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Abstract. We consider an infinite lattice model, where particles interact with nearest

neighbour (NN) and next-to-nearest neighbours (NNN); the NN and NNN springs act

against each other to mimic the Lennard-Jones potential. The existence of subsonic waves

homoclinic to exponentially small periodic oscillations is shown as well as the existence of

supersonic periodic solutions. The proofs rely on methods from normal form and centre

space analysis for the homoclinic solutions and centre manifold analysis for the periodic

solutions.

1. Introduction. We analyse a one-dimensional chain of atoms, where both near-

est neighbours (NN) and next-to-nearest neighbours (NNN) are linked by anharmonic

springs,

c2ẍ(t) = U ′
1 (x(t+ 1)− x(t))− U ′

1 (x(t)− x(t− 1))

+ g [U ′
2 (x(t+ 2)− x(t)) + U ′

2 (x(t)− x(t− 2))] (1)

(the notation is explained in Section 2). The configuration is such that the NN and NNN

springs pull against each other, thus giving a poor man’s version of the Lennard-Jones

potential a
(
−
(
b
r

)6
+
(
b
r

)12)
, where r is (in suitable units) the distance between two

atoms.

Since in a physical situation, all atoms interact with each other, there is a clear physical

motivation for including more than just NN interactions. We consider the simplest model

by just including two kinds of springs but capture the attractive and repulsive behaviour

of the Lennard-Jones potential by letting the springs act against each other with a ratio

suggested by the linearised (harmonic) model. The analysis is confined to travelling

waves.

This inclusion of NNN springs changes the nature of solutions drastically: a careful

asymptotic analysis by Wattis [16] suggested that there are subsonic solitary waves with
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66 CHRISTINE R. VENNEY AND JOHANNES ZIMMER

oscillatory decay. This is very different from the NN case, where solitary waves are

supersonic and homoclinic to a constant state. We here give a rigorous proof of this

conjecture, for a suitable range of parameters.

The core of the argument is a centre space analysis, in the framework developed by

Iooss and Kirchgässner [7]. However, there are significant additional difficulties. A spec-

tral investigation suggests a centre space analysis with the tools described in Lombardi’s

book [9]; this is since real eigenvalues are present which are absent in the pure NN prob-

lem of [5]. However, the tools of [9] are not directly applicable since (i) it is there assumed

that the linearised operator is sectorial, which is not the case for the operator considered

here (this is typical for lattice operators), and (ii) the centre space here is larger than for

the problem discussed in [9].

We also give a proof, using centre manifold analysis, of the “complementary” result,

namely, the existence of slightly supersonic periodic waves. Recently, such an existence

result was proved differently by employing a linking argument [15]. Again, this result is

in contrast to the NN situation, where periodic waves are strictly confined to the subsonic

regime.

Few other rigorous results seem to be available for lattice models with NNN interac-

tions. We are only aware of one result for NNN interactions showing the existence of

solutions homoclinic to exponentially small periodic waves, namely, the work by Calleja

and Sire [1]. They consider NN and NNN interaction for the Frenkel-Kontorova chain

but with the two kinds of springs pulling in the same direction. The travelling wave

equation for the Frenkel-Kontorova chain in suitable units is

c2ẍ(t) = γ [x(t+ 1)− 2x(t) + x(t− 1) + g (x(t+ 2)− 2x(t) + x(t− 2))]−V ′(x(t)) . (2)

As far as the equation is concerned, the difference between (2) and the Fermi-Pasta-Ulam

(FPU) chain studied here in the travelling wave formulation (1) is that the interaction

between atoms is linear for the Frenkel-Kontorova (FK) chain but nonlinear for the FPU

chain; the FK chain has an on-site potential V which is absent in the FPU model. Fur-

ther, we study the case g < 0, while Calleja and Sire analyse the case g > 0. In both

cases, the existence of solutions homoclinic to exponentially small periodic solutions is

proved by combining the setting developed by Iooss and Kirchgässner for lattice waves [7]

with the analysis of Lombardi [9] for the existence solutions with oscillatory tails. This

commonality rests on the fact that both the FPU chain and the FK chain give rise to sim-

ple eigenvalues in the centre spectrum. However, the FPU travelling wave formulation is

invariant under translations, since the origin is in the centre spectrum, with multiplicity

4 at the bifurcation point. The origin is not in the centre spectrum for the FK problem,

where instead pairs of semisimple eigenvalues exist, unlike for the FPU problem. Conse-

quently, the approach used in the interesting paper [1] does not carry over directly to the

system studied here; the central difficulty of the FPU chain is the four-fold multiplicity

of the eigenvalue 0, which is not immediately within the scope of the tools described

in Lombardi’s book [9]. We use the translational invariance to reduce the multiplicity

by one; it can be reduced once more by a normal form analysis, which we carry out in

infinite dimensions to retain the analyticity. Then Lombardi’s results are directly ap-

plicable. The most significant methodological differences between [1] and this paper are
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TRAVELLING LATTICE WAVES IN A TOY MODEL OF LENNARD-JONES INTERACTION 67

the treatment of the four-dimensional projection P0 in Section 3.1.1, the reduction based

on translational invariance in Sections 3.2 and 3.3, and the infinite-dimensional normal

form analysis in Section 3.5. (We are also not aware of results as in Section 4 proved by

centre manifold analysis.)

Makita [11] (see also [10]) studies a system which includes some effects of NNN in-

teraction but without competition of the NN and NNN springs mimicking the effect of

a Lennard-Jones potential. The physical and numerical literature on NNN models is

richer, and we only point the reader to the numerical investigations in [2] and the recent

review [13]. Long-range interaction is also relevant in biological systems. For example,

to model the three-dimensional helicoidal structure of DNA approximately with a planar

description, interactions with fifth neighbours have been proposed [3].

The paper is organised as follows. In Section 2 we describe the general mathematical

setting and state the main result (Theorem 1). We also describe the centre spectrum

for the linear operator. In Section 3, we concentrate on slightly subsonic wave speeds

and show how, for these speeds, the problem can be formulated to use the results in [9]

showing the existence of waves homoclinic to exponentially small (with respect to the

bifurcation parameter) periodic waves. In Section 4, we look at slightly supersonic speeds

and sketch the proof of the existence of supersonic periodic solutions.

