finite domain) wavenumbers accessible to the lattice. However, we should
point out here that these physical interpretations (this finite domain one, as well as the one for
the important anti-resonance scenario) may be worthwhile subjects for further investigation.

3. Numerical results of schemes

3.1. Discussion about schemes II and III

Scheme I does not involve any extra assumptions, aside from the proposed existence of
traveling waves. Our numerical implementation of this scheme also employs a discretization
to identify the relevant structure by means of a fixed point iterative solution of the associated
boundary value problem. Thus, it appears to be the one with the least amount of additional
assumptions (cf the discussions above) and as such perhaps the one most likely to converge to
the desired solutions. However, a complication here involves the potentially non-vanishing
boundary conditions on a finite domain and the identification, a priori, of a suitable initial
guess that may properly capture the behavior at ξ → ±∞.
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Scheme II, as indicated above, is appropriate only with the anti-resonance condition
π=k n20 . Under this condition, we start the algorithm with a triangle function and find it to

converge to a solution of R without oscillating tails. Other properties and condition
± =R kˆ ( ) 02 can be easily verified on the numerical solution of R then.
It is worth noting that although this scheme is derived in the infinite domain setting, all

the computations associated with it will be realized, by necessity, on finite domains.
In scheme III, k0 can assume any value except for ones such that ∈

π
k L

0 . Since the effect of
the domain size on the solution is considered here and L is involved explicitly in the equations, we
can always adjust L to make ∈

π
k L

0 , whatever the values of ν1, k1 and c are. It should be noticed

that we can vary L (except ∈
π

k L
0 ) while keeping all other parameters fixed to obtain a family

of solutions of ξR ( ) and ξS ( ) to equation (20) and (21). The study of the solutions as a family
would be an interesting direction itself and we’ll report our further investigation in the future.

With ∈
π


k

2
0 and ∈

π


k L0 , there are cases that can be calculated with both schemes II and
III. As numerical results suggest, these two schemes end up with the same solution when k0 is
eligible for both of them, naturally demonstrating a strong connection between the two different
approaches, which can be explained by the relationship between Fourier transform and Fourier
series. We note that when a function ξf ( ) has compact support −L L[ , ], the coefficients fk of its
Fourier series (periodic extension with period L2 ) are related to the Fourier transform of that

function f kˆ ( ) evaluated at certain points, i.e. fk =
πf

L

ˆ ( )

2

k

L . Thus it can be shown that

ξm ( )1 ∫= ∑ ξ
=−∞

∞
−

− π π
m y y( ( )e d )ek L L

L ky k1

2 1
i iL L

2
2

2
2 = ∑ π ξ

=−∞
∞ π

M k( )ek L L
k1

2 1
i L

2
2 = ∑ ξ

=−∞
∞ π

M̃ ek L k
k1

2 1
i L

2
2

ξ= m̃ ( )
L

1

2 1 , implying equations (14) and (20) are two equivalent formulations when both are

applicable. Similar arguments can be applied to show the connection between =m m̃
L2
1

2 2 and
the equivalence of equations (15) and (21) under the same conditions about L and k0.

Besides the anti-resonance situation ∈
π


k

2
0 , direct calculation also reveals that

∑

∑

ξ

π
π

π
π

π

π

ξ

= +
−

= − −
−

−

+ − +

= − −

+ − + + +

+ − −

≔

ξ

ξ

=−∞

∞

=−∞

∞

π

π

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜⎜⎜⎜ ⎛
⎝

⎞
⎠

⎞

⎠

⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎡

⎣

⎢⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎤⎦
⎡⎣

⎤⎦

( )
)

(
)

( )

( ) ( )
( )

L
m

L c

k

c
k

L
k

k

L

L c

k

k c

k

L

k

k c
k

L
k

k

L

k k L k

k c
c k k x

k x k x x k x

x k x

m

1

2
˜ ( )

1

2

1
1

1
sinc

2
e

1

2

1
sinc

2
2

1
cos 1

(1 cos( ))cos e

1

2
2 max(1 , 0)

2 sinc 1 sinc ( 1)

1 sinc (1 )

