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Summary 

In Fisher's model for the migration of advantageous genes, in epidemic models and in the theory of 
combustion similar existence problems for travelling fronts and waves occur. For a general two- 
dimensional system of ordinary differential equations depending on a parameter the existence of 
trajectories connecting stationary, points is established. For systems derived from diffusion problems 
these trajectories describe the shape of a travelling front, the corresponding value of the parameter is 
the propagation speed. The method allows to determine the exact value of the minimal speed in 
Fisher's model ['or all interesting choices of selection parameters, i.e. for intermediate heterozygotes 
and for inferior heterozygotes. 

About forty years ago the fundamental population genetic models have been 
developed by Fisher, Wright, Haldane and others. For continuous time these 
models are described by nonlinear ordinary differential equations_ for genotype 
or gene frequencies (see e.g. [3], [8], [9]). Fisher ([5], [6]) considered also non- 
linear diffusion equations for spatially distributed populations, posed the problem 
of travelling population fronts and conjectured the existence of a minimal 
propagation speed. Kolmogorov, Petrovskij, Piskunov [16] investigated a class 
of nonlinear diffusion equations 

u,=u~+F (u), F (u)>0 in (0, I), F (0)=F(1)=0 (*) 

which contains Fisher's model in the case of complete dominance of the ad- 
vantageous gene. They proved the existence of a closed half-line of possible 
speeds. Their main object was to prove that the solution of the diffusion 
equation starting from a step function converges towards a front with minimal 
speed. Various other convergence theorems for similar equations, partially re- 
lated to the theory of combustion, have been given by Kanel' ([11], [12], [13], [14]). 
Kendall E15] applied the idea of the proof E16] to the problem of epidemic waves. 

Kolmogorov's [16] condition that the function F' assumes its maximum for 
u =0 allows to determine the minimal propagation speed explicitely, but it is not 
satisfied in Fisher's model with the exception of complete or almost complete 
dominance. Rothe [17] observed that a closed half-line of speeds exists also in 
the general case (*), he gave a characterization of the minimal speed and computed 
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the minimal speed for Fisher's model for all cases of intermediate heterozygotes. 
Related results have been shown by Aronson and Weinberger [1]. In the 
present paper we consider a two-dimensional vector field depending on a para- 
meter and give sufficient conditions for trajectories connecting singular points. 
In applications to diffusion problems the trajectory corresponds to a travelling 
front and the parameter to the speed. It turns out that a certain monotonocity 
property (14) is the crucial condition which allows a unified treatment of a l l  
aforementioned cases. 

If in Fisher's model one gene is advantageous, but heterozygotes are inferior, 
then the function F in the diffusion equation has a sign change. The general 
theory yields immediately two classes of monotone travelling fronts with positive 
and negative propagation speeds, respectively. We show that there is exactly one 
additional monotone front, which is the only front with boundary conditions I 
at - c o  and 0 at + co. Again, for Fisher's model the speeds of all fronts can 
be explicitely computed. 

The convergence problem has been investigated by Aronson and Weinberger 
[1], Fife and McLeod [4], Rothe [171 Hoppensteadt [10]. 

1. Trajectories Connecting Singular Points 

Consider a system of differential equations 

ft-'-f(u,v), fi=g(u, v), (1) 
q. 

where J; g: R z--* R are continuously differentiable. Suppose ~ is some open and 
simply connected domain and (u t, vt), (u2, v2) are the only stationary points in ~ .  
Let (ul, vt) be a saddle point and (u2, v2) a stable focus. We want to ensure that 
the unstable manifold of the saddle point, when continued to t-+ + c~, enters 
the focus. A possible way to do this is to construct two piecewise differentiable 
non-intersecting arcs ~ and 0 in @ connecting the two singularities as indicated 
in Fig. 1. 

Fig. 1 

If the direction of the vector field (f, #) along these arcs is always pointing 
inward (with respect to the open domain 9~ enclosed by the two arcs) then the 
unstable manifold arrives finally at (u2, v2). 

