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Abstract

We construct and study a model for intracellular calcium wave propagation, with par-

ticular attention to pancreatic acinar cells. The model is based on a model of the

inositol trisphosphate (IP3) receptor, which assumes that calcium modulates the bind-

ing affinity of IP3 to the receptor. Two versions of the model, one simpler than the

other, are studied numerically. In both versions, solitary waves in the excitable regime

arise via homoclinic bifurcations in the traveling wave equations. As the background

concentration of IP3 is increased, the wave speed increases, and for some values of the

IP3 concentration, the initial pulse gives rise to secondary pulses that travel in both di-

rections. This can give rise to irregular spatio-temporal behavior, or to trains of pulses.

In the simpler model, these secondary waves are related to the presence of a T-point,

a heteroclinic cycle, and an associated spiral of homoclinic orbits, which terminate the

branch of homoclinic orbits.
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1 Introduction

Traveling waves of increased cytoplasmic calcium (Ca2+) concentration have been ob-

served in many cell types, and are widely believed to be one important mechanism by

which a group of cells, or a single large cell, is able to coordinate behavior over a large

region (Thomas et al., 1996). Thus, Ca2+ waves, both within a single cell, and between

cells, have been studied in detail by both experimentalists and theoreticians, and there

exists a large body of work on the mechanisms underlying such wave propagation.

The pancreatic acinus is a particularly interesting system in which to study Ca2+

waves (Nathanson et al., 1992; Kasai, 1995; Yule et al., 1996; Pfeiffer et al., 1998).

Firstly, the pancreatic acinar cell is electrically non-excitable, and the Ca2+ wave re-

sults (at least in large part) from the release of Ca2+ from the endoplasmic reticulum.

Secondly, each acinus consists of a number of cells arranged in ring around a central

duct, and the Ca2+ wave travels from cell to cell around this ring in a characteristic

fashion (Yule et al., 1996). The function of this intercellular Ca2+ wave is not entirely

clear, although it appears to increase the efficiency of enzyme secretion of the acinus,

presumably by coordinating the secretion of each individual cell with that of its neigh-

bors. Thirdly, different agonists cause different wave responses (Lawrie et al., 1993;

Thorn et al., 1993). This, in turn, results from the fact that different agonists cause

different oscillatory responses in each individual cell. Application of intermediate doses

of acetylcholine (ACh) or carbachol (CCh) causes high-frequency oscillations superim-

posed on a raised baseline, while application of cholecystokinin (CCK) causes baseline

oscillations with a much larger period (Yule et al., 1991).

Both types of agonists cause oscillations via the production of the intracellular

signaling messenger inositol (1,4,5) trisphosphate (IP3). Binding of the agonist to the

cell surface receptor activates a G-protein, resulting in the activation of phospholipase C

(PLC) and the subsequent production of IP3 from phosphatidylinositol bisphosphate.

IP3 diffuses through the cell cytoplasm and binds to IP3 receptors located on the

endoplasmic reticulum (ER). These receptors, which also act as Ca2+ channels, then

open, releasing Ca2+ from the ER. Subsequent inactivation of the IP3 receptors, and

removal of Ca2+ from the cytoplasm by membrane pumps, then returns the Ca2+

concentration to its resting value. If the concentration of IP3 is in the correct range,

3



it can initiate a cycle of release and uptake of Ca2+ from the ER, resulting in Ca2+

oscillations.

Although different agonists cause markedly different oscillatory behavior, it is not

clear how this can occur, given that they both work through the production of IP3, and

the opening of the IP3 receptor. We addressed this question in a previous paper, in

which we presented a model for Ca2+ oscillations in pancreatic acinar cells, and showed

how the model can reproduce both long-period and short-period Ca2+ oscillations. Our

previous model of the IP3 receptor was based on the binding diagram shown in Fig.

1. It was assumed that the IP3 receptor could exist in one of four different states:

S - shut; O - open; I1 - inactivated but not phosphorylated; and I2 - inactivated and

phosphorylated. The various transition rates were chosen arbitrarily to give the correct

qualitative behavior. Thus, k1 and k2 were chosen as increasing functions of c (where

c denotes [Ca2+]), and k3 was chosen to be a decreasing function of c. In other words,

Ca2+ increases both the rate of receptor opening, and the rate of receptor inactivation,

but decreases the rate at which the receptors recover from the inactivated state.

We also proposed that agonists such as CCK can cause much greater phosphory-

lation of the receptor than do agonists such as ACh, and thus shunts the receptor

through the I2 state. We showed that, if the action of the phosphatase is slow enough,

this can result in long-period basline oscillations, while, if the I2 state is bypassed,

short-period, raised-baseline oscillations can occur. Thus, the model can explain both

kinds of oscillations ocurring through a single type of receptor. In LeBeau et al. (sub-

mitted) we present experimental data to support our model, and test a number of

model predictions. Here, we shall focus our attention on the model in the absence of

receptor phosphorylation, and thus our results will be applicable only to waves induced

by ACh or CCh. Waves in the model with phosphorylation will be studied in a later

paper.

One of the least attractive aspects of our previous model was the fact that the

expressions for k1, k2 and k3 were not based on underlying physiological principles.