¯ ( ) (22)

k

k

k

k

1

2

1

2 2

0
2

2 i

2

1

0
2 4

2 1

0
2 4 2

0
2

0
i

0
2 4

2
0
2

1

1 0 0

0

1

L

L

2
2

2
2
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holds when + ∈
π

k L
0

1

2
. Similarly it can be shown that ξ =

ν
m̃ ( ) [2 max

L

k

k c

1

2 2 2
1

1 0
2 4

− ∣ ∣ + ∣ ∣ − ∣ + ∣ +x x k x x k x(1 , 0) 2 sinc( ) 1 sinc( ( 1))0 0 − ∣ − ∣ − ≔x k x m1 sinc( (1 )))] ¯0 2

ξ( ) under the same condition. However, there does not exist any explicit function form for the
limit of m̃i =i( 1, 2) as → ∞L since m̃i will encounter singularity points at = πL ,n

k0
where

∈ n .
Thanks to the use of the convolution theorem, implementation of schemes II and III has

become straightforward, provided the respective constraint conditions discussed above are
applicable.

If so, our numerical computations of scheme III indicate that the oscillating tails are
generically present when ∈

π


k

2
0 , as shown in figure 1. While if π=k n20 , ∈ n , as in the

case of figure 2 (including also computations from scheme I), the nondecaying oscillatory
tails are absent. For a better view of the classification of different anti-resonance/resonance
situations and corresponding results, please see table 1. Later in the subsection C, we discuss
more about these schemes and their numerical results as functions of the system’s parameters.

3.2. Further discussion about scheme I

Scheme III discussed above represents the most direct way of obtaining a numerically exact
(up to a prescribed tolerance) solution to the traveling wave problem, and typically it con-
stitutes our most direct technique, as illustrated e.g. in figures 1–2. Additionally, however, a
few iterations of this Scheme could be used to provide us with a good initial guess for
attacking the problem by means of the more direct equations (5)–(6) or equations (7)–(8). In
that vein, we find that upon defining ξ= −f c R̈ ( )2 δ ξ δ ξ+ + + + + −+ +R R( ( 1)) ( ( 1))p p

0 0

δ ξ ξ ξ− + − −+R k R S2( ( )) ( ( ) ( ))p
0 1 and ν ξ ξ ξ= − − −g c S k S R¨ ( ) ( ( ) ( )),2

1 1 where R and S
constitute the solution obtained from the iterations of scheme III, then f and g are generally
close to zero. This confirms that the schemes using Fourier analysis and the convolution
theorem actually provide solutions satisfying, up to a small residual (presumably created by
the discretization), equations (7) and (8).

We subsequently tried solving equations (7) and (8) using Newton’s method, utilizing the
solution from scheme III as a good initial seed for our iterations and as a means for obtaining
information about boundary conditions; i.e., this approach side-steps both concerns originally
present in the context of the direct method of scheme I. As indicated by the above residuals,
while the initial guess does not directly solve our system to the prescribed accuracy, it is
found to be close enough that the Newton’s method will generically, within our computations,
retain the relevant profile, rapidly converging to a solution of scheme I, as shown in figure 2.

Importantly, we have tested that ‘distilling’ this solution and its time derivative on the
lattice (i.e., returning from the variable ξ to the integer index n), we retrieve genuinely
traveling solutions of the original system of differential equations.

The above schemes provide us with a solution of the strain formulation problem for ξR ( )
and ξS ( ). However, an intriguing question concerns the reconstruction on the basis of these
fields of the corresponding displacement ones r and s since ξ ξ ξ= − −R r r( ) ( 1) ( ) and

ξ ξ ξ= − −S s s( ) ( 1) ( ). Assuming that we know ξr ( )0 , then ξ ξ− =r k r( ) ( )0 0

ξ ξ ξ+ − + − + + −R R R k( 1) ( 2) ... ( )0 0 0 . So in order to fully restore r and s, we have to
know their values in an interval of length 1. Assuming r and s are zero around the right end of
the domain, we restored r and s from R and S in figure 2, confirming that they indeed solve
equations (5)and (6). However, given this ‘ambiguity’ in the reconstruction, it should be
noted that r and s obtained in figure 2 are not the only possible solution pair. In fact, using
functions different from the solution of schemes II or III as initial guesses is also possible for
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Figure 1. The top (resp. bottom) panels show the solutions for ξR ( ) (resp. ξS ( ))
obtained from scheme III for π= −k 2 0.50 (dashed line), π2 (solid line), π +2 0.5
(dotted line). The right panels are the corresponding zooms of the oscillating tails of the
solutions in the left panels. Our computations indicate that when π≠k n20 where

∈ n , the oscillating tails are generically present. For these computations, L = 30.16
and = =c k 11 .