In the following we use this idea in a special situation, where the stationary points 
are (~, 0) and (~, 0), ~ </~, and ~, 0 are defined as 
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~: u=~q (t), v=~2(t), - c o < t <  +co, "1 

~ < ~ ( t ) < p ,  0<02(t), 
(2) 

~ / ~ .  02--,0 for t ~ + c o ;  O~--~. ~ 2 ~ > 0  for t---,-co 

I ~ t l + l S l 2 l ~ 0 ;  [~ t [+ l~2 l " - ' 0  for I t l-- 'co;  - o o <  lim ~2/~t<0.  

u--~ for 0 < v < ~ ,  (3) 

0 : v - = 0  for c<<u</L (4) 

The domain ~ is bounded by the arc (2), the u-axis, and possibly a segment of 
the v-axis. 

The set [c<, ffl x R does not contain any other singularities than (cq 0), (1~, 0). Thus 
we require 

f(u,O)=g(u,O)=O for u=~,/~, "~ (5) 

(u, v) ~ [~, fl] x R -  {(~, 0), (/~, 0)} =~ [ f (u, v)[ +[ g (u, v)[ # O. J 
The point (~, 0) is a saddle point if 

Lgo<Lgu. (6) 
The conditions 

L>0,  g .>0 (7) 
ensure that the unstable direction satisfies dv/du<O, and the stable direction 
d old u > 0. Similarly at (p, 0) the conditions 

L+g,<O. O<4(f~g, - f~g~)<_( f~+g~)  2 (8) 

guarantee a stable focus. The additional conditions 

f ,  > 9o. f~-> 0, g. < 0 (9) 

yield that the main and the side direction are both negative and [dv/du[ is 
greaterfor the side direction. 

The condition that the field is directed inward on the boundary of ~ can be 

f(oqt, 82) ~2 - g  (St, S2 )~ t>0  for t ~ R ,  

f(~,  v)>0 for 0<v<~i, 
g(u,O)>_O for ~ < u < / L  

(1o) 

(11) 

(12) 

expressed as 

Theorem 1: /J' conditions (2) to (12) are satisfied then the closed domain .2 
contains the unstable manifold of the saddle point. I f  continued to + co, this trajectory 
enters the stable focus (~, 0). Thus there is a trajectory connecting (c<, O) and (p, 0). 

Remark: By "unstable manifold" we mean the part of the unstable manifold 
leaving (.~, 0) into u>0,  v>0. 

Journ. Math. Biol.2/3 18 
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The proof of the theorem is standard and it is outlined only for completeness: 
1. Suppose a trajectory is in the interior ~ at t=0 .  Then it stays in ~ for 
every finite t. For if t o < m were the smallest t for which (u (to), v (to)) r ~ then 
either (Uo, Vo)=(u(to),v(to) ) is one of the two singular points or it is any other 
boundary point of N. The first case is easily excluded. In view of (10)---(12) the 
trajectory is tangent to the boundary (or to one of the components of the boundary 
if the point is a corner). By an appropriate rotation or reflection we can achieve 
that the tangent direction is parallel to the positive u-axis and the domain 
is below the arc. If we choose u as a local coordinate for the arc ~ and the 
trajectory tp we have 

f (u, ,9 (u)) 0' (u) >_ 9 (u, ~ (u)), f (u, q~ (u)) q~' (u) = 9 (u, q~ (u)). 

In view of de~dr=O, du/dt>O we have O(uo, vo)=O, f(Uo, Vo)>O. For 
F (u, v)= 9 (u, v)/ f  (u, v), w = ,9-q~ we have w' (u)> F (u, ,9 (u))-  F (u, w (u)) 
> - K l w  (u)l. Since t o was minimal, w (u)>0 for u <Uo, w (0)= 0. But then from 
w'>_ - K  w follows w(u)<_O for U<Uo. 

2. If a trajectory is in a ~ for t = t o then it stays in 8 for all t. This is obvious if 
the trajectory is one of the points (~t, 0), (fl, 0). Otherwise a similar argument 
as in 1. can be used. 