They were chosen so that the model agreed with the available experimental evidence,

but the functional forms were themselves arbitrary. Here, we aim to improve this

aspect of the model by showing how the same model can be derived from a more

detailed and realistic model of the IP3 receptor. The basis of the new model is the
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proposal (Hajnóczky and Thomas, 1997; Cardy et al., 1997) that Ca2+ regulates the

interconversion of the IP3 receptor between two different states, one of which has a high

affinity for IP3, the other a low affinity. Here, we show that our previous model can be

derived from such an assumption, and thus we provide a mechanistic interpretation of

what was, originally, a more phenomenological model.

Our ultimate goal is the study of intercellular Ca2+ waves in a pancreatic acinus.

However, before such a goal can be realised, it is necessary first to understand the

properties of traveling waves in the model in a homogeneous medium. Thus, here we

study the behavior of traveling waves in the model in some detail.

2 The model equations

2.1 The model of the IP3 receptor

Instead of making the ad hoc assumption that the rate constants for conversion between

the receptor states are functions of the Ca2+ concentration, we instead assume, as

described above, that Ca2+ regulates the interconversion of the receptor between two

different shut states. We also make a similar assumption for the open and inactivated

states. This extended model of the IP3 receptor is shown schematically in Fig. 2A.

There are two different shut states, S and S̃, and Ca2+ regulates the interconversion

of the receptor between these two states. Similarly, there are two open, and two

inactivated states. Since IP3 can bind to either shut state, and convert it to an open

state, the concentration of Ca2+ will determine the rate at which receptors are opened

by IP3. In a similar fashion, [Ca2+] controls the rate of receptor inactivation, and the

rate of recovery from inactivation.

We now assume that the interconversion between S and S̃ is fast compared to the

conversion of S or S̃ to O, and similarly for O and I1. It is a simple matter to express

this in terms of a formal perturbation expansion, but as this adds nothing to the

conclusions we do not do so here. Letting S denote the fraction of receptors in state

S, and similarly for the other states, we then obtain the relationships

cS = R1S̃, cO = R3Õ, cI1 = R5Ĩ1, (1)
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where c denotes [Ca2+], and Ri = r−i/ri for i = 1, 3, 5. Letting

x = S + S̃, (2)

y = O + Õ, (3)

z = I1 + Ĩ1, (4)

and using the law of mass action, it follows that

dx

dt
= O(k−1 + r−2)− k1pS − r2pS̃ + k3I1 + r6Ĩ1, (5)

dy

dt
= r2pS̃ + k1pS − (r−2 + k−1)O − k2O − r4Õ, (6)

where p denotes the concentration of IP3. Note that a differential equation for z is

unnecessary, as we have the conservation law x + y + z = 1. If we then use the

constraints (1), we get

dx

dt
= φ−1(c)y − pφ1(c)x + φ3(c)z, (7)

dy

dt
= pφ1(c)x − φ−1(c)y − φ2(c)y, (8)

z = 1− x− y, (9)

where

φ1(c) =
k1R1 + r2c

R1 + c
, (10)

φ−1(c) =
(k−1 + r−2)R3

c + R3
, (11)

φ2(c) =
k2R3 + r4c

R3 + c
, (12)

φ3(c) =
k3R5 + r6c

R5 + c
. (13)

We shall call this model, the three-state model.

Clearly, (7)–(9) are equivalent to the binding diagram shown in Fig. 2B, which is

itself the same as the binding diagram of the original model (Fig. 1), with the exception

of the transition from the open state to the closed state, which is a function of c in the

new version of the model, but a constant in the old version.
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Note that, by appropriate choice of parameters, φ1, φ2 and φ3 can be either increas-

ing or decreasing functions of c. For instance, if k1 < r2 then φ′1(c) > 0 and thus

an increase in c increases the rate of receptor opening. The parameters (Table 1) are

chosen so that the present model agrees with the model of LeBeau et al. (submitted),

and thus has the correct steady-state open probability, the correct time course for re-

ceptor activation and inactivation, and exhibits oscillations with the correct period and

qualitative shape.

2.2 Steady-state open probability

We shall make the simplifying assumption that the IP3 receptor is made up of four

independent, indentical subunits, and that each subunit obeys the dynamics described

above. Hence, the open probability, P , is given by P = y4, with a steady value, Ps,

given by

Ps =

(
θ1(c)p

p + θ2(c)

)4

, (14)

where

θ1 =
φ3φ1

φ1φ2 + φ1φ3
, (15)

θ2 =
φ3φ−1 + φ3φ2

φ1φ2 + φ1φ3
. (16)

For the parameters used here (see Table 1) Ps is a bell-shaped function of c, and

θ′2(c) < 0. The bell-shaped nature of the steady-state open probability curve is a

feature that has been noted experimentally by a number of groups (Bezprozvanny

and Ehrlich, 1995; Finch et al., 1991; Parys et al., 1992; Dufour et al., 1997), and

the fact that θ2 is a decreasing function of c means that the affinity for IP3 of the

receptors increases with increasing c. This has been shown to be the case for Type

III IP3 receptors (Yoneshima et al., 1997), which are the predominant receptor type

in pancreatic acinar cells. We thus predict that, for Type III receptors, the peak of

the bell-shaped steady-state open probability curve moves to the left as p increases.