2. The mathematical setting. We are looking for solutions of the travelling wave

equation

c2ẍ(t) = U ′
1 (x(t+ 1)− x(t))− U ′

1 (x(t)− x(t− 1))

+ g [U ′
2 (x(t+ 2)− x(t)) + U ′

2 (x(t)− x(t− 2))] ; (3)

here U1 is an anharmonic potential for the nearest neighbour interaction and U2 is an

anharmonic potential for the next-to-nearest neighbour interaction,

U ′
1(r) := c20r + c2G′

1(r) (4)

and

U ′
2(r) := c20r + c2G′

2(r) . (5)

We remark that U1 and U2 act against each other since U2 is multiplied by g < 0. For

the anharmonic contributions of the potentials,

G′
1(x) := α1x

2 + β1x
3 + . . . and G′

2(x) := α2x
2 + β2x

3 + . . . , (6)

we assume that

0 < α2 <
α1

2
. (7)

We also set μ := c20/c
2. With this form of the interaction potentials, (3) becomes

ẍ(t) = μ[x(t+ 1)− 2x(t) + x(t− 1)] +G′
1(x(t+ 1)− x(t))−G′

1(x(t)− x(t− 1))

+ μg
{
c20[x(t+ 2)− 2x(t) + x(t− 2)] +G′

2(x(t+ 2)− x(t))−G′
2(x(t)− x(t− 2))

}
.

(8)
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68 CHRISTINE R. VENNEY AND JOHANNES ZIMMER

We are interested in g such that

−1

4
< g < − 1

16

as, for this range of g, the purely harmonic potentials give supersonic periodic solutions

with mean zero and the linear operator has a pair of small real eigenvalues for slightly

subsonic speeds; see Figure 1, Figure 3 and [15].

Following the method developed by Iooss and Kirchgässner [7], we put ξ(t) := x′(t),

X(t, ν) := x(t + ν) and U(t)(ν) := (x(t), ξ(t), X(t, ν)), for ν ∈ [−2, 2]. We use the

notation δiX(t, ν) := X(t, i) for i ∈ {±1,±2}. Equation (3) can now be written as

∂tU = Lμ,gU +Mμ,g(U) , (9)

where Lμ,g is the linear nonlocal operator

Lμ,g =

⎛
⎝ 0 1 0

−2μ(1 + g) 0 μ(δ1 + δ−1) + μg(δ2 + δ−2)

0 0 ∂ν

⎞
⎠ ,

and the nonlinearity is

Mμ,g =
(
0, G′

1(δ
1X − x)−G′

1(x− δ−1X) + g(G′
2(δ

2X − x)−G′
2(x− δ−2X)), 0

)T
.

(10)

The boundary condition is then

X(t, 0) = x(t) . (11)

We use a functional setting as in [7] and thus define the Banach spaces H and D for

U(ν) (here and below, we often suppress a functional dependence on t) as

H := R
2 × (C0[−2, 2]) and D := {U ∈ R

2 × (C1[−2, 2])
∣∣ X(0) = x}

endowed with the usual maximum norms. As in [7], the operator Lμ,g maps D con-

tinuously into H and has a compact resolvent in H when acting in H with domain D.

The nonlinearity Mμ,g is assumed to be analytic in t and μ. This implies that, for any

ρ > 0, there is a C(ρ) such that ‖Mμ,g(U)‖ ≤ C(ρ) ‖U‖2
D
for ‖U‖

D
≤ ρ. Analyticity is a

much stronger assumption than Iooss makes in [5], but it is needed to enable us to use

the results developed by Lombardi in [9].

The main result of this article is as follows.

Theorem 1. Suppose the potentials satisfy (4)–(7), and the nonlinearity Mμ,g as in (10)

is analytic. For g with − 1
4 + 1

4π2 < g < − 1
16 , there exists ĉ < c0(1 + 4g) such that, for

c ∈ (ĉ, c0(1+4g)), equation (3) has a solution comprising of a travelling wave with speed

c which is homoclinic to exponentially small periodic solutions of (3).

The theorems used from [9] could be used to give estimates on the amplitude of the

periodic solutions in Theorem 1. We concentrate, however, on showing how the problem

can be formulated so that the work in [9] is applicable to the NNN lattice and hence

prove the existence of the waves described in Theorem 1.
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TRAVELLING LATTICE WAVES IN A TOY MODEL OF LENNARD-JONES INTERACTION 69

Fig. 1. The bifurcation diagram for the problem considered in this article.

The upper bound on the wave speed in Theorem 1 can be rephrased as the condition

μ > 1
1+4g . The corresponding spectrum is shown in Figure 3 at the bottom, rightmost

plot. We remark that the speed with which waves can propagate in the linearisation

of (8) is c = c0
√
1 + 4g, which is equivalent to

μ =
1

1 + 4g
. (12)

We call c0
√
1 + 4g the speed of sound and, consequently, Theorem 1 establishes the

existence of subsonic waves. Our terminology follows, for example, [16], and refers to the

speed of waves in the linearised model. We point out that sometimes the group velocity

is called speed of sound.

Equation (3), like the NN systems of [5, 7], is invariant under the symmetry t → −t,

x → −x. Thus Lμ,g and Mμ,g both anti-commute with the reflection S in H given

by S(x, ξ,X)T = (−x, ξ,−X ◦ s)T , where S(x, ξ,X(ν))T = (−x, ξ,−X(−ν))T ; anti-

commutativity means

Lμ,gS = −SLμ,g and Mμ,gS = −SMμ,g . (13)

Also, we notice that, as in [6], the equation has a first integral

I1 = c2ẋ(t)−
∫ 1

0

U ′
1(x(t+ν)−x(t+ν−1))dν−g

∫ 2

0

U ′
2(x(t+ν)−x(t+ν−2))dν . (14)

2.1. The spectrum and resolvent of Lμ,g. In this section, we determine the spectrum

Σ of Lμ,g by solving the equation

(λI− Lμ,g)U = F (15)
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70 CHRISTINE R. VENNEY AND JOHANNES ZIMMER

for any given F = (f0, f1, F2)
T ∈ H; here λ ∈ C and U = (x, ξ,X)T ∈ D. Again, we

often suppress the time-dependence of the variables involved by writing, for example, x

instead of x(t).