3. We show that the unstable manifold tp is contained in 8 .  It is sufficient to 
show that the unstable manifold is in 8 for - o ~  < t < t o  for some finite to. 
This is trivial for 3>0 .  Now let ~=0.  Suppose the unstable manifold arrives at 
some point P r ~ .  Choose any point P~  8 between q~ and 0 close to P and 
consider the trajectory ~ through P for t - - , -  ~ .  For P sufficiently close to P 
the trajectory follows the unstable manifold arbitrary close and has common 
points with the interior ~ .  Following this trajectory to - ~ we obtain a contradic- 
tion to 1. 

Lemma 2: The closed domain 8 contains the main direction of the focus at (fl, 0). 
The side manifold of the focus at (fl, O) has no points in common with the open 
domain 8 .  

Proof: There are trajectories beginning in the interior of ,~ which enter (fl, O) 
in the main direction. If the main direction were not contained in 8 ,  these 
trajectories would leave 8 ,  which gives a contradiction to part 1 of the proof of 
theorem 1. Suppose the side manifold has a pointP in common with the interior~. 
There are trajectories starting in the interior of &, close to P, which enter the 
focus along the two opposite main directions. Some of these must leave 8 in 
contradiction to part 1 of the proof of theorem 1. 

2. General Results on Travelling Fronts 

In this paragraph we assume that the system (1) depends on an additional 
parameter c e II~ such that f ,  g: R a--* I~ are continuously differentiable, 

f~=f(u,v,c), i~=g(u,v,c). (13) 
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We require that conditions (5) to (7) are satisfied for all c and that conditions 
(8), (9) are satisfied for all c>  c*, whereas the stationary point (fl, 0) is a stable 
vortex for c < c*. 

Definition: A solution ~o=(~t,~o,) of the system (13) for a particular c with 
q~ (t) ~ I'~, fl] x f0, o~)for all t E R, , 

~o (t)~(~, O) for t ~  - oo, ca (t)~(fl, O) for t--, + oo, 

is called a front, and c is called the speed of the front. 

It is clear that there are no fronts for speeds less than c*. 

Theorem 3: Let f ,  g have the following monotonocity property. I f  c 2 > cl > c* then 
for all (u, v) ~ [~,/T} x FO, ~ )  

g (u, v, c l ) f (u ,  v, c2)>_f(u, v, ct) g (u, v, c2). (14) 

In addition, let condition (12) be fulfilled for all c >_ c*. Then the set of  possible speeds 
is an upper half-line or empty. 

Proof: Suppose ct is a speed. To c t corresponds a trajectory u(t)=~pt (t), 
v (t)-- rp2 (t), 

(bl = f  (~~ ~~ ct), ~b2 = g  (r ~02, ct)" 

For c >  c t follows from (14) 

f(~o t, ~o 2, c) ~b 2 _>g (~o t, 92, c) ~b t . 

Then theorem I shows that c is a speed. 

Define c o as the infinum of all speeds. Clearly c* < c o < + co. 

Corollary 4: Assume the hypothesis of theorem 3. I f  ct, c 2 are speeds, c a > c t > c*, 
and ~t,  (#2 are the corresponding fronts, then the trajectory of q~t is contained in 
the closed domain formed by ~o 2 and the u-axis. 

Theorem 5: Assume the hypothesis of  theorem 3, in addition: 

Foreveryc>c* there i sO=~(c )>O suchthat g(u,~,c)<O Jbrallu~(~.f l) .  (15) 

Then: l f  c o < + co then c o is a speed. 

Proof: Assume Co is not a speed. Let c>c  o be any speed with front/~ and let 
be the domain bounded by ~ and the u-axis. In view of (14) the vector field for 
C=Co points outward. Using the same arguments as in the proof of theorem I, 
we see that the unstable manifold ~0 for C=Co does not enter the open domain 
as long as it remains in [~, fl] x R+. Condition (15) prevents that ~0 goes to 
infinity in the domain [~, fl] x R§ Thus r arrives at u = ~  or u=/~ for some 
finite t. In both cases the unstable manifold for c > Co, where c-Co is sufficiently 
small, has the same behaviour, which leads immediately to a contradiction. 

Remark: Without an additional assumption like (15) theorem 4 seems to be wrong: 
Consider an example where ~0 and the side manifold (for t - - , -  co) both go to 

18" 
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infinity, and all trajectories between these two bend downward and go into the 
main direction. 