Type I IP3 receptors have an IP3 affinity that decreases as Ca2+ increases (Yoneshima

et al., 1997), and we have shown that, in this case, the model predicts that the peak

of the steady-state open probability curve will move to the right as p increases. This

is indeed what is seen experimentally (Kaftan et al., 1997).
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2.3 A two-variable receptor model

It will be useful to reduce the three-state model to a simpler version by assuming

that opening of the receptor by IP3 binding is a fast process compared to receptor

inactivation and recovery from inactivation. This is a standard assumption used in

many models (Atri et al., 1993; Li and Rinzel, 1994; Keizer and DeYoung, 1994; Sneyd

et al., 1995; Tang et al., 1996) and appears to agree well with experimental data. With

this assumption we have the constraint

pφ1x = φ−1y. (17)

Thus, letting h = x + y, and recalling the conservation law which now takes the form

h + z = 1, we get
dh

dt
= φ3(1− h)−

(
φ1φ2p

φ1p + φ−1

)
h. (18)

The open probability of the receptor is now given by

P =

(
phφ1

φ1p + φ−1

)4

. (19)

We shall call this model the two state model.

2.4 Incorporation into a whole-cell model

The above models of the IP3 receptor can be incorporated into models for intracellular

Ca2+ dynamics by assuming that Ca2+ can enter the cell via two pathways (through

the IP3 receptor, flux Jreceptor, or through a generic leak from outside the cell or from

the ER, Jleak), and is removed from the cytoplasm by the action of Ca2+ ATPase pumps

(with flux, Jpump). Thus, conservation of Ca2+ gives

dc

dt
= Jreceptor − Jpump + Jleak. (20)

In choosing functional forms for Jpump and Jleak we follow previous models (reviewed

in Sneyd et al., 1995) and assume that Jleak is just a specified constant, while the Ca2+

ATPases work in a cooperative manner, with a Hill coefficient of 2, and thus

Jpump =
Vpc

2

K2
p + c2

, (21)
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for some constants Vp and Kp. The flux through the receptor is given by the open

probability multiplied by some scaling factor, and thus

Jreceptor = kfy
4, (22)

for some constant kf . Jleak is assumed to be a constant. Here, we use the same

parameter values as previously (LeBeau et al., submitted), and these are given in

Table 1.

3 Temporal oscillations

We are interested in the appearance and the behavior of oscillations as p varies. In

general, p will depend on the concentration of agonist applied to the cell, and thus,

in the physiological situation, is probably the most important controlling parameter.

Oscillatory behavior in the models is most easily summarized by bifurcation diagrams,

using p as the main bifurcation parameter. All bifurcation figures in this paper were

constructed numerically using AUTO (Doedel, 1986), as implemented in xppaut by B.

Ermentrout (http://www.pitt.edu/ phase).

In the three-state model (Fig. 3) oscillations arise via a subcritical Hopf bifurcation

and disappear again via a supercritical Hopf bifurcation. The branch of unstable orbits

combines with the branch of stable orbits in a saddle-node of periodics bifurcation, at

which point the period of the oscillation is large, as shown in the inset to the figure.

Similar behavior occurs in the two-state model (Fig. 4). Here, the curve of steady

states has folded up, forming two limit points, and this has broken the branch of

periodic orbits into two different branches. On both branches, periodic orbits arise

via a homoclinic bifurcation and end in a subcritical Hopf bifurcation. Note that, in

both the three-state model and the two-state model, as p is increased oscillations first

occur with a large period but the period then quickly decreases. This agrees well with

experimental observations. It is known that although the application of ACh usually

results in raised-baseline, high frequency oscillations, application of low concentrations

of ACh can sometimes result in low-frequency baseline spiking (Petersen et al., 1991)

as predicted by both these models.

Temporal oscillations in these models, comparison with experimental data, and
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experimental tests of the model are discussed in greater detail in LeBeau et al. (sub-

mitted). Here, we focus on the properties of traveling waves in these models.

4 Traveling waves

It is widely believed that, in many situations, traveling waves of Ca2+ are the result

of the diffusion of Ca2+ between release sites. According to this hypothesis, the cell

cytoplasm forms either an excitable or an oscillatory system, in either of which cases

the linking of release sites by diffusion can lead to coordinated waves of high Ca2+ con-

centration. Although this is certainly not the case for all types of observed Ca2+ waves

(Sneyd et al., 1995; Jafri and Keizer, 1994) it is likely to be an accurate assumption

for modeling intracellular and intercellular Ca2+ waves in pancreatic acinar cells (Yule

et al., 1996).

Thus, to study traveling waves in the model, we simply include a term describing

the diffusion of Ca2+, and thus, in one spatial dimension,

∂c

∂t
= Dc

∂2c

∂x2
+ Jreceptor − Jpump + Jleak, (23)

where Dc is the diffusion coefficient of Ca2+. In formulating the model in this way

we are making some implicit assumptions. Firstly, we are ignoring multiple spatial

dimensions, in the belief that a detailed understanding of wave propagation in one

spatial dimension is a necessary prerequisite for the study of more complex waves.