Table 1. Different situations we computed and their conditions

Case Domain Method Tails of the solution

anti-resonance ( ∈
π


k

2
0 ) infinite domain

−∞ ∞( , )
solved by scheme II rapidly decaying tails

resonance ( ∈
π


k

2
0 ) infinite domain

−∞ ∞( , )
Fourier transform and

scheme II fail
N/A

resonance ( ∈
π


k

2
0 and

∈
π

k L
0 )

finite domain
−L L[ , ]

singularities avoided,
solved by scheme III

nondecaying oscilla-
tory tails
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scheme I to converge to a solution. For example, the oscillating wave solutions illustrated in
figure 3 can also solve equations (5) and (6). In fact, it has been directly checked that both the
profiles of figure 2 and those of figure 3 when distilled on the lattice constitute genuine
traveling waves of the original dynamical problem. Nevertheless, the latter waves are less
relevant for our considerations from a physical perspective, as they do not constitute fronts at
the displacement and pulses at the strain level.

Lastly, at the level of the present considerations it is relevant to point out that the
identified solutions have been illustrated in figure 4 to exhibit genuine traveling with the
prescribed speed (of c = 1). This is done for the anti-resonant case of π=k 20 (associated with
the waveform of figure 2) in the top panels. Here there is no discernible tail. It has also,
however, been demonstrated in the bottom panels for the case of π= −k 2 0.50 . Here, as per
figure 1, we expect the tails to be present, yet they are not observable in a linear scale due to
their small amplitude. It is typically observed that the amplitude of the nanopteronic oscil-
lation tails is several orders of magnitude smaller than that of the main pulse. Importantly, this
feature has also been observed in the experiments of [62]. In fact, our numerical imple-
mentations of situations with different setups (including the setups for the experiments in
[62]) via schemes I or III also corroborated this feature. For this reason, we have used a
logarithmic scale in the bottom panels of figure 4, which can clearly showcase the nontrivial
traveling oscillatory tails.

3.3. Study of parameters k1 and ν1

Having illustrated how to obtain solutions which are equivalent between schemes II and III,
and how to utilize these to also obtain a direct solution from scheme I, we now turn to the
examination of parametric variations within these schemes. The canonical parameters whose
variations we consider are the linear coupling with the local resonator k1, as well as the

Figure 2. The left (right) panel showcases the solutions of R (S) from scheme I (solid
line) and scheme III (dotted line) for π=k 20 (these results are effectively identical).
Also, the corresponding solution in the case of displacements r (s) by scheme I (dashed
line) is obtained if we assume = =r s 0 at the right end of the domain. If we choose

π≠k n20 , the plots will be similar except that all of these solutions will have oscillating
tails. It can be seen that the solutions from schemes I and III are indistinguishable to the
eye, which confirms the reliability of the Fourier approach. Here we set L = 30.16 in
scheme III and = =c k 11 .
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effective mass ν1 of the resonator. We also note in passing that c will also be allowed to
change and the effects of such a variation will be discussed in this section. However, the
remark in section 2.1 and the relationship between these parameters imply that study of two
parameters will be essentially sufficient to capture the full picture and that the variation of the
third one can be indirectly inferred from them.