Corollary 6: Under the hypothesis of theorem 5 the minimal speed co can be 
characterized as the infimum of all c for which a function ;9 satisfying (2) and (10) 
exists. 

Theorem 7: Let the conditions of theorem 5 be satisfied. 

i) I f  c o > c* is finite then the front corresponding to c o is the side manifold of the 
focus (fl, 0). 

ii) For c> c o the front with speed c arrives in the main direction at (fl, O) unless 
for all ~ ~ [e o, c'l the fronts have identical trajectories. 

Proof: 
i) Let tp0 be the front with speed Co and let ~ be the domain between q~o and the 
u-axis. Let q~ be the unstable manifold for a c ~ (c*, co). The trajectory q~ does not 
enter the open domain ~ and does not arrive at (fl, 0). But for this c the side 
manifold of the focus (traced backward for t--, - ~ )  is in ~ and thus separates all 
other trajectories entering (fl,0) from q~. For c---,c o the trajectory tp merges 
with the side manifold before it can meet any other trajectory entering (fl, 0). 

ii) Suppose cl > c > c o .  Let 9, 91 be the front with speed c, ct and ~ the domain 
between 9 and the U-axis. 01 is contained in ~ .  By lemma 2 the side manifold at 
(fl, 0) for cl has no points in common with ~.  Thus, if 31 does not arrive in the 
main direction at (fl, 0) then the trajectories of 9 and ~ coincide. (Note that, 
according to the proof of theorem 1, a trajectory from ~ cannot arrive on the 
boundary o f&  in finite time.) 

3. Travelling Fronts for a Nonlinear Diffusion Equation 

We consider a diffusion equation 

u,=u,.~+ F (u), (16) 

where F is continuously differentiable and satisfies the conditions 

F ( 0 ) = F ( 1 ) = 0 ,  F ( u ) > 0  in (0, 1), F ' (0 )>0 ,  F ' ( 1 ) < 0 .  (17) 

A travelling front is a solution u (s, t) = u ( s -  c t) with 

u ( - c r  u ( + ~ ) = 0 ,  O_<u_<l. (18) 

If such a front exists then the function u of one variable is a solution of the 
boundary value problem of the ordinary differential equation 

/i= - c  f i + F  (u) (19) 

with boundary conditions (18). We apply the substitutions u ~ l - u ,  v=fi, then 

t~=v, t3= - c v + F ( 1  - u ) .  (20) 
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This system has the form (13) and satisfies all required conditions. The saddle 
point is (7, 0)=(0, 0), the focus (,8, 0)=(i ,  0), and c* =2 F f f - ~ .  Condition (12), (I 1), 
the monotonocity property (14) and condition (15) are fulfilled. By theorem 3 and 4 
there is a possibly empty closed upper half-line of speeds. We use corollary 5 to 
exclude Co= + ~ and to compute c 0. Since along any front /~=v>0, we can 
represent the arc 0 in (2), (10)in the form v=.o(u), where o: [0, I ] ~ [ 0 ,  ~ ) i s  
continuously differentiable and satisfies 

o (u )>0  for us(0,  l), Q(1)=0, ~o'(1)<0. (21) 

Then condition (10) is equivalent with 

Q ~o'+c o - F ( l - u ) > 0  
or  

c>_ sup {-o ' (u)-~ F(..l__~_u).'~ (22) 
o o(u)  )" 

Since there are functions of the required type the existence of large speeds is 
established. 

If we choose for Q the function 0 representing the front with speed ~ then 
Q ' = - ~ + F ( 1 - u ) / Q  and the supremum is ~. In particular, for ~ = c  o, we have 
(going back to the notation of (19)) the 

Theorem 8: The minimal speed in problem (19) (18) is finite. It is characterized by 

f , , ,  V(u)) 
c~ o<u<tsup ]Q tu~+ Q-'~-~;, (23) 

where Q is any continuously differentiable function on [0, 1] with the properties (21). 