Secondly, we are ignoring the complicating effects of Ca2+ buffers (Wagner and Keizer,

1994; Sneyd et al., 1998) and just using an effective diffusion coefficient. Until the

properties of Ca2+ buffers in pancreatic acinar cells are characterized in more detail, this

is the simplest assumption to make. Finally, we are ignoring any effects of heterogeneity

within a single cell, an assumption that cannot be justified on physiological grounds, as

it is well known that pancreatic acinar cells are highly polarized. However, the effects

of cell polarization on wave propagation cannot be understood until wave propagation

in a homogeneous medium is understood, and thus the present model should be viewed

as a first step for the study of more realistic models.
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4.1 Waves in the two-state model

We write the model in the traveling wave coordinate ξ = x + st, where s is the

wave speed, and look for homoclinic orbits of the resulting set of ordinary differential

equations, as such orbits correspond to isolated traveling wave solutions of the original

partial differential equation. (Here, all numerically computed homoclinic orbits are

actually just orbits of period 10,000. Computation of the branch of periodic orbits of

period 1,000 gives the same result, which implies that the period 10,000 branch gives

a good approximation of the position of the homoclinic branch. However, it should be

noted that at no stage do we actually prove the existence of the homoclinic branch.)

Based on previous work (Sneyd et al., 1993), we expect the homoclinic orbits to arise as

the limit of periodic orbits as the period tends to infinity. Hence, we begin by looking

for periodic orbits arising from Hopf bifurcations in the traveling wave equations. The

traveling wave equations are

c′ = d, (24)

Dcd
′ = sd− Jreceptor + Jpump − Jleak, (25)

sh′ = φ3(1− h)−
(

φ1φ2p

φ1p + φ−1

)
h, (26)

where a prime denotes differentiation with respect to ξ.

Some of the bifurcations of this three dimensional system are illustrated in Fig. 5.

In panel A we show a curve of Hopf bifurcations (labeled HB), and three branches of

homoclinic orbits (labeled HC), in the p, s phase plane. Note that here we are treating

the wave speed s as a secondary bifurcation parameter. Panels B and C show magnified

views of two particular areas of panel A, and we will discuss them later. The numbered

crosses refer to points for which we plot the homoclinic orbits in later figures. This

lets us determine how the homoclinic orbits change as we move along the different

branches.

4.1.1 Behavior as s →∞

First, we see that the behavior as s → ∞ is exactly that of the model in the absence

of diffusion (cf. Fig. 4), as expected from the general theory (Maginu, 1985). Thus, for

large values of s there are two Hopf bifurcations, and two homoclinic bifurcations. The
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branch of periodic orbits that originates on the rightmost Hopf bifurcation ends in a

homoclinic bifurcation on branch B, while the branch of periodic orbits arising from

the leftmost Hopf bifurcation extends only a short distance to the left before ending

in a homoclinic bifurcation on branch C, as shown in Fig. 4. These homoclinic orbits

for large s are of little interest as they correspond to waves which, on a finite domain

of physiological size, look more like spatially independent responses.

4.1.2 The branch of Hopf bifurcations

For any fixed value of s we can find the values of p at which the Hopf bifurcations

occur, and then these bifurcation points can be continued in the s, p phase space to

give the curve labelled HB in Fig. 5A. The most important thing about this curve is

the fact that it forms a loop, and thus has two limit points (labeled LP1 and LP2).

These limit points exist only because the curve of steady states itself has two limit

points (i.e., it is an S-shaped curve) as shown in Fig. 4. The limit points of the HB

curve must necessarily coincide with the limit points of the steady-state curve, i.e., the

points LP are when a Hopf bifurcation occurs at a limit point of the steady state curve.

For values of p between LP1 and LP2, there are three steady-state solutions.

When the Hopf bifurcation coincides with the limit point of the steady state curve

we get a codimension two bifurcation, with eigenvalues 0 ± 0.137i and 0 at LP1, and

eigenvalues 0 ± 0.191i and 0 at LP2. Analysis of such codimension two bifurcations

is a standard part of textbooks on dynamical systems (for example Wiggins, 1990).

Here, we merely note that at LP1 there exists a branch of homoclinic orbits (branch

A) which exists on both sides of LP1, a branch of Hopf bifurcations (HB), and a branch

of saddle-node bifurcations (not shown explicitly in the diagram). The same occurs

for LP2, except that now the branch of homoclinic orbits (branch C) appears to exist

only on one side of LP2, and it has a markedly different character from the homoclinic

branch close to LP1. We shall discuss this in more detail later.

4.1.3 Homoclinic branch A: upper part

For intermediate values of s, the branch of periodic orbits that originates on the right-

most branch of Hopf bifurcations ends in a homoclinic bifurcation on branch A. This is

illustrated in Fig. 6, where we show the amplitude and period of the periodic orbits as

12



functions of p, for fixed s = 12. The dashed line denotes the curve of steady states, and

the solid lines denote the maximum and minimum of c over a periodic orbit. Stability

is not indicated, as the stability of the periodic waves in the traveling wave variable is

unrelated to the stability of the waves as solutions of the partial differential equation.

The period is shown in the inset.

When s = 12, the homoclinic orbit on branch A occurs at a saddle focus, with

eigenvalues −0.075 ± 0.0647i and 0.537. This is the classic situation first studied by

Sil’nikov (1965) and then by Glendinning and Sparrow (1984). As expected from the

work of Glendinning and Sparrow (1984), close to the homoclinic orbit the period is

not a single-valued function of p; instead, there are an infinite number of limit points

(of which only the first few are apparent from the inset in the figure) which occur as

the branch of periodic orbits winds back and forth across the value of p at which the

homoclinic bifurcation occurs. Again, we are not too concerned with the complexities

of the flow around the saddle-focus homoclinic orbit, as numerical simulations of the

PDEs indicate that only the principal homoclinic orbit is important, as we shall show

later.