When k0 is a multiple of π2 and gets fixed, consideration of ξm ( )1 proves rather
insightful towards understanding the effects of the parameters k1 and ν1, since the properties
of the solution of equation (14) are determined by those of the kernel ξm ( )1 . If ν1 is fixed and
k1 and c vary to retain the same value of k0, m1 will only change in overall amplitude and a
family of solutions differing in amplitudes and speeds will be obtained, as we mentioned
above in section 2.1. Suppose we fix k1 and change ν1 and c, the shape and the properties of

m1 can change significantly. When ⩾ +c k k

k

(1 )1 0

0
2

, ξm ( )1 is increasing on −∞( , 0) (hence

decreasing on ∞(0, )) and always non-negative. There also exists ∈ +c (0, )k k

k
0

(1 )1 0

0
2

such

that ξm ( )1 is non-negative on −∞ ∞( , ) if and only if c⩾ c0. Though not necessary, being
non-negative and increasing on −∞( , 0) are properties of the kernel that in our numerical
computations appear to facilitate the convergence of scheme II towards a solution. If k1 and ν1

vary at the same time and c remains unchanged, it is equivalent to considering the previous
two cases together and we do not include the corresponding details here.

If we choose π≠k n20 but still assign it a constant value, we will discuss the effects of ν1

and k1 on the solution of R based on m̃1 and M̃ k1 rather than m1 since scheme II becomes

inapplicable in this case. Though the period of the oscillating tails is always π
k

2

0
since k0 is fixed,

the amplitude of the tails can be very sensitive to other parameters. First, only changing k1 and c
to keep the value of k0 fixed can generate a family of solutions with same shape but different
amplitudes, just as described in the remark of section 2.1. When c is fixed and k1 and ν1 vary,

= − π
− πM k k˜ (1 )sinc ( )k c c k k L1

1
1

1

( ( ) )
2

L
2 2

0
2 2

is either always increasing or always decreasing over k1

for any integer k. Moreover, ξ∣ ∣ξ mmax ˜ ( )1 , or = ∑ = ∑ π
=−∞

∞
=−∞

∞m M k˜ (0) ˜ sinc ( )k k k c L1 1
1 2
2

Figure 3. The left (right) panel shows another possible, yet less physically interesting,
solution of r (s) obtained from scheme I. Here we set = =c k 11 , π= +k 2 0.60 .
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− ∑ π
=−∞

∞
− πk ksinc ( )k c k k L1
1

( ( ) )
2

L
4

0
2 2

, always grows (or decays) as k1 increases. Again, the case of

varying c and ν1 is just the composition of the previous two cases.
In the discussion above, we assumed k0 as a constant parameter while other parameters

were varied to maintain the constant value of k0. In the following discussion of this sub-
section, we will allow k0 to vary and change other parameters freely. If we fix c and k1 and
only allow the changing of ν1, we find that = −

ν
π

+ − πM k˜ (1 )sinc ( )k c

k

k ck L1
1

(1 1 ) ( )
2

L
2

1

1 1
2 for any

integer k (hence m̃ (0)1 ) will decrease as ν1 increases from
−π

k

k( )n

cL

1

2
1

to
−π+

k

k( )n

cL

1
( 1) 2

1

for any

∈ n . Similarly, we can show that M̃ k1 increases as k1 increases from
ν

π
+ ( )n

Lc

1

(1 1 )
2

1
to

ν
π

+
+( )n

Lc

1

(1 1 )

( 1) 2
1

or c2 decreases from ν+
π

k(1 1 ) ( )L

n1 1
2 to ν+

π+k(1 1 ) ( )L

n1 1 ( 1)
2. These

strict monotone properties of m̃1 are revealed in figure 5. The figure also illustrates the smooth
behavior of m̄i versus the singular (at the resonance points) behavor of m̃1 in the tails and how

these two functions become identical at + ∈
π

k L
0

1

2
.

Figure 4. The top panels show the space–time evolution of the traveling wave solution
of xn and yn to equations (9) and (10) for the anti-resonance case π=k 20 from scheme
I, namely Newton’s method with initial guess from scheme III. The bottom panels
illustrate the corresponding space–time evolutions on a logarithmic scale for the case

π= −k 2 0.50 . Here, it can be clearly seen that the oscillation persists in the
background. In these figures, we have set c = 1 and =k 71 .
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Figure 5. The top left panel shows how m̃ (0)1 (solid line) and m̄ (0)1 (dashed line) change
over k1 and the top right panel shows the change of the amplitude of oscillating tails of m̃1

(solid line) and m̄1 (dashed line) as k1 grows. The middle and bottom panels follow the
same structure as the top row but reveal the results when varying ν1 and c, respectively.