Corollary 9: The minimal speed in problem (19) satisfies 

2 Vfi r (0) < c o < 2 V~, where L = sup F (u) (24) 
0<u<l U 

Proof: In (23) choose Q (u)= • u with •  0. Then c o < • + L/• Minimize over ~. 

Corollary 10: The front with speed c enters (0, O) in the direction 

Proof: Follows from theorem 7. 

4. Fisher's Population Genetic Model 

In Fisher's model for the migration of advantageous genes we have an equation 
for the gene frequency 
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u,=u~s+u (1 -u) (1  - z - ( 2 -  t r -  z) u) (26) 

where a, 1, T are the viabilities of the three genotypes. For a >_ 1 > z (heterozygotes 
not inferior) we can easily transform the equation into 

u,=us,+F(u), F ( u ) = u ( 1 - u ) ( l + v u ) ,  
where 

Theorem 11: 

v = ( a -  1 ) / ( I - z ) -  1, - l _ < v < + m .  

The minimal speed in Fisher" s equation (27) is 

f 2 for - l_<v<2, 
Co= v+2  

_ ~  for v>2.  
Lv2  

Proof: From (24) follows 

(27) 

(28) 

(29) 

f 1 for - l_~v_~l  
-~ (30) F ' ( 0 ) = I ~  _<L= (v+l) 2 for l < v  

4v 

Hence we know Co-- 2 for i v [ _< 1. A simple computation shows that for v > 0 the 
function ("Huxley pulse") 

u (t)= [1 +exp ( V ' ~  t)] - t  (31) 

is a front travelling with speed ca=(v + 2)/]/~--v. For v= 2 we have Ca=2, thus 
Co-2, and according to (30), Co- 2. Since the function F and thus c o increases 
with v'(follows from (23)) we have c o = 2 for 1 _< v_< 2. 

For v>2  

v (t)=fi (t)= - V ~  exp ( V ~  t) [i  +exp ( V ' ~  t)]-2, 

d v / d u ~ - ] / ~  for t ~ + o o .  

On the other hand, by (25) the slowest travelling front arrives at (0, O) with the 
side direction 

__1 
du 2 

which shows ca=c o. Moreover, for v>_2 the function u defined by (31) is the 
slowest travelling front. Unfortunately the slowest travelling front for - 1 _< v < 2 
has not yet been determined. 

5. Source Terms with a Sign Change 

Suppose the function F in the diffusion equation (16) has a sign change, 

F(O)=F~)=F(1)=O,  0 < # < 1  

F(u)<0  for 0<u</~,  F(u)>0  for # < u < l  

(32) 

(33) 
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f ' ( 0 ) < 0 ,  F ' (# )>0 ,  F ' ( 1 ) < 0 .  (34) 

For any travelling front u = u ( s - c  t) the corresponding ordinary differential 
equation is given by (19). Now the singularities are two saddle points at 0_(.Q_~,0, 
(1, 0) and a third stationary point at...~ 0) which is a stable focus for c>2VF'  (0), 
an unstable focus for c < - 2 V F ( 0 ) ,  and a vortex or center in between. For 
initial data in # < u < l  we have the same situation as for equation (16) with 
conditions (17). Thus we get a half-line [c o, oo) of speeds corresponding to mono- 
tonely decreasing fronts with boundary conditions 

u ( - ~ ) =  1, u ( + ~ ) = u .  (35) 

These fronts correspond to trajectories connecting the saddle point (1, 0) with the 
focus (g, 0). On the other hand there is a half-line ( -  oo, - ~o], Co > 0, of speeds 
of monotonely decreasing fronts travelling to the left with boundary conditions 

u ( - o o ) = p ,  u (+  co)--0, (36) 

connecting the unstable focus (/~,0) to the saddle point (0,0). It is rather 
obvious that there is a certain value ct between c o and -~o  for which the unstable 
manifold of (i, 0) continues into the stable manifold of (0, 0). Indeed we can show 

Theorem 12: Under the conditions (32), (33), (34) the set of speeds of monotonely 
decreasin 9 travellin 9 fronts for equation (16) consists of two half-lines ( -  oo, -col ,  
[co, oo), and dn isolated point c 1, whereby 

- o o < - ~ 0 < : - 2  F l / - f f~<c t  < 2  FV"F~<co<oO.  (37) 

ct may be positive or not. For c>_c o, c=c t, c< -Co the front satisfies boundary 
conditions (35), (18), (36), respectively. 