The upper part of homoclinic branch A ends at a T-point (Glendinning and Spar-

row, 1986) a point where a heteroclinic cycle exists between a saddle point and a saddle

focus. This is shown in magnified view in Fig. 5B. Note that this is possible because

once p gets to the right of LP1, there are three steady states.

In Fig. 7 we show how the homoclinic orbit changes as we move along branch A

towards the T-point. At point 1 (the place of which is shown in Fig. 5A) the homoclinic

orbit is a simple loop, with only a small oscillatory tail which results from the fact that

it occurs at a saddle focus as described above. However, as p increases, two more

steady states appear in a saddle-node bifurcation; one is a saddle point, the other is an

unstable node. The homoclinic orbit now makes a brief excursion to the saddle point

before eventually returning to the saddle focus to complete the cycle (orbit 2; also see

Fig. 5B). Moving closer to the T-point (orbit 3), the homoclinic cycle now travels close

to the saddle point, spending a long time in its vicinity, before finally returning to

the saddle focus. Note that the oscillatory nature of the saddle focus is much more

apparent in orbits 2 and 3.
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4.1.4 The T-point and homoclinic branch B

Right at the T-point the homoclinic orbit on branch A intersects the saddle point,

forming a heteroclinic cycle, as shown in Fig. 8. Panel A shows the whole cycle, while

panel B shows a magnified view of the cycle in the vicinity of the saddle focus (SF) and

the saddle point (SP). Such T-points have been studied by Glendinning and Sparrow

(1986) who showed that at such points there exists a spiral of homoclinic orbits in

the appropriate two-dimensional phase space. As expected, we see such a spiral of

homoclinic orbits (branch B, as shown in Fig. 5B).

It thus follows that, at the T-point, there are two branches of homoclinic orbits,

one following a spiral path, the other a linear one. It is interesting to see how such

branches can occur. From the analysis of Glendinning and Sparrow (1986) we can

see that the spiral of homoclinic orbits occurs when the homoclinic orbits begin and

end at the saddle point SP. The spiral nature results from the spiral nature of the

trajectories in the vicinity of the saddle focus SF. Speaking loosely, the heteroclinic

cycle has “fallen off” the saddle focus, but remained “attached” to the saddle point,

resulting in a homoclinic orbit that begins and ends at SP. This results in the series of

homoclinic orbits shown in Fig. 9, where we show orbits 4,5 and 6, as labeled in Fig.

5A and B.

However, the heteroclinic cycle can also be broken by “falling off” the saddle point,

but remaining attached to the saddle focus. In this case, the construction of the

Poincaré map is slightly different from that given by Glendinning and Sparrow (1986),

but it is easy to show that this results in a branch of homoclinic orbits that follows a

linear path in phase space. These homoclinic orbits begin and end at the saddle focus,

and were illustrated previously (Fig. 7).

Note that as we move along branch B away from the T-point, the initial oscillations

(that are caused by the orbit moving close to the saddle focus) disappear, until at high

values of s (orbit 4 for instance) the homoclinic orbit looks just like the high-period

orbits observed close to the Hopf bifurcation in the model without diffusion. Thus, once

the speed is high enough, these homoclinic orbits just look like spatially independent

oscillations.

14



4.1.5 Homoclinic branch A: lower part

The lower part of the homoclinic branch A passes through the limit point LP1. As p

increases along this part of branch A, the amplitude of the homoclinic orbit decreases,

and it develops an oscillatory tail (Fig. 10). We were unable to track this branch past

point 9, but we conjecture that the amplitude dies away to zero at a point close to

point 9. Both homoclinic orbits 7 and 8 arise from branches of periodic orbits that

themselves arise at Hopf bifurcations. In Fig. 11 we plot bifurcation diagrams for three

fixed values of s. The dotted line denotes the curve of steady states, while the solid

lines denote the maximum and minimum amplitude of the periodic orbits. The panels

on the right show the period of the orbits as a function of p. When s = 5.9 (top panels)

there are two Hopf bifurcations, and the consequent branches of periodic orbits both

end in homoclinic bifurcations (at different values of p). As s decreases, the homoclinic

bifurcations move closer together (middle panels), until at s = 5.5 (bottom panels) the

homoclinic bifurcations have merged and the two branches of periodic orbits form a

continuous loop, on which the period remains bounded.

4.1.6 Homoclinic branch C

The final branch that we shall discuss is branch C. For large values of s, branch C

arises as the limit of the branch of periodic waves that begins at the leftmost Hopf

bifurcation. As s decreases, branch C begins to fold up (Fig. 5C), the folds gradually

becoming smaller until branch C intersects the curve of Hopf bifurcations at LP2. This

behavior has been observed before by Balmforth et al. (1994), who concluded that the

bends in the branch of homoclinic orbits correspond to homoclinic orbits that make

multiple loops around one of the other steady states before returning to the starting

point. Our results agree with this conclusion. Orbit 10 goes once around another

steady state before returning to rest (Fig. 12), but orbit 11, which occurs on branch C

after the first fold, winds around the other steady state twice before returning to rest.