The third equation of (15) can be solved for X(ν) by variation of constants; terms

involving X(ν) in the first two equations can then be calculated and these two equations

can be solved simultaneously for x and ξ. We express the solution in terms of

N(λ;μ, g) := −λ2 + 2μ(coshλ− 1) + 2μg(cosh 2λ− 1) (16)

and

f̃λj
:=

∫ j

0

[
−eλ(j−s)F2(s) + e−λ(j−s)F2(−s)

]
ds (17)

as

x = −(N(λ;μ, g))−1
[
λf0 + f1 + μ(f̃λ1

+ gf̃λ2
)
]
, (18)

ξ = −(N(λ;μ, g))−1
[(
λ2 +N(λ;μ, g)

)
f0 + λf1 + μλ(f̃λ1

+ gf̃λ2
)
]
, (19)

X(ν) = eλνx−
∫ ν

0

eλ(ν−s)F2(s)ds . (20)

These formulae hold provided N(λ;μ, g) �= 0. For each (μ, g) ∈ R2, N(λ;μ, g) is an

entire function in λ, and thus has isolated zeros of finite multiplicities. Therefore the

spectrum of Lμ,g consists of isolated eigenvalues with finite multiplicities located at these

zeros. Also, as in [5], the spectrum is invariant under reflexions in the real and imaginary

axes, which follows from (13). We thus can confine the examination to λ = p+ iq, where

p and q are positive.

For the central part Σ0 of the spectrum, N(iq;μ, g) = 0 with q ∈ R, i.e.,

q2 = 2μ [(1− cos q) + g(1− cos 2q)] (21)

or, equivalently,
q

2
√
μ
=

∣∣∣∣sin q

2

√
1 + 4g cos2

q

2

∣∣∣∣ . (22)

We recall the assumption − 1
4 < g < − 1

16 , when (22) can be illustrated as in Figure 2.

To keep the bifurcation at μ = 1
1+4g as simple as possible, we further restrict the values

of g under consideration, so that there are no more than two solutions to (22); the right

panel in Figure 2 suggests that a very safe restriction is to stipulate that 1
π <

√
1 + 4g, i.e.,

g > − 1
4 +

1
4π2 . (This lower bound for g could be improved by more detailed calculations.)

The following lemma summarises central spectral properties of Lμ,g.

Lemma 1. If − 1
4 + 1

4π2 < g < − 1
16 , the spectrum for Lμ,g has the following properties.

(1) Spectral gap: For each (μ, g) ∈ R
+ × R, there exists p0 > 0 such that for every

λ ∈ ΣLμ,g \ Σ0, |Re (λ)| ≥ p0.

(2) If λ = p+ iq ∈ Σ \ Σ0, then

q2 ≤ 4
(
μ(1 + |g|) + e−2

)
cosh2 p− 4μ |g| .

(3) There exists μg with 0 < μg < 1
1+4g such that for 0 < μ < μg, 0 is the only

eigenvalue in the central spectrum and has multiplicity 2. There are two pairs of

complex eigenvalues which converge towards the imaginary axis as μ → μg.
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TRAVELLING LATTICE WAVES IN A TOY MODEL OF LENNARD-JONES INTERACTION 71

Fig. 2. Illustration of the dispersion function for NN interaction on
the left and NNN interaction in the middle and on the right. Shown

are plots of 1√
μ

q
2
and sin

( q
2

)√
1 + 4g cos2

( q
2

)
, for μ as in (12), g = 0

(upper left), g = − 3
16

(upper right); the lower plot shows the same
curves except that the modulus is taken for the nonlinear function,
and g = − 1

4
+ 1

4π2 .

At μ = μg, 0 is an eigenvalue of multiplicity 2 and there is also a pair ±iq0 of

double, non semi-simple eigenvalues.

For μg < μ < 1
1+4g , 0 is an eigenvalue of multiplicity 2, and there are two

pairs of simple eigenvalues ±iq1 and ±iq2.

At μ = 1
1+4g , 0 is an eigenvalue of multiplicity 4, and there is a pair of simple

imaginary eigenvalues ±iq2.

For μ just greater than 1
1+4g , there is a double eigenvalue at zero, a pair of

simple imaginary eigenvalues, ±iq2, and two real eigenvalues which then move

away from zero as μ increases.

See Figure 3 for an illustration.

(4) There is then an unbounded sequence of critical values of μ at which bifurcations

occur and the dimension of the centre space increases by 4.

Proof. The proof follows the method in Iooss and Kirchgässner [7, Lemma 1], and we

omit the proofs for Claims 1 and 2.

For Claims 3 and 4, we note that

N(iq;μ, g) = q2 − 2μ(1− cos q)− 2μg(1− cos 2q) = q2 − 4μ sin2
q

2
− 4μg sin2 q , (23)

and since
∂N(iq;μ, g)

∂q
= 2q − 2μ sin q − 4μg sin 2q , (24)

it follows that for every (μ, g) the eigenvalue 0 has multiplicity of at least 2. Similarly,

∂2N(iq;μ, g)

∂q2
= 2− 2μ cos q − 8μg cos 2q and

∂3N(iq;μ, g)

∂q3
= 2μ sin q + 16μg sin 2q ,
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72 CHRISTINE R. VENNEY AND JOHANNES ZIMMER

μg < μ <
1

1 + 4g
μ =

1

1 + 4g
μ >

1

1 + 4g
μ = μgμ < μg

−1

4
+

1

4π2
< g < − 1

16

Fig. 3. Eigenvalues at the bifurcation μ = 1
1+4g

in C (bottom) and

bifurcation for the NN case (g = 0, top). Circles denote single eigen-
values, squares double eigenvalues and a triangle an eigenvalue of
multiplicity 4.

so for a pair (μ, g), if the eigenvalue 0 has multiplicity greater than 2, it has multiplicity

of at least 4, and such pairs satisfy μ = 1
1+4g . Moreover, one infers analogously from

∂4N
∂q4 and ∂5N

∂q5 that the multiplicity of 0 is 6 if μ = 1/(1 + 4g) and g = −1/16, that is,

(μ, g) = (4/3,−1/16).