Remark: In addition there are monotonely increasing fronts and various non- 
monotonous, in particular oscillating, fronts. To each front u travelling with speed 
c there is a front fi, fi (t) = u ( -  t), travelling with speed - c. 

Proof: 
I) The assertions on Co, ~o follow trivially from theorem 8. 

2) For c=c o the unstable manifold of (1,0) enters (#,0) for t ~ + c o .  Let 
e : [0, 1 ] --, R be a continuously differentia ble function with e (0)= e (1) = 0, e > 0 
in (0, 1), e ' (0)>0,  e ' (1)<0.  Then v = - e ( u )  defines a smooth arc connecting 
(0, 0) and (1,0). Denote the arc again by e and let ~ be the open domain 
between e and the segment [0, I] of the u-axis. The condition that the field 
direction (du/dt, dv/dt) is pointing outward with respect to ~ is expressed by 

e'(u) v -cv-F(u)<_O for v = - o ( u ) .  

Thus for a fixed ~ with 

f , , .  F(u)~ 
~< inf '[0 tu)+-77~..,~" (38) 

O<u<t ~ t u l  ) 

no trajectory can enter ,~' through e. An argument as in the proof of theorem 1 
shows that the unstable manifold ~o of (1,0) cannot enter the open domain .~ 
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whereas the stable manifold of (0, 0) is contained in ~ .  Consequently (with 
strict inequality in (38)) q~ does not arrive at (0,0). In view of dv/du~-~ for 
large negative values of v the manifold q~ arrives at u f 0 ,  v < 0  for a finite t. 
On the other hand, for C=Co, the unstable manifold of (1, 0) goes to (p, 0). Thus 
for c slightly less than c o the unstable manifold of (1, 0) crosses the u-axis close to 
(/a, 0), but for c = ~ it crosses the negative v-axis. Since the trajectories depend con- 
tinuously on c for finite values of t, there is a number cI e (~, Co) for which the 
unstable manifold of (1, 0) is connected to (0, 0). 

3) We show that cl is unique. Describe the phase curve connecting (1, 0) to (0, 0) in 
the form v f f i -Q (u), and let ~ be the domain between this trajectory and the 
u-axis. Choose any c+cl, then the inner product between the field vector 
(v, - c v -  F (u)) and the inner normal on Q with respect to ~ is 

o' (u) v -  c v -  F (u) ffi (c~ + F (u)/v) v -  c v -  F (u) = ( c -  c~) 0 (u). 

For c > cl the field is strictly pointing inward, for c<c, it is strictly pointing 
outward. By the argument of theorem 1 one can immediately check that for 
c >  c, the unstable manifold of (1, 0) is contained in ~ and the stable manifold 
of (0, 0) is not. For  c<cx the opposite holds. For c~ct the two singular points 
cannot be connected. 

6. Application to Fisher's Model 

If heterozygotes are inferior we have a > 1, z > 1 in Fisher's equation (26). By a 
simple substitution we arrive at 

u, = u,, + u (1 - u) ( u -  #), (39) 
where 

I~ffi(z-1)/(a+z-2), 0 < # < 1 .  (40) 

We give a complete description of the wave-like solutions u ( s -  c t) of equation 
(39). Because of the reflection symmetry of the equation we can restrict ourselves 
to nonnegative speeds c >__ 0. Further, without loss of generality, we assume a >_. z 
which entails/~ ~ (0, 1/2]. 

Define the following critical values of the parameter c (see Fig. 2). 