Orbit 12, which occurs after 3 further folds in branch C makes approximately three

loops around the other steady state before returning to rest.
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4.1.7 Waves in the two-state model PDEs

Our ultimate goal is, of course, the study of waves in the partial differential equations,

and for physiological reasons we are only interested in those which are stable, and

which can be generated by physiological initial conditions. Thus, not all the waves

found above are physiologically significant. The ones that are can be found by direct

solution of the PDEs, holding p fixed over the entire domain, and using a pulse of c

as an initial condition. The PDEs were solved using a simple implicit scheme with

no-flux boundary conditions on a domain of length 800 µm . Different numbers of grid

points (ranging from 200 to 1000) were used, and there were no significant differences

between the runs. For all the runs, at t = 0 c was set equal to 0.5 on the leftmost 10

grid points.

When p = 0.22 a stable traveling wave is initiated and moves across the domain

at a speed of just over 10 µm s−1 (Fig. 13, top panel). Comparison of this wave with

trace 1 of Fig. 7 shows that this traveling wave corresonds to a homoclinic orbit lying

on branch A of Fig. 5. As p increases, numerical simulations with the same initial

condition continue to pick out homoclinic orbits on branch A. Thus, for instance,

when p = 0.2432 the traveling wave has developed an oscillatory tail, which is caused

by the homoclinic orbit traveling close to the saddle point before returning to the

saddle focus, as discussed above. As p increases still further, the orbit spends more

time in the vicinity of the saddle point (Fig. 7, orbits 2 and 3), and thus the tail

of the traveling wave becomes more pronounced. However, once p is large enough,

something interesting happens to the traveling wave in the PDE. If the saddle point is

far enough away from the saddle focus, the tail of the traveling wave can actually be

pulled above the threshold for wave initiation, and thus the tail of the traveling wave

will itself initiate a secondary traveling wave, which now travels in both direction. The

beginning of this process can be seen in the bottom panel of Fig. 13. At t = 20 s, the

traveling wave has a pronounced trailing hump, which gets bigger as time increases.

By t = 38 s, the trailing hump has just increases over the threshold of wave initiation,

and by t = 40 s a secondary wave is being initiated.

Because the secondary wave travels in both directions, it is easiest to study this

wave behavior in the x, t plane, using a grayscale to indicate the value of c (Fig. 14).

Note that since t increases in the downward direction, and x increases from left to
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right, a line sloping down from left to right corresponds to a wave traveling from left

to right across the domain, while a line sloping down from right to left corresponds to

a wave traveling in the opposite direction. When p = 0.24326 the initial wave appears

as the uppermost line sloping from left to right. However, at about 38 s a secondary

wave appears and travels in both directions. When each wave reaches the boundary

the tail of the wave is forced over the threshold, which initiates further waves and so on.

When p = 0.24327 the secondary wave is initiated sooner (as the saddle point has now

moved slightly further away from the saddle focus, and thus acts to pull the trajectory

over the threshold sooner), and each secondary wave initiates its own secondary wave.

Hence, we get a cascade of wave initiation, until at large times the domain contains

a large number of waves moving in both directions. Looked at in the time domain,

the waves appear disordered and irregular. For even larger values of p each secondary

wave is initiated so soon after the primary wave, that the secondary waves all appear

first at the boundary. Thus, all the waves in the domain travel in the same direction,

forming a periodic plane wave. When p = 0.2434, branch A of homoclinic orbits no

longer exists (see Fig. 5B). However, the underlying kinetics are now self-oscillatory

(i.e., they have a stable limit cycle) and thus periodic plane waves are formed.

It is interesting to note that the underlying kinetics also have a stable limit cycle

when p = 0.24326 or p = 0.24327 and thus one might expect to observe regular periodic

plane waves in these cases also. However, Fig. 14 shows that this is not the case. The

reasons for this are not clear. It appears that the traveling wave prefers to follow branch

A of homoclinic orbits whenever it can, thus leading to the appearance of secondary

waves and irregular behavior, and it is not until branch A disappears at the T-point

that the waves are governed by the underlying stable limit cycle.

In conclusion, our numerical evidence shows that branch A of homoclinic orbits is

the one that generates physiologically significant traveling waves. The speed of the

waves increases with increasing p (as has been observed experimentally in many cell

types) and there is region of parameter space where the waves become irregular. If p is

too low traveling waves fail to exist, as the lower part of branch A denotes waves that

are unstable.
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4.2 Waves in the three-state model

Waves in the three-state model have a similar qualitative behavior to those discussed

above, although the extra dimension (4 instead of 3) makes the behavior more difficult

to visualise, and allows for a greater range of possibilities.

4.2.1 The branch of Hopf bifurcations

As before, we draw the curve of Hopf bifurcations in the p, s plane, to get the curve

labelled HB in Fig. 15. There is no no loop at the bottom of the curve, as the curve of

steady states now has no limit points (cf. Fig. 3).

As before, for each fixed value of s, we can track the branch of periodic orbits arising

from the two Hopf bifurcations. For intermediate values of s, the periodic orbits arising

from the right-hand branch of HB terminates in a homoclinic bifurcation (HC), while

the periodic orbits arising from the left-hand branch of HB terminates in a periodic

orbit, in a manner that we describe shortly.

4.2.2 The homoclinic branch

The homoclinic branch now does not end in a T-point, as it did in the two-state model.