Setting (23) and (24) to 0 and eliminating g gives

μ =
q(sin q − q cos q)

(1− cos q)2
; (25)

substituting this into (24) gives

g =
q

4(sin q − q cos q)
− sin q

2(1 + cos q)(sin q − q cos q)
. (26)

These two equations parametrise the curve shown in Figure 3. �

3. The bifurcation at μ = 1/(1+4g) and the existence of subsonic travelling

waves homoclinic to periodic solutions. We keep the analysis confined to the case

g ∈
(
− 1

4 + 1
4π2 ,− 1

16

)
; then, by Lemma 1, the linear operator Lμ,g has a eigenvalue of

multiplicity 4 at 0 and a pair of simple eigenvalues, now simply referred to as ±iq.

3.1. The projection onto the centre space for the linear operator.
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TRAVELLING LATTICE WAVES IN A TOY MODEL OF LENNARD-JONES INTERACTION 73

3.1.1. The projection P0. Let P0 be the projection onto the space spanned by the

Jordan basis

ζ0 =

⎛
⎝1

0

1

⎞
⎠ , ζ1 =

⎛
⎝0

1

ν

⎞
⎠ , ζ2 =

⎛
⎝ 0

0
1
2ν

2

⎞
⎠ , ζ3 =

⎛
⎝ 0

0
1
6ν

3

⎞
⎠ . (27)

Note that, for μ = 1/(1 + 4g),

Lμ,gζ0 = 0 and Sζ0 = −ζ0

Lμ,gζ1 = ζ0 and Sζ1 = ζ1

Lμ,gζ2 = ζ1 and Sζ2 = −ζ2

Lμ,gζ3 = ζ2 and Sζ3 = ζ3 .

We proceed as in Iooss [6] and use that the projection is given by the Laurent expansion

in L(H) of the resolvent operator, (λI−Lμ,g)
−1, for λ near 0. So if D := Lμ,gP0 and L̃−1

μ,g

is the pseudo-inverse of Lμ,g on the subspace (I−P0)H, then [8, Chapter III, Eq. (6.32)]

(λI− Lμ,g)
−1

=
D3

λ4
+

D2

λ3
+

D

λ2
+

P0

λ
− L̃−1

μ,g − λL̃−2
μ,g − . . . ,

and, if F = (f0, f1, F2)
T ∈ H,

P0F = ((P0F )x, (P0F )ξ, (P0F )X)
T
= (P0F )xζ0 + (DF )xζ1 + (D2F )xζ2 + (D3F )xζ3 .

(28)

We expand
(
N(λ; 1

1+4g , g)
)−1

and f̃λj
for j = 1, 2 in powers of λ and compare powers

of λ in (18).

The coefficient of λ−4 gives

(D3F )x = (D2F )ξ

= − 12

1 + 16g

{
(1 + 4g)f1 −

∫ 1

0

[F2(s)− F2(−s)] ds− g

∫ 2

0

[F2(s)− F2(−s)ds]

}
.

From the coefficient of λ−3, we obtain

(D2F )x = (DF )ξ =
−12

1 + 16g

{
(1 + 4g)f0 −

∫ 1

0

(1− s)(F2(s) + F2(−s))ds

−g

∫ 2

0

(2− s)(F2(s) + F2(−s))ds

}
,

while the coefficient of λ−2 gives

(DF )x = (PF )ξ

=
12

1 + 16g

{
(1 + 64g)(1 + 4g)

30(1 + 16g)
f1 −

∫ 1

0

(
1 + 64g

30(1 + 16g)
− (1− s)2

2

)

· (F2(s)−F2(−s))ds− g

∫ 2

0

(
1 + 64g

30(1 + 16g)
− (2− s)2

2

)
(F2(s)−F2(−s))ds

}
;
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74 CHRISTINE R. VENNEY AND JOHANNES ZIMMER

and finally, from the coefficient of λ−1,

(PF )x =
2

5(1 + 16g)

{
(1 + 64g)(1 + 4g)

(1 + 16g)
f0

−
∫ 1

0

(
(1 + 64g)(1− s)

(1 + 16g)
− 5(1− s)3

)
(F2(s) + F2(−s))ds

−g

∫ 2

0

(
(1 + 64g)(2− s)

(1 + 16g)
− 5(2− s)3

)
(F2(s) + F2(−s))ds

}
.

As in Iooss’ paper [5], we denote by ζ∗j the linear continuous forms on H given by

ζ∗0 (F ) = (PF )x, ζ
∗
1 (F ) = (DF )x = ζ∗0 (Lμ,gF ), ζ∗2 (F ) = (D2F )x and ζ∗3 (F ) = (D3F )x.

It holds that

ζ∗j (SF ) = (−1)j+1ζ∗j (F )

ζ∗k(ζj) = δkj for k, j = 0, 1, 2, 3 .

We also notice that, if F = W = (x, ξ,X(v))T ∈ D, then (14) gives us

I1 = c2ξ − c2μ

∫ 1

0

[x(t+ ν)− x(t+ ν − 1)] dν

− c2μg

∫ 2

0

[x(t+ ν)− x(t+ ν − 2)] dν + h.o.t.

= c2ξ − c2μ

∫ 1

0

[X(ν)−X(ν − 1)] dν − c2μg

∫ 2

0

[X(ν)−X(ν − 2)] dν + h.o.t.

= c2ξ − c2μ

∫ 1

0

[X(ν)−X(−ν)] dν − c2μg

∫ 2

0

[X(ν)−X(−ν)] dν + h.o.t.