Then 

c* = 2  V '~(1-#) ,  

C o = { ( 1 + ~ / ~  for 0 < , < 1 / 3 ,  
for 1/3___u<�89 

1 ]/~. 
Cl l__~--# 

c*<cl<Co for 0 < / l < p ,  

ct<c*<c o for p < / ~ < l / 3 ,  

(41) 

(42) 
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where 
cl <c*=c  o for 1 /3<#<1 /2 ,  

~=(1 - V ' ~ / 2 .  
c 
1 < 

Fig. 2 
/z 

Theorem 13: Let c*, c 0, and c t be defined as in (41). Then: 

i) For c >_ c o there is a monotonely decreasing front with boundary conditions 
u(-oo)-- 1, u ( + ~ ) = # .  

ii) For c>__c* there is a monotonely increasing front with boundary conditions 
u(-oo)=O, u(+ oo)=#. 

iii) For c=cl  there is a unique monotone front with boundary condition 
u ( -  oo)= 1, u (+aa )=O.  

iv) For O < c < c *  there is an oscillating wave with boundary conditions 
u ( -  oo)=0, u(+ oo)=#. 

v) For c t < c < c *  (impossible for # < ~ )  there is an oscillating front with 
u(-oo)= 1, u(+ ~)--#. 

vi) For max (ct, c*) < c < co (impossible for # > 1/3) there is a front with boundary 
conditions u ( - o o ) = l ,  u (+oo)= /A which decreases monotonely to some 
value u < la then increases towards # for t.--~ + co. 

vii) For c=O there are periodic solutions and a unique nonvanishing front with 
u( -~ ) - -u (+oo)=0 .  

Remark: For equation (39) the number ~o defined in theorem 12 is always equal 
to c*. 

Proof: The assertion follows from theorem 11, formula 41, and a simple discussion 
of the phase plane. The function 

u (t) = (exp (t/]/~) + 1)- t, v=u (1 - u)/l/~, (43) 

represents the front with speed c t for all # e (0, 1). 
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7. Travelling Epidemic Fronts 

Kendall [ 15] considers the diffusion equations 

u, = - u (v + v~) ,  v, = u (v + v ~ ) -  v (44)  

as a model for the spread of an epidemic (u is the density of susceptibles, v of 
the infectious). The boundary conditions are 

u(-oc, t)=~, u(+oo, t)=fl, 0<~<fl, 
(45) 

v ( -  oo, t)=v ( + oo, t)--O. 

If a travelling wave u (s - c t), v ( s -  c t) exists then 

- e f t - -  - u  (v+i~), -cf~=u(v+'~)-v. (46) 

We add the equations, c fi + c b = v, and integrate the first equation after a substi- 
tution for v, 

c log u=f~+c u+c v - c  7. 

Thus, after a rescaling in t, 

f i=(1 +cl-i -) v - ( y - u + l o g  u), 
(47) 

i~=(y-u + log u)-v.  

From the boundary conditions at +__ oo follows 7=/~- log /~> 1 and y= e - l o g  e. 
Thus necessarily 

~ - l o g  ~ = ~ - l o g / L  (48) 

In view of �9 < ~ the two densities ~ and 3 determine each other uniquely. 

Elementary considerations show that the system (47) satisfies conditions (5) 
through (9), (12), (14), (15), where 

c* = 2 V ~ / ~ -  1). (49) 

we  apply theorems 3, 4 and corollary 5. We choose the arc ,9 as an isocline of the 
vector field (47), parametrized by u, 

Q(u)=• u>0 .  

Then condition (10~ is equivalent with 

I(I+cl--T) ~ - 1 1  • ( 1 - - ~ - - ) < •  for ~_<u<,8. 

For •  1) this condition is satisfied for all c>__2 l/~-/~- 1) which shows 
Co = c*. We state our result as 

Theorem 14: The boundary value problem 

- e ~ =  -u(v+~), -cf:=u(v+'6), 

u ( - ~ ) = ~ ,  u (+oo)=3 ,  v (+oo)=0 ,  0 < ~ < 3 ,  
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"has a solution iff the conditions 

g - l o g  ~ = / ~ - l o g  ]/, c >  c* = 2 fl[//~-~?- 1) 

are satisfied. 

The necessary condition (48) can be interpreted in epidemiological terms: suppose 
the density of susceptibles before infection // is fixed and ~ <  I is the unique 
solution of equation (48). If the actual density of susceptibles after infection 
is greater than ~ then the epidemic wave will cease down. On the other hand, for 

< ~ the epidemic front explodes. 
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