(Of course, the T-point cannot exist in this model, as there are no limit points in the

steady-state curve, and thus there is a single steady state for all values of p). Instead,

it bends around in a turning point, TP, and forms a complicated loop of homoclinic

orbits (not shown in detail here). This is not obvious from Fig. 15, as the loops all

lie so close to one another that the HC branch appears as a single curve. However, a

more detailed inspection shows that, as one moves along the branch and goes around

the turning point, the homoclinic orbits develop multiple peaks. In Fig. 16A we show

two homoclinic orbits on the branch, before TP is reached. The approximated position

where these homoclinic orbits appear on the HC branch is indicated by the labeled

crosses in Fig. 15. Note that orbit 2 is closer to TP than is orbit 1. As the homoclinic

orbits get closer to TP they start developing a smaller trailing peak. As the homoclinic

orbits pass around the turning point, they become double-peaked (orbit 3, shown in

Fig. 16B). We conjecture that, as the HC branch develops more folds, each additional

fold leads to additional peaks in the homoclinic orbits. The existence of multiple-peak
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traveling wave solutions has been studied extensively in simpler models (Hastings,

1982; Evans et al., 1982; Feroe, 1982; Glendinning, 1987). The ones we find here by

numerical solution of the ODEs do not appear to be stable solutions of the PDEs.

It is helpful to look at the bifurcation occuring at TP in another way by fixing s

either above or below the value at TP, and looking at the amplitude and period of the

branches of periodic orbits arising for that fixed value of s. Let st denote the value of

s at the turning point, TP. When s > st, the two Hopf bifurcations are connected by

a single branch of periodic orbits, as illustrated in Fig. 17A, where we used the value

s = 5.4. The lower Hopf bifurcation is subcritical. At s = st, the branch of periodic

orbits breaks into two separate branches, A and B, one of which (A) now ends in a

homoclinic bifurcation on the HC branch, as discussed above. A typical example of

this is shown in Fig. 17B, where we used the value s = 5.2.

The behaviour of branch B of periodic orbits is also interesting. Along branch B,

the period tends to infinity in a series of loops (see the right panel of Fig. 17B), and

each loop appears to correspond to the formation of additional peaks in the periodic

orbit. Two examples of periodic orbits on branch B are shown in Fig. 18, labeled 5

and 6. Curve 5 has period 425, while curve 6 has period 743. As can be seen from

the figure, curve 5 agrees well with the first 453 seconds of curve 6, but then curve

6 develops additional peaks that are not present in curve 5. These additional peaks

are made possible by the increased period of curve 6. As the period increases, further

peaks continue to appear, but they all appear with a period of 81.4. Hence, as the

period tends to infinity, branch B of periodic orbits tends towards the periodic orbit of

period 81.4 that occurs at the place where the two branches of periodic orbits intersect

(labeled 4 in Fig. 17B). In effect, as the period increases, the periodic orbit develops

more and more turns around the steady state, until, at point 4, all these turns collapse

onto the simple limit cycle of period 81.4 that occurs on branch A. To illustrate this,

we include in Fig. 18 the periodic orbit occuring at point 4 on branch A (dotted line).

Clearly, orbit 4 agrees well with orbit 6, differing only in the middle portion of the

orbit. (The phases are slightly different for larger times, but this doesn’t affect the

phase-plane structure.)
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4.2.3 Waves in the three-state model PDEs

Numerical solution of the model PDEs (using the same procedure as described above)

shows that the stable traveling wave of the PDE corresponds to a homoclinic orbit on

HC branch A (Fig. 19A). The other homoclinic orbits in the traveling wave equations

appear to correspond to waves that are unstable wave solutions of the PDEs, although

we have not checked this in all cases. In the three-state model the wave speed and

amplitude are less than in the two-state model, probably because of a decrease in

excitability due to the additional time delays introduced by the third variable. As the

homoclinic orbit approaches the turning point, TP, secondary waves are introduced

(Fig. 19B), just as in the two-state model, except that now the secondary waves travel

only in a single direction. The reason for this is not clear, but seems to be a result

of the slower initiation of the secondary wave. Hence, we don’t see the same type of

disordered behavior that was seen in the two-state model. As expected, once p increases

past the turning point, the waves become periodic (computations not shown).

5 Summary and Conclusions

Based on the ideas of Hajnóczky and Thomas (1997) and Cardy et al. (1997), we

have constructed a new model of the IP3 receptor. In this model, Ca2+ modulates the

binding affinity of IP3 to its receptor, and thus oscillations and waves of intracellular

Ca2+ concentration arise from the sequential binding and unbinding of IP3 to the

receptor. The model is designed particularly to model ACh-induced oscillations and

waves in pancreatic acinar cells, and a simplified version is discussed in more detail in

LeBeau et al. (submitted).

The full three-state model can be reduced to a two-state model by assuming the fact

activation of the IP3 receptor by Ca2+, and the overall qualitative behavior is retained.

We have performed a detailed numerical bifurcation analysis of waves in both the

two-state and three-state models. Isolated traveling waves in both models arise in a

qualitatively similar fashion, being the result of a homoclinic bifurcation in a branch

of periodic orbits that arise, in turn, from Hopf bifurcations. Although the structure

of the possible waves is extremely complicated, numerical studies suggest that only a

single branch is stable, and thus of physiological interest. Along this branch, the wave
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speed increases as a function of the bifurcation parameter, p, which corresponds to the

background concentration of IP3. This result is consistent with previous theoretical

work on calcium wave propagation (Sneyd et al., 1993; Jafri, 1995), and with the

available experimental evidence (Nathanson et al., 1992). One particularly interesting

prediction arising from the present work is the occurrence of secondary traveling waves

that can be caused by the trailing tail of the primary wave. In the two-state model the

physiologically significant branch of homoclinic orbits ends in a T-point, a heteroclinic

cycle, and a spiral branch of homoclinic orbits. This heteroclinic cycle causes the

appearance of secondary waves behind the primary wave. These secondary waves can

travel in a direction opposite to that of the primary wave, and can themselves generate

tertiary waves, and so on. In certain parameter regimes, this can lead to disordered

wave activity, reminiscent of spatio-temporal chaos.