= −c2μ(1 + 16g)

12
ζ∗3 (W ) + h.o.t. .

So we can write

ζ∗3 (W ) = C + h.o.t. , (29)

where C is a constant and can be regarded as a parameter of the system.

3.1.2. The projection Pq. Let Pq be the projection on the invariant subspace spanned

by

ζq =

⎛
⎝ 1

iq

eiq

⎞
⎠ and ζ̄q =

⎛
⎝ 1

−iq

e−iq

⎞
⎠ . (30)

We define, as in [7], for j = 1, 2,

σj(F ) :=

∫ j

0

sin q(j − s)[F2(s) + F2(−s)]ds , (31)

ρj(F ) :=

∫ j

0

cos q(j − s)[F2(s)− F2(−s)]ds . (32)
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The projection Pq is then given by the sum of the residues at±iq for the three components

in (18)–(20). That is,

(PqF )0 =
qf0 − μσ1 − μgσ2

N1
, (33)

(PqF )1 =
qf1 − qμ(ρ1 + gρ2)

N1
, (34)

and

(PqF )2 =
cos qν(qf0 − μ(σ1 + gσ2)) + sin qν(f1 − μ(ρ1 + gρ2))

N1
. (35)

Straightforward calculations show that

Pqζq = ζq ,

P0ζj = ζj for j = 0, 1, 2, 3 ,

P0ζq = 0 ,

Pqζj = 0 for j = 0, 1, 2, 3 .

3.2. Reduction of the system. As for the system with NN interaction only [5], the

system (9) is invariant under the shift operator

τr : U 
−→ U + rζ0 for all ∈ R , (36)

which corresponds to the invariance of (3) under x 
−→ x+ r. Invariance means here

Lμ,gτr = Lμ,g and Mμ,g ◦ τr = Mμ,g .

So we decompose any U ∈ H into

U =: W + r(t)ζ0 with ζ∗0 (W ) = 0 ; (37)

for the corresponding split of the function spaces, let us write Ĥ for the co-dimension-one

subspace of H containing W and D̂ for the corresponding subspace of D.

Since Mμ,g has the form (0, f1, 0), ζ
∗
0 (Mμ,g) = 0, so (9) becomes the system

∂r

∂t
= ζ∗0 (Lμ,gW ) + 0 = ζ∗1 (W ) , (38)

∂W

∂t
= L̂μ,gW +Mμ,g(W ) , (39)

where

L̂μ,gW := Lμ,gW − ζ∗1 (W )ζ0 , (40)

and we still have SL̂μ,g = −L̂μ,gS.

We note that L̂μ,g has the same spectrum as Lμ,g except that the eigenvalue at 0 is

triple rather than quadruple and

L̂μ,gζ1 = 0, L̂μ,gζ2 = ζ1, L̂μ,gζ3 = ζ2, ζ∗3 (L̂μ,gW ) = 0 .

We now wish to deduce the normal form for L̂μ,g. However, so that we can use the

results in Lombardi’s book [9], we do not carry out a centre manifold reduction but rather

deduce a normal form in infinite dimensions, so that analyticity is retained.
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We study the equation (39) in the Banach space Ĥ. We want to study μ close to

1/(1 + 4g) for a fixed g ∈
(
− 1

4 + 1
4π2 ,− 1

16

)
. We thus define the parameter ψ := μ −

1/(1 + 4g) and consider ψ ∈ [−ψ0, ψ0] for some ψ0 > 0. The equation is now sometimes

written in the form
∂W

∂t
= L̂μ,g(ψ)W +Mμ,g(W,ψ) . (41)

We split the linear part as

L̂μ,g(ψ) = L̂0 + ψL̂1 , (42)

where L̂0 denotes the operator

L̂0 := L̂ 1
1+4g ,g

=

⎛
⎜⎝

0 1 0

−2 (1+g)
(1+4g) 0 δ1+δ−1+g(δ2+δ−2)

(1+4g)

0 0 ∂ν

⎞
⎟⎠− ζ∗1 (.)ζ0,

and the operator

L̂1 :=

⎛
⎝ 0 0 0

−2(1 + g) 0 (δ1 + δ−1) + g(δ2 + δ−2)

0 0 0

⎞
⎠

is independent of ψ.

The central spectrum Σ0 = ΣL̂0 ∩ iR of L̂0 is {±iq, 0} with q > 0; 0 is a triple non

semi-simple isolated eigenvalue, and ±iq are two simple isolated eigenvalues.

Since the spectrum suggests that there are homoclinics to exponentially small oscilla-

tory tails, we would like to apply the results of Lombardi’s book [9]. However, there are

two obstacles. Firstly, 0 is a double rather than a triple eigenvalue in [9]. We will deal

with this by establishing a normal form with one coordinate as a constant (the constant

of integration established in (29)) and then we can effectively factor out ζ3 and thus

further reduce the multiplicity of the eigenvalue 0 to 2.

Secondly, in [9], it is assumed that the spectrum of L̂0 is sectorial. This, in turn, implies

that the hyperbolic part of the system can be solved uniquely. This solvability property

is a key requirement for the proof of persistence of solutions for the full equation. In our

case, the spectrum is not sectorial; see Lemma 1 (for Lμ,g; the same is true for L̂μ,g).

We circumvent this difficulty by showing that the hyperbolic part of the system can still

be solved uniquely in an appropriate space; the argument uses the ideas in Iooss and

Kirchgässner [7].

3.3. Properties of L̂μ,g. We define the graph norm on D̂ as

‖W‖2
D̂
:= ‖W‖2

Ĥ
+
∥∥∥L̂0W

∥∥∥2
Ĥ

.