The figures show that m̃1 blows up every time ∈
π

k L
0 but m̃ (0)1 features strictly

increasing or decreasing trend between these singularity points (where parameters satisfy
∈

π
k L

0 ). It should be noted that the dotted vertical lines indicate the singularity points

and are added just to better illustrate the boundaries of each interval. These figures also
show m̃1 intersects with m̄1 when + ∈

π
k L

0
1
2

or π=k n20 and especially at π=k n20

the kernel m̃1 loses its oscillating tails (marked by green circles in the right panels). In
these computations we set c = 1, =k 11 and ν = 0.031 when they are constants.
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Due to the nature of the convolution equation ξ ξ= =+R m R( ) ( *( ) )( )3 2

∫ ξ −
− +m y R y y( )( ( )) d

L

L 3 2 with m standing for m̃i or m̄i , changes in the kernel m will be
translated into ones for the solution R, as will be explained heuristically below. Based on our
knowledge of m and R, we know they are symmetric functions and (arbitrarily splitting them
into a core and tail segment) they can be written as

∪ξ ξ ξ ξ ξ ξ ξ= + ≔ +− − −m m m m I m I( ) ( ) ( ) ( ) ( ) ( ) ( ), (23)[ ] ( ) ( )I O L L L L L L, , ,1 1 1 1

∪ξ ξ ξ ξ ξ ξ ξ= + ≔ +− − −R R R R I R I( ) ( ) ( ) ( ) ( ) ( ) ( ) (24)[ ] ( ) ( )I O L L L L L L, , ,2 2 2 2

with − = = − = =m L m L R L R L( ) ( ) ( ) ( ) 0I I I I1 1 2 2 . Then the convolution equation can be

considered as the sum of 4 parts ∫ξ ξ= − = + + +
− +R m y R y y A B C D( ) ( )( ( )) d ,

L

L 3 2 where

∫ ξ≔ −
− +A m y R y y( )( ( )) d

L

L
I I

3 2

1

1 , ∫ ξ≔ −
− +B m y R y y( )( ( )) d

L

L
I O

3 2

1

1 , ∫≔
ξ

ξ

−
+

C m y( )
L

L
O

2

2

ξ − +R y y( ( )) dI
3 2 and ∫ ξ≔ −

− +D m y R y y( )( ( )) d
L

L
O O

3 2 . If we only focus on the cases

relevant to our numerical results, we will also assume ≫ ≫ >ξ
ξ

ξ
ξ

∣ ∣
∣ ∣

∣ ∣
∣ ∣

ξ

ξ

ξ

ξ

R

R

m

m

L

L

L

L

max ( )

max ( )

max ( )
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I

O

I

O 1 2
.

With all these conditions, it can be shown that the maximum of the solution
ξ∣ ∣ =ξ R Rmax ( ) (0) = ∫ = + + + ≈

− +m y R y y A B C D A( )( ( )) d
L

L 3 2 = ∫−
m y( )

L

L
I

1

1

+R y y( ( )) dI
3 2 . As a result, when mO is changed to =m qmO O,new (assuming =q O (1) or q

such that mnew and Inew still satisfy our conditions) and mI is fixed, the maximum of the
solution Rnew (namely R (0)new ) will almost remain at its (previous) value R (0). While if

=m qmI I,new and mO is unchanged, RI,new will be close to R
q I
1
2

thus ≈R R(0) (0)
qnew
1
2

.

Suppose ξ0 satisfies ξ ξ= ∣ ∣ξR R( ) max ( )O O0 and ξ> ∣ ∣ > +L L L0 1 2, then the amplitude of

the tails ∫ξ ξ= + + + = + + ≈ = −
ξ

ξ

−
+

+R A B C D B C D C m y R y y( ) ( )( ( )) d
L

L
O I0

3 2

2

2

because A becomes 0 and C is dominant over the remaining contributions. By arguments
similar to the above, =m qmO O,new and =m mI I,new will imply ξ ξ≈R qR( ) ( )new 0 0 . If