Here, we have concentrated on studying the wave behavior in the non-oscillatory,

excitable, regime. It is of equal importance to study the types of stable periodic waves

that occur in the oscillatory regime (roughly, between the Hopf bifurcations) but this

is left for future work.
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Figure Captions

Figure 1: Schematic diagram of the receptor model of LeBeau et al. (submitted).

Figure 2: A: Schematic diagram of the full receptor model. B: reduction of the full

model by assuming fast calcium binding leads to this simplified binding diagram,

a slightly generalised version of the one shown in Fig. 1.

Figure 3: Bifurcation diagram of the three-state model, showing the maximum and

minimum of the periodic orbit as a function of p. The inset shows the period of

the periodic orbit as a function of p. HB – Hopf bifurcation.

Figure 4: Bifurcation diagram of the two-state model, showing the maximum and

minimum of the periodic orbit as a function of p. The inset shows the period of

the periodic orbit as a function of p. HB – Hopf bifurcation; HC – homoclinic

bifurcation. A broken line denotes instability.

Figure 5: A: Two-parameter bifurcation diagram of the traveling wave equations of

the two-state model. HB denotes the curve of Hopf bifurcations, and HC denotes

the branches of homoclinic bifurcations. LP denotes a limit point. For values of p

between the two limit points there are three steady states. The numbered crosses

correspond to homoclinic orbits that are plotted in later figures. B: magnified

view of the homoclinic spiral and T-point. C: magnified view of LP2, and the

lower part of HC branch C.

Figure 6: Bifurcation diagram of the traveling wave equations of the two-state model,

for a fixed value of s = 12. Solid curve denotes the maximum and minimum values

of c over a periodic orbit, and the dashed curve denotes a curve of steady states.

Stability is not indicated. The inset shows the period of the two branches of

periodic orbits. HB – Hopf bifurcation. HC – homoclinic bifurcation.

Figure 7: Homoclinic orbits from the labeled points in Fig. 5A and B. As mentioned

in the text, these are not true homoclinic orbits, merely orbits of period 10,000

(for convenience scaled to have period 1 here). Orbits with period 1,000 look

exactly the same, and thus these orbits are close approximations to the true

homoclinic orbit. The same is true for all the homoclinic orbits shown here.
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Figure 8: The heteroclinic cycle at the T-point. A: view of whole cycle. B: magnified

view of the cycle in the vicinity of the saddle-point (SP) and the saddle-focus

(SF).

Figure 9: Homoclinic orbits from the labeled points in Fig. 5A and B.

Figure 10: Homoclinic orbits from the labeled points in Fig. 5A and C.

Figure 11: Bifurcation diagrams for three fixed values of s close to LP1. Solid curves

denote the maxima and minima of the periodic orbits. Dashed curves denote the

curves of steady states. Right-hand panels show the period of the branches of

periodic orbits.

Figure 12: Homoclinic orbits from the labeled points in Fig. 5A and C.

Figure 13: Solitary wave solutions of the two-state model, obtained by direct numer-

ical simulation of the PDEs for three different values of p. For higher values of

p, the solitary wave develops a trailing secondary wave as described in the text.

Figure 14: Wave solutions of the two-state model, obtained by direct numerical sim-

ulation of the PDEs, and plotted in the space-time plane. For higher values of p,

the waves become periodic.

Figure 15: A: Two-parameter bifurcation diagram of the traveling wave equations

of the three-state model. HB denotes the curve of Hopf bifurcations, and HC

denotes the branch of homoclinic bifurcations. TP denotes the turning point,

where the branch of homoclinic bifurcations folds up. Labeled points correspond

to homoclinic orbits shown in later figures.

Figure 16: Homoclinic orbits from the labeled points in Fig. 15. Curve 3 is from the

homoclinic branch after it has passed around the turning point, TP, and has thus

developed an additional peak, as described in the text.

Figure 17: Bifurcation diagram of the three-state model, for two different values of s

on either side of the turning point. Labeled points correspond to periodic orbits

shown in the next figure.
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Figure 18: Three periodic orbits corresponding to the labeled points in the previous

figure. As the two branches of periodic orbits merge, the infinite-period orbit of

branch B collapses into the finite-period orbit of branch A, as all the loops of the

infinite-period orbit coalesce at the bifurcation point.

Figure 19: Wave solutions of the three-state model, obtained by direct numerical

simulation of the PDEs. A: solitary wave. B: For higher values of p, the solitary

wave gives off trailing secondary waves.
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kf = 28 Jleak = 0.2
Vp = 1.2 Kp = 0.18
k1 = 0 k2 = 0.53
k3 = 1 k−1 = 0.88
r2 = 100 r4 = 20
r6 = 0 r−2 = 0
R1 = 6 R3 = 50
R5 = 1.6 Dc = 25

Table 1: Sneyd et al.
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Figure 1: Sneyd et al.



Figure 2: Sneyd et al.
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