We now consider the centre spaces in H (respectively Ĥ). In H, we denote the finite-

dimensional space spanned by {ζ0, ζ1, ζ2, ζ3, ζq, ζ−q} by Hc and the subspace of Ĥ spanned

by {ζ1, ζ2, ζ3, ζq, ζ−q} as Ĥc. For the projection onto Hc we write

PcU := (ζ∗0 , U)ζ0 + (ζ∗1 , U)ζ1 + (ζ∗2 , U)ζ2 + (ζ∗3 , U)ζ3 + (ζ∗q , U)ζq + (ζ∗−q, U)ζ−q ,

and the projection on Ĥc is

P̂cW := (ζ∗1 ,W )ζ1 + (ζ∗2 ,W )ζ2 + (ζ∗3 ,W )ζ3 + (ζ∗q ,W )ζq + (ζ∗−q,W )ζ−q .
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It is trivial to check that these operators satisfy Pc ∈ L(H,D) and P̂c ∈ L(Ĥ, D̂). The

projection P̂c also commutes with L̂0; that is, L̂0P̂cW = P̂cL̂
0W , for all W ∈ D̂.

The projection of H on the hyperbolic part is denoted Ph := Id− Pc; we write Hh :=

PhH for the range. Similarly, let us define the projection P̂h := Id − P̂c acting on Ĥ.

Note that P̂hĤ = Hh since the difference between H and Ĥ is in the centre space.

Similarly, let Dh := PhD = P̂hD̂ and define the restricted operators L̂0
c := L̂0|

Ĥc
and

L̂0
h := L̂0|Hh

.

Then the split in centre and hyperbolic space can be written as H = Hc ⊕ Hh and

D = Dc ⊕ Dh; analogously, Ĥ = Ĥc ⊕Hh and D̂ = D̂c ⊕ Dh.

In the following, we identify Ĥ with R
5 ×Hh and D̂ with R

5 × Dh. Then (41) can be

written as

∂Wc

∂t
= L̂0

cWc +Mc(W,ψ) (43)

∂Wh

∂t
= L̂0

hWh +Mh(W,ψ), (44)

where Mc(W,ψ) := ψP̂cL̂
1(ψ)W + P̂cMμ,g(W,ψ) and Mh(W,ψ) := ψP̂hL̂

1(ψ)W +

P̂hMμ,g(W,ψ). We have suppressed the subscript “μ, g” from the restricted operators

for better readability. We now collect some properties of the operators involved.

Lemma 2. (1) L̂(ψ) is a closed, densely defined, unbounded linear operator in Ĥ,

with the domain D̂ being independent of ψ.

(2) The system (41) is reversible: there exists a reflection S, that is, a bounded linear

operator in HH satisfying S2 = Id
Ĥ
, such that SL̂μ,g(ψ)W = −L̂μ,g(ψ)SW and

SMμ,g(W,ψ) = −Mμ,g(SW,ψ) for every W ∈ D̂ and ψ ∈ [−ψ0, ψ0].

(3) There exists a constant CL such that

∥∥∥L̂1(ψ)W
∥∥∥
Ĥ

≤ CL ‖W‖
D̂

(45)

for every ψ ∈ [−ψ0, ψ0] and W ∈ D̂.

(4) (a) The nonlinearity Mμ,g(W,ψ) is an analytic function from B(0, r)× [−ψ0, ψ0]

to Ĥ, where B(0, r) is some ball of radius r in D̂.

(b) There exists a constant CMμ,g
such that

‖Mμ,g(W,ψ)‖
Ĥ
≤ CMμ,g

‖W‖2
D̂

for every W in B(0, r), and ψ ∈ [−ψ0, ψ0].

Proof. 1 follows directly from the definitions; both 2 and 4 are inherited from the

original system defined on H. For example, 2 is the restriction of (13) to L̂μ,g. As for 3,

(45) follows with CL := 4(1 + |g|) from (42). �
We remark that properties 2 and 4 ensure that necessarily Sζ1 = ±ζ1. We actually

have Sζ1 = ζ1; i.e., in the notation of Lombardi [9], we have a 03+iq resonance at the

origin.
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3.4. Solving the hyperbolic equation. We employ the spaces Eα
j (Z) of [7] for α ∈ R

and j ∈ N, with norms ‖f‖j ,

Eα
j (Z) =

{
f ∈ Cj(R, Z)

∣∣ ‖f‖j = max
0≤k≤j

sup
t∈R

e−α|t| ∣∣Dkf(t)
∣∣ < ∞

}
,

and similarly define vector-valued versions Eα
j (Z).

Recall that Uh := PhU , Wh := P̂hW , and Uh = Wh (the difference between U and W ,

r(t)ζ0, is in the centre space). Further, from (40),

L̂μ,gUh = Lμ,gUh − ζ∗1 (Uh)ζ0 = Lμ,gUh .

So solving

∂Wh

∂t
= L̂μ,gWh + P̂hF (46)

is equivalent to solving

∂Uh

∂t
= Lμ,gUh + PhF . (47)

Equation (46) has to be solved for Uh ∈ E
α
0 (Dh) ∩ E

α
1 (Hh), for each α ≥ 0. We know

that relevant F have the form (0, f, 0)T , where f ∈ Eα
0 (R), and also have conditions on

Uh given by the fact that its projections onto the components of the centre space are

zero. The calculation is lengthy but follows established arguments [7] and is thus omitted

here. We remark that an alternative proof, based on a result by Mielke [12], was given

by Calleja and Sire [1].

Lemma 3. Assume f ∈ Eα
0 , for α ∈ (−α0, α0), α0 < δ < p0; then the system (46) has

a unique solution Uh ∈ Eα
0 (Dh) ∩ Eα

1 (Hh), and the linear map f 
→ Uh from Eα
0 (R) to

Eα
0 (Dh) ∩ Eα

1 (Hh) is bounded uniformly in α ∈ (−α0, α0).

3.5. Deriving the normal form. As in Lombardi’s book [9, Chapter 8], we use a direct

normalisation on (41), thus retaining the benefits of the analyticity of f .

We further decompose W before applying the normal form theorem. Let W = c̃ζ3+W̃

where ζ∗3 (W̃ ) = 0. From (29), we can write

c̃ = C + h.o.t. .

Following Iooss and James [6], we use the coordinate C rather than c̃, where C is a

constant of integration which is now treated as a parameter of the system.