=m mO O,new and =m qmI I,new , then ξ ξ≈R R( ) ( )
qnew 0
1

new 03
since ξ ≈R R( )I q I,new

1
3

.
Although the effects of parametric variations on the kernel m, which include changing the

shape of ξm ( )I and the period of ξm ( )O , are much more complicated than merely introducing
multiplicative factors on center or tails, the properties above can still be helpful towards
predicting the changes of R and they are straightforward to apply. As figure 6 shows, when ν1

varies in a chosen range and m̃ (0)1 changes slowly, the tails of m̃1 reflect the form of the
corresponding tails of R very well. At the same time, it should be noticed that R (0) seems not
very sensitive about the points ∈

π


k L0 even though m̃ (0)1 blows up quickly when
approaching those points.

4. Conclusions and future challenges

In the present work, we have revisited a topic of intense current theoretical, numerical and
experimental investigation, namely the formation of weakly nonlocal traveling waves in
granular chains with local resonators. We attempted to provide a systematic insight on the
different possible numerical methods that can be used to identify such traveling waves.
Additionally, we highlighted the different challenges that each of these methods may
encounter. In total, we analyzed three methods. The first consisted of a direct solution of the
co-traveling wave boundary value problem for the associated differential advance-delay
equation. The second involved the Fourier representation of this problem and considered an
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inverse Fourier transform of the problem to provide an alternative formulation of the real
space problem. This idea was carried out using Fourier transforms defined on the infinite
domain. Finally, the third one considered the Fourier series version of the second method to
extend it to more (and indeed rather generic) situations. The difficulties existing in each case
were identified and explored, including the limitations of the Fourier transform (which is
restricted to the anti-resonance case) and of the Fourier series, the need for a suitable initial
guess for the first method and the boundary conditions thereof, as well as the issue of
converting the strain into a displacement formulation. We explored how the use of finite
domains under generic non-resonance conditions may enable the convergence of the third
scheme (and how the anti-resonance enables the convergence of the second scheme to a
similar solution). We then used good initial guesses from these schemes to lead to convergent
solutions of the first scheme and were able to reconstruct based on that also the corresponding
displacement profiles. An interesting byproduct of the parametric variations considered was
the ability to identify anti-resonance parameter values for which the generic existence of tails
(in our weakly nonlocal solitary waves) was annulled, enabling the identification of regular,
rapidly decaying (on each side) solitary waves.

While we believe that the above analysis may shed a partial light on the identification of
traveling solitary wave solutions, there remains a sizable number of open problems in this
direction. Among the significant challenges posed by the experimental observations of [62]
we note the following. For different parameter values than for the ones where the weakly
nonlocal solutions were identified, it was found that a breathing while traveling behavior was
possible. It would be extremely interesting to try to identify such breathing traveling waves
and to explore the recurrence type of dynamics that appears to lead to their formation.
Furthermore, in [62], the nature of experimental excitations led to the formation of single-
sided (i.e., bearing tails on only one side) tails. Exploring the potential of such exact solutions
is an interesting question in its own right. Another aspect that was briefly explored in [62] was
the inclusion of a higher number of resonators. In the case of more resonators, the possibility

Figure 6. The left panel shows the changing of amplitude of R (or R (0)) as k1 grows
while the right panel reveals the agreement between the changing of tails of R and that

of tails of m̃1. In the latter panel, the solid red line is for
ξ

ξ

∣ ∣
∣ ∣

ξ ν

ξ ν

R

R

max ( )

max ( )

O

O

, 1

, 1,0
as ν1 changes

and the changing
ξ

ξ

∣ ∣
∣ ∣

ξ ν

ξ ν

m

m

max ˜ ( )

max ˜ ( )

O

O

, 1 1

, 1,0 1
is described by the black dashed line. Here

ν = 0.025 751,0 , c = 1 and =k 11 are the parameters we used in the computation.
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of steady (or even breathing) traveling waves was found to be less typical. Instead, it was
found that decay of the original pattern’s amplitude was the most commonly observed sce-
nario. Identifying these cases from the dynamical systems/Fourier analysis perspective pre-
sented herein and more systematically examining the effect of corresponding parametric
variations would constitute a particularly relevant task for future work.
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