We study

Yc = Aζ1 +Bζ2 + Cζ3 +Dζq + D̄ζ−q

= Aζ1 +Bζ2 + Cζ3 +D1
1

2
(ζq + ζ−q) +D2

1

2i
(ζq − ζ−q) .

Notice that

S((A,B,C,D, D̄)) = (A,−B,−D̄,−D) ,

S((A,B,C,D1, D2)) = (A,−B,−D1, D2) ,

Licensed to University of Bath. Prepared on Tue Sep 22 11:31:34 EDT 2015 for download from IP 138.38.54.59.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



TRAVELLING LATTICE WAVES IN A TOY MODEL OF LENNARD-JONES INTERACTION 79

and that, for the A,B,C,D1, D2 coordinates,

L̂0
c =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 −q

0 0 0 q 0

⎞
⎟⎟⎟⎟⎠ .

Theorem 2. A feasible normal form for these coordinates is

dA

dt
= B

dB

dt
= C + φ2(A,D2

1 +D2
2 , C, ψ) + h.o.t.

dC

dt
= 0

dD1

dt
= −qD2 − qD2φ4(A,D2

1 +D2
2, C, ψ) + h.o.t.

dD2

dt
= qD1 + qD1φ4(A,D2

1 +D2
2, C, ψ) + h.o.t. , (48)

where φ2 and φ4 are real polynomials.

The proof uses standard arguments; see, for example, the book by Haragus and

Iooss [4].

We now turn to calculating the coefficients in the normal form. Let

φ2(A,D2
1 +D2

2 , C, ψ) = vA+ aA2 + cCA+ d(D2
1 +D2

2) + . . . ,

where v, a, c and d, etc. are functions of ψ. Then the linear operator for the system (48)

is ⎛
⎜⎜⎜⎜⎝

0 1 0 0 0

v 0 1 0 0

0 0 0 0 0

0 0 0 0 −q

0 0 0 q 0

⎞
⎟⎟⎟⎟⎠ .

The eigenvalues are ±iq, 0 and ±√
v. Examining the dispersion relation N(λ;μ, g) = 0

for μ close to 1/(1+4g) (i.e., v close to zero) and looking for roots, λ, close to zero leads

to

0 = λ2 − 2μ(coshλ− 1)−2gμ(cosh 2λ− 1) = λ2(1− μ(1 + 4g))−λ4μ(
1

12
+

16g

12
) + . . . .

So

v = λ2 =
12(1− μ(1 + 4g))

(1 + 16g)μ
+ . . .

=
12(1 + 4g)(1− μ(1 + 4g))

(1 + 16g)(1− (1− μ(1 + 4g))
+ . . .

=
12(1 + 4g)(1− μ(1 + 4g)))

(1 + 16g)
+O[(1− μ(1 + 4g))2] .
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Notice that, since we have chosen −1/4 < g < −1/16, this expression is negative for

μ < 1/(1 + 4g) (supersonic speeds) and positive for μ > 1/(1 + 4g) (subsonic speeds).

This is the reverse of the case in Iooss’ paper [7].

We now calculate the coefficient a in the normal form. Let M̂2(W,W ) represent the

quadratic part of G′
1(δ

1X − x) − G′
1(x − δ−1X) + g[G′

2(δ
2X − x) − G′

2(x − δ−2X)]. In

summary, the relevant parts of the normal form, etc. we are looking at are

dA

dt
= B

dB

dt
= C + vA+ aA2 + . . .

dC

dt
= 0

dD1

dt
= −qD2 − qD2φ4(A,D2

1 +D2
2 , C) + . . .

dD2

dt
= qD1 + qD1φ4(A,D2

1 +D2
2 , C) + . . . .

The differential equation is

dW

dt
= L̂0W + M̂2(W,W ) + . . . ,

where

W = Yc + Yh +Φ(Yc, ψ)

= Aζ1+Bζ2 + Cζ3 +D1
1

2
(ζq + ζ−q) +D2

1

2i
(ζq − ζ−q)

+A2Φ20000 +ABΦ11000 +ACΦ10100 + · · ·+ Yh .

We now identify coefficients of A2 and AB in the differential equation to give

aζ2 = L̂0
cΦ20000 + M̂2(ζ1, ζ1) (49)

2Φ20000 = L̂0
cΦ11000 + 2M̂2(ζ1, ζ2) . (50)

We notice that, for ζ1, (δ
1X − x)2 − (x− δ−1X)2 and (δ2X − x)2 − (x− δ−2X)2 are

both zero, so M̂2(ζ1, ζ1) = 0 and (49) becomes

aζ2 = L̂0
cΦ20000 . (51)

We also need the kernel of (L̂0
c)

∗,

(L̂0
c)

∗ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 q

0 0 0 −q 0

⎞
⎟⎟⎟⎟⎠ .

The kernel of (L̂0
c)

∗ in the ζ basis is thus spanned by (0, 0, 1, 0, 0)T , i.e., by ζ3.

This gives that, for any W ,

(L̂0
cW, ζ3) = (W, (L̂0

c)
∗ζ3) = 0 .
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Inverting (51) gives

Φ20000 = aζ3 + ãζ1 ,

where ã is a constant.

Substituting in the equation (50) for the coefficients of AB gives

2aζ3 + ãζ1 = L̂0
cΦ11000 + 2M̂2(ζ1, ζ2) ,

and if we now apply ζ∗3 , we get

2a = ζ∗3 (2M̂2(ζ1, ζ2)) .

We now need to calculate ζ∗3 (M̂2(ζ1, ζ2)). Let ζj = (xj , ξj , Xj); then

(δ1X1 − x1)(δ
1X2 − x2)− (x1 − δ−1X1)(x2 − δ−1X2) = 1 · 1

2
− (−1) · 1

2
= 1 ,

(δ2X1 − x1)(δ
2X2 − x2)− (x1 − δ−2X1)(x2 − δ−2X2) = 8 .

Hence

M̂2(ζ1, ζ2) = (0, (α1 + 8gα2), 0)
T

and, using the formula derived for ξ∗3 ,

a =
−12(1 + 4g)

(1 + 16g)
(α1 + 8gα2) .

If we assume that (7) holds, then α1 + 8gα2 > 0, and thus a > 0. We are now in a

position to take the special case C = 0 and then apply the scaling used in Lombardi’s

book [9, page 322] for ψ > 0 and prove the persistence of the subsonic solitary solutions

homoclinic to exponentially small periodic solutions.

Lombardi’s proof needs one more adaption for our non-sectorial spectrum; i.e., we

need to show that the equation (8.35) in [9] has a unique 2π-periodic solution in the

hyperbolic space for any F of the form (0, f, 0)T as before. In our notation, this equation

is
q0,

√
v√
v

∂Zh

∂s
− L̂0

h√
v
Zh = Fh , (52)

where q0,
√
v = q + O(

√
v). (The constants q0,

√
v,

√
v, which are dependent on the

parameter ψ, and the variable s are the result of a scaling used in [9] to simplify the

normal form in the centre space and to ensure that we are working with functions of

periodicity 2π.)

The working to find the form of Zh = (xh, ξh, Xh)
T is essentially the same as before,

just adjusted for the constants in the equation due to the new scaling and using Fourier

series rather than Fourier transforms.

Examining the identity for ξ̂h,n (the nth Fourier coefficient for ξh), we find

x̂h,n√
v
(n2q20,

√
v −2μ(1+ g)+2μ cos(nq0,

√
v)+2μg cos(2nq0,

√
v)) ≤

(
C1(q)

n
+ C2(q)

) ∣∣∣f̂n
∣∣∣ .

The coefficient of x̂h,n here is N(inq0,
√
v, μ, g), which is O(n2) as n → ∞, and nonzero if

n �= 0, or n �= ±1 and v �= 0. If the opposite to either of these statements holds, then we
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would have contributions in the Fourier expansion for Zh from the centre space, so their

coefficients would have to be zero. Otherwise, we have

x̂h,n ≤ C(q)
√
v

n3

∣∣∣f̂n
∣∣∣ ,

and the proof can proceed as in [9, Chapter 8], leading to a proof of Theorem 1.

4. Existence of supersonic periodic solutions. We now study (9) for μ close to

and strictly less than 1/(1 + 4g), again for fixed g ∈
(
− 1

4 + 1
4π2 ,− 1

16

)
. The travelling

wave is then supersonic in the terminology introduced after Theorem 1. In this section,

we show the following result.

Theorem 3. Suppose the potentials satisfy (4)–(7). Also note that the nonlinearity

Mμ,g, as in (10), is in Ck(D,D) for k ≥ 1 and ‖Mμ,gU‖
D
≤ c(ρ) ‖U‖2

D
for all U ∈ D

with ‖u‖
D
≤ ρ, where ρ is an arbitrary constant. (In our case, the latter condition is

ensured by G1 and G2 ∈ C2(I), where I denotes an open neighbourhood of 0 ∈ R.) For

g such that − 1
4 + 1

4π2 < g < − 1
16 there exists an ηg > 0 depending on g and c0 such

that, if c20(1 + 4g) < c2 < c20(1 + 4g) + ηg, there exists at least one one-parameter family

of smooth periodic waves as solutions to (3).

Notice that the conditions on the potentials have been considerably relaxed compared

with Theorem 1, and also that the condition on c is equivalent to μg < μ < 1/(1 + 4g).

A similar result has recently been proved with a linking argument [15] where an

estimate is made for ηg, so we only sketch the argument using centre manifold techniques.

To show the existence of supersonic periodic solutions, we no longer need to treat μ as

a small parameter, but just choose any value for which the linear equation has supersonic

periodic solutions and the centre space is spanned by the six vectors ζ0 and ζ1 from (27)

and

ζ±q1 =

⎛
⎝ 1

±iq1
e±iq1

⎞
⎠ , ζ±q2 =

⎛
⎝ 1

±iq2
e±iq2

⎞
⎠ ,

where 0 < q1 < q2. We need the projection P onto the centre space, and we can think of

it as P = P0,2 + P1 + P2, where P0,2 is the projection onto the subspace spanned by ζ0
and ζ1 and P1 is the projection onto the subspace spanned by ζ±q1 , etc. So we seek PF

where F = (f0, f1, F2)
T . These formulae are found using the same methods as before.

We again use the invariance under the shift operator (36) to decompose U as in (37).

We look for solutions in Ĥ, the co-dimension-one subspace of H containing W . The

component along ζ0 of the full solution represents a uniform stretching or contraction of

the lattice.

Recall that (9) becomes the system (38)–(39), with L̂μ,g as in (40); L̂μ,g has the same

spectrum as Lμ,g except that, for this choice of μ, the eigenvalue at 0 is now single rather

than double and

L̂μ,gζ1 = 0 .

This time, we wish to use the Iooss and Vanderbauwhede Theorem [14] to apply a

centre manifold reduction so that we are working in a finite-dimensional space. To use
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this theorem, we need to separate (9) into a central and a hyperbolic part and show that

the hyperbolic part has a unique solution in the relevant spaces. The method of proof is

exactly the same as before and ensures that the centre manifold reduction is feasible.

We are now working in a five-dimensional space. We again follow Iooss and James [6]

and further decompose W before applying the normal form. In this centre space, the

projection onto ζ1 enables us (analogously to the homoclinic case) to decompose W into

ãζ1 + W̃ , where

ã = A+ h.o.t. ,

and A is a constant of integration. We use A as the coordinate along ζ1 for the normal

form and treat it as a parameter for the system. We can then look at the case A = 0. We

are effectively looking at a four-dimensional centre space with eigenvalues ±iq1 and ±iq2,

and we can use the Devaney-Lyapunov Theorem (e.g., [9, Theorem 4.1.1]). Specifically,

the eigenvalue iq2 satisfies the conditions of the Devaney-Lyapunov Theorem and gives us

one family of periodic solutions in Ĥ. If q2/q1 is non-integer (a dense set), the eigenvalue

iq1 gives us a second family of periodic solutions. For the case r(t) = 0 these solutions

are also periodic in H. This proves Theorem 3